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Abstract

The Adverse Outcome Pathway (AOP) framework describes the progression of a toxicity pathway 

from molecular perturbation to population-level outcome in a series of measurable, mechanistic 

responses. The controlled, computer-readable vocabulary that defines an AOP has the ability to, 

automatically and on a large scale, integrate AOP knowledge with publically available sources of 

biological high-throughput data and its derived associations. To support the discovery and 

development of putative (existing) and potential AOPs, we introduce the AOP-DB, an exploratory 

database resource that aggregates association relationships between genes and their related 

chemicals, diseases, pathways, species orthology information, ontologies, and gene interactions. 

These associations are mined from publically available annotation databases and are integrated 

with the AOP information centralized in the AOP-Wiki, allowing for the automatic 

characterization of both putative and potential AOPs in the context of multiple areas of biological 

information, referred to here as “biological entities”. The AOP-DB acts as a hypothesis-generation 

tool for the expansion of putative AOPs, as well as the characterization of potential AOPs, through 

the creation of association networks across these biological entities. Finally, the AOP-DB provides 

a useful interface between the AOP framework and existing chemical screening and prioritization 

efforts by the US Environmental Protection Agency.
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Introduction

Efforts to inform toxicological risk assessment through the organization of biological 

information has led to the development of several pathway frameworks, such as the 

International Program on Chemical Safety (IPCS) mode-of-action (MOA) framework, and 

the National Research Council (NRC)-established toxicity pathway framework (Boobis et 

al., 2006; Boobis et al., 2008; Gibb, 2008). Most recently, the Organisation for Economic 

Co-operation and Development (OECD) has refined the concept of the adverse outcome 

pathway (AOP), a chemically agnostic framework that describes existing knowledge of 

biological perturbation in discrete steps across multiple scales of organization (Ankley et al., 

2010; OECD, 2012). An AOP follows the events of a toxicity pathway in measurable 

mechanistic steps, beginning with a Molecular Initiating Event (MIE) that describes an 

action on a specific biomolecule, through a series of causally-linked Key Events (KE) 

representing downstream effects at the levels of molecular, cellular, tissue, organ, individual 

and population-level response, leading to some Adverse Outcome (AO).

To maximize the utility of the AOP construct, aggregation and standardized organization of 

AOP knowledge is essential. The OECD has developed a series of tools collectively known 

as the AOP Knowledge Base (AOP-KB) to provide a standardized, systematic structure for 

AOP development and knowledge dissemination. One such tool, the AOP-Wiki 

(www.aopwiki.org), facilitates collaborative AOP development by collecting and linking 

expert-curated AOP information through a controlled vocabulary (Villeneuve et al., 2014). 

This article introduces another tool for the development of AOPs: the AOP-DB is a database 

resource that relates the information stored in the AOP- Wiki to diseases, chemical-gene 

associations, taxonomic information, and other biological entities. These associations are 

sourced from public annotation and provide a wider context of relevant biology for each 

AOP, thus enabling researchers to expand predictions of chemical stressors and toxicological 

outcomes.

The AOP framework has already shown strong potential in toxicological chemical 

assessment, especially as a tool for the prioritization of chemicals, tissues, and organisms for 

effective assay design and the development of predictive toxicology models (OECD, 2012; 

Tollefsen et al., 2014). For example, the AOP can provide a basis for establishing structure-

activity relationships between MIE molecular targets and specific xenobiotics of interest 

(Browne, Judson, Casey, Kleinstreuer, & Thomas, 2015; Landesmann, Goumenou, Munn, & 

Whelan, 2012; Vinken et al., 2013). The identification of intermediate KEs can inform in 
vitro assay endpoints (Vinken, 2013), which aids in the identification of toxicity pathways of 

interest. Further, defined realms of taxonomic applicability establish species context for 

regulatory decisions. Workflows to computationally predict taxonomic applicability for 

MIEs (LaLone et al., 2016) and AOPs (Mortensen, 2017; Mortensen, Pittman et al., in prep) 

have been described to predict species susceptibility and inform chemical evaluation. There 

is a wealth of free, publically available biological information on the web, including “omics” 

data, high throughput assays, and experimental and inferred associations between biological 

entities. However, the utility of this abundant knowledge is compromised by its vast 

dispersion over multiple formats and databases, requiring manipulation and extensive quality 

control to incorporate usable information. Multiple attempts have been made to integrate 
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these resources in order to improve knowledge discovery, fill complementary information 

gaps, aid in data interpretation, and allow for collective mining of heterogeneous data types 

for a more comprehensive, systems-level view of biological questions (Gligorijevic & Przulj, 

2015; Gomez-Cabrero et al., 2014; R. Judson et al., 2008; Lapatas, Stefanidakis, Jimenez, 

Via, & Schneider, 2015; Sherman et al., 2007; Smith et al., 2007; Wang, Khankhanian, 

Baranzini, & Mousavi, 2011). Integration of publically available data with the AOP 

framework has been explored for its utility in predicting putative AOPs. Incorporation of 

external data sources informs AOP discovery and development (Oki, Nelms, Bell, 

Mortensen, & Edwards, 2016).

To address the need for an automated system to relate AOPs to useful public information, we 

introduce the AOP-DB, a database resource that stores preliminary AOP-associated gene 

targets from the AOP-Wiki and relevant chemicals, diseases, biological pathways, taxonomy, 

and ontologies. The AOP-DB is a novel resource that integrates multiple heterogeneous data 

sources and types in a single centralized location, and automatically relates AOP 

mechanistic information to functional biological entities. The AOP-DB facilitates 

exploration across multiple levels of biological organization, and species-level variation. To 

enable the exchange of information among regulatory research efforts, the AOP-DB also 

interfaces between OECD AOP Discovery and Development tools, as well as and other EPA 

toxicology resources including ToxCast data (Dix et al., 2007) and the EPA Chemistry 

Dashboards (Richard & Williams, 2002). The AOP-DB seeks to capture the relationships 

between these diverse data types in order to profile AOPs in a systems biology context, act 

as a hypothesis-generation tool for assay development, and aid in the discovery of 

unidentified AOPs.

This paper briefly outlines the design and data sources of the AOP-DB, and illustrates the 

utility of the tool through three use cases: 1) characterizing the biological space of a putative 

AOP; 2) exploring the biological overlap between a collection of interconnected AOPs; and 

3) hypothesis generation for the development of a potential AOP (e.g. an AOP not yet 

described). Here we illustrate the AOP-DB’s potential as a data integration tool for the 

characterization of AOPs, as well as a useful interface between OECD and EPA toxicology 

efforts and the wider landscape of publically available annotation. Though the AOP-DB is 

not currently available for public download, DB-sourced relationships between AOPs, KEs, 

chemical stressors, and ToxCast assays are integrated into the EPA Chemistry Dashboard 

(https://comptox.epa.gov/dashboard). Other database components are available upon request.

Materials and Methods

I. AOP-DB structure and quality validation

The goal of the AOP-DB is to capture relationships among genes and multiple biological 

entities to characterize AOP activity in a variety of contexts, such as associated diseases, 

chemicals, pathways, taxonomic groups, and protein interactions. The AOP-DB was 

developed on the SQL InnoDB platform version 5.6.36 (Oracle, 2000, 2013) and contains 

sixteen information tables linked through the centrally located gene identifier table, 

described below, and in Table 1 and Supplemental Figure 1. Quality control and assurance 

procedures used in the creation of the AOP-DB include data type validation, range 
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validation, and enforced referential integrity, implemented as part of MySQL’s InnoDB 

storage engine format (Oracle, MySQL 5.7 Reference Manual, Accessed March 2017). 

These checks establish an expected data type (integer, string, etc.) and byte size for every 

column in the database, to ensure that entries are in the correct format and remain 

standardized across tables. Scripted routines were also included during the creation and 

update of database tables to ensure data integrity and consistency across tables, which is 

crucial in a denormalized database (Pinto, 2009) such as the AOP-DB. Since a denormalized 

database contains several instances of a single relationship in multiple tables (e.g. a gene 

appears with its associated taxon in both the disease-gene and chemical-gene table), table 

creation scripts programmatically ensure that these redundant relationships are updated 

concurrently with the same data to prevent inconsistencies across tables. Finally, sample 

queries with known expected results were designed to test the coherence and fidelity of the 

database, Table 1 gives the enumeration of entries for each information category in the 

database. Categories are described below:

A. AOP-gene associations—Associations between AOPs and their relevant gene IDs 

were mined from the AOP-Wiki based on ontology annotation ("https://aopwiki.org/," 2017; 

Ives, Campia, Wang, Wittwehr, & Edwards, in prep). Specifically, each KE is associated 

with an event component consisting of a Process, Object, Action, and Cellular or Organ 

Context ontology identifier; Object terms can be mapped to gene identifiers based on Protein 

Ontology (PR). Ontology annotation for all 715 KEs was downloaded from the AOP-Wiki, 

for all 164 AOPs as of December 2016. Of these total 164 AOPs, it is important to note that 

113 are still considered “Under Development” by the OECD, and may be subject to change 

before they are formally endorsed.

B. Gene—The AOP-DB’s central linking entities are Entrez genes. The Entrez Gene 

database curated by the National Center for Biotechnology Information (NCBI) is made up 

of a set of unique identifiers for genes and corresponding gene-specific information, such as 

taxonomy, protein products, sequences, and orthologs (Maglott, Ostell, Pruitt, & Tatusova, 

2011). These Entrez genes are sourced from fully-sequenced genomes of well-researched 

organisms. The AOP-DB hosts 1.68 million unique Entrez gene IDs to capture relationships 

between biological entities.

Entrez gene is not the only identification system for genes and proteins, and data sources 

occasionally use non-Entrez gene IDs. To ensure that the AOP-DB is capable of using these 

data as well, a built-in table is included for the mapping of alternative gene IDs to Entrez, 

curated by the Universal Protein Resource (UniProt, 2015).

C. Pathway—Biological pathways represent the series of molecular and genetic 

interactions that amount to the execution of a biological process. The AOP-DB makes use of 

three sources of pathway information: the Kyoto Encyclopedia of Genes and Genomes 

(KEGG), a database resource for the functional annotation and network organization of 

genes, accessed using the REST API (Kanehisa, Furumichi, Tanabe, Sato, & Morishima, 

2017); Reactome, a database resource containing manually-curated pathway interactions 

sourced from PubMed literature (Croft et al., 2014); and Consensus PathDB, a composite 

database containing functional interaction data from 32 sources for human, mouse, and yeast 
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pathways (Kamburov, Wierling, Lehrach, & Herwig, 2009). For each of these sources, 

pathways and their participating genes were downloaded and stored in the AOP-DB, along 

with outlinks to pathway visualizations where possible. The AOP-DB hosts 75,830 unique 

pathway IDs, with 3.7 million gene-pathway associations.

D. Chemical—The AOP-DB stores chemical-gene associations sourced from the 

Comparative Toxicogenomics Database (CTD), a resource that manually curates and infers 

relationships between genes, chemicals, and diseases from scientific literature (Davis et al., 

2017). The AOP-DB hosts 164,640 chemicals from CTD, with 846,574 gene-chemical 

associations.

In addition to chemical-gene associations, the AOP-DB includes direct relationships 

between AOPs and chemical stressors in the EPA’s Distributed Structure-Searchable 

Toxicity (DSSTox) Database. DSSTox is a public resource that combines cheminformatics 

and toxicity data to aid in toxicology prediction and prioritization (Richard & Williams, 

2002). By returning a list of DSSTox chemical IDs that are associated with an AOP, the 

AOP-DB makes it possible to interface AOP predictions and associations with the power of 

EPA’s iCSS Chemistry Dashboard (https://comptox.epa.gov/dashboard/). The AOP-DB 

hosts 22,038 chemicals from the DSSTox Database, with 188 confirmed DTX chemical-

AOP associations mined directly from the AOP-Wiki, and approximately 30,000 inferred 

DTX chemical-AOP associations through CTD chemical-gene associations.

E. Disease—The associations between genes and human disease phenotypes in the AOP-

DB are sourced from DisGeNET, which combines mined, curated, and inferred associations 

from ten sources for Mendelian, complex, environmental, and rare diseases as well as 

disease traits (Pinero et al., 2017). Due to the redundancy of information across these ten 

data sources, a confidence score between 0 and 1 was calculated for each association based 

on the proportion of the sources that recognize that association. The AOP-DB contains 

15,093 unique disease outcomes with 429,036 gene-disease associations.

F. Gene orthology—Cross-species homology describes genes in two or more taxa 

descended from a common ancestor. Functional orthologs retain the same protein functions 

as the ancestral gene (Gabaldon & Koonin, 2013), allowing for the extrapolation of gene 

annotations across species based on ortholog concordance. In order to aid in the prediction 

of AOP susceptibility across different species, the AOP-DB includes orthology groupings 

from three sources: KEGG Orthology, NCBI HomoloGene, and the Meta-Phylogeny based 

Orthologs (metaPhOrs) database (Kanehisa et al., 2017; Pruitt & Maglott, 2001; Pryszcz, 

Huerta-Cepas, & Gabaldon, 2011). KEGG Orthology groups orthologous genes and proteins 

by their molecular functions, while NCBI HomoloGene creates groups from a BLASTp 

similarity-constructed taxonomy tree. The AOP-DB contains 63,138 orthologous gene 

groups among 469 taxa. In contrast, metaPhOrs combines seven phylogenetic tree databases 

to make pairwise orthology predictions for 4.1 million proteins. Due to the redundancy of 

information across and among the constituent data sources, a confidence score in a given 

orthology prediction can be calculated based on proportion of sources also making that 

prediction. The AOP-DB contains 40.4 million pairwise orthology confidence scores among 

1,258 taxa.
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G. Protein-protein Interactions—The AOP-DB returns gene-gene interaction scores 

sourced from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The 

STRING database contains protein-protein interactions for over 2000 organisms, with each 

interaction scored by confidence level (Szklarczyk et al., 2015). Interactions are sourced 

from experimental data from primary databases, computational prediction from high-

throughput experiments and orthology extrapolation, and text mining. The AOP-DB hosts 

443 million pairwise gene interaction scores for 665,746 unique genes.

H. Gene Ontology—The Gene Ontology Consortium provides a controlled, machine-

readable vocabulary that enables computational analysis of functional annotation for genes 

(Ashburner et al., 2000; Gene Ontology, 2015). In the AOP-DB, Entrez gene IDs are linked 

to their related GO biological process terms to help characterize the activity of a gene of 

interest. Currently, the AOP-DB contains 25,713 unique GO terms to describe the biological 

processes related to genes from 38 organisms.

I. ToxCast Assays

The US Environmental Protection Agency’s Toxicity ForeCaster (ToxCast™) program uses 

high-throughput in vitro assays to screen and prioritize chemicals for toxic effects (Dix et 

al., 2007; R. S. Judson et al., 2010). The AOP-DB stores the ToxCast in vitro assay 

information for 942 chemical-endpoint pairs and includes information about chemicals, 

targets, assay types, activity concentrations, and other pertinent metadata for analysis. 

Through the AOP-DB’s inferred associations, there are 432 ToxCast assays related to 

putative AOPs; these associations are fed to the EPA’s Chemistry Dashboard to inform 

researchers of existing pathways and data related to a chemical of interest.

II. AOP-DB Use Case Examples

Three use cases were chosen to demonstrate the utility of the AOP-DB: 1) characterizing the 

biological space of a putative AOP; 2) exploring the biological overlap between a collection 

of interconnected AOPs; and 3) hypothesis generation for the development of an AOP as-

yet-undefined by the OECD. Output was visualized using Cytoscape network visualization 

software (Shannon et al., 2003).

Use Case 1: Characterization and Accuracy of Information

“Androgen Receptor (AR) Agonism Leading to Reproductive Dysfunction” is a putative 

AOP endorsed by the Extended Advisory Group on Molecular Screening and 

Toxicogenomics (EAGMST), which oversees the development and assessment of AOPs 

(https://aopwiki.org/aops/23, Accessed 15 March 2017). To demonstrate the accuracy of the 

information contained in the database and to showcase its utility as a hypothesis-generation 

tool, queries were constructed to return the AR agonism gene targets and their associations 

in the AOP-DB to return the chemical lists, biological pathways, and diseases associated 

with ARagonism and its downstream effects. A flow diagram of this procedure is shown in 

Figure 1A.
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Use Case 2: Examining AOP Context

Of interest is the linking of related AOPs via shared KEs, in order to provide a wider 

biological context for potential downstream effects of a given chemical stressor or biological 

perturbation. A series of AOPs linked through shared KEs make it possible to 

computationally form AOP networks, which can supplement the creation of expert-curated 

AOPs and improve our systems-level understanding of how toxicity pathways proceed in a 

complex ecological context (Knapen, Vergauwen, Villeneuve, & Ankley, 2015). To explore 

the wider toxicological context of the AR agonism AOP, a group of related AOPs were 

selected by querying the AOP-DB for adverse outcomes involving “reproductive 

dysfunction.” The AOP-DB stores the controlled vocabulary used to describe the objects, 

actions, processes, and contexts of an AOP’s KEs, allowing users to automatically link 

AOPs in a network to examine their interactions. Results show the concordance and 

divergence between the reproductive dysfunction AOPs, identifying hub nodes (events and 

objects) that connect groups of closely-related reproductive toxicity pathways. A flow 

diagram for the examination and applications of putative AOP networks is shown in Figure 

2A.

Use Case 3: Potential AOP Investigation and Hypothesis Generation

The AOP-DB may also be utilized to explore adverse outcomes that are not yet defined in 

the AOP framework. The AOP-DB can help to generate hypotheses for the identification of 

potential AOPs through a known outcome and its associated biological entities. The database 

was used to query associations across four diseases with closely-related gene associations 

(organophosphate poisoning, anxiety disorders, impaired cognition, and memory 

impairment), identify candidate KE genes, and explore the biological entities related to these 

candidate genes to characterize a potential AOP, “Acetylcholinesterase Inhibition Leading to 

Neuropsychological Dysfunction”. Figure 3A outlines a possible sequence of queries to 

characterize the biological activity of a potential AOP.

Results

Database Summary & Quality Checks

Table 1 gives the enumeration and sources of entries for each information category in the 

database. The CTD chemical-gene associations, disease-gene associations, gene-gene 

interactions, and pairwise orthology scores are derived from secondary databases that 

combine multiple sources, and in some cases calculate a confidence score.

In addition to the datatype QA methods built into the MySQL database creation and 

population procedure, we also queried the database to demonstrate that the AOP-DB returns 

expected results in accordance with the information in the AOP-Wiki. Some sample queries 

to this effect are shown in Supplemental Figure 2. We find that the AOP-DB returns sensible 

results across all tables, showing ACHE-related biological entities by following related 

threads from DSSTox chemical-AOP associations, CTD chemical-gene-AOP associations, 

and disease-gene-AOP associations. The pathways and ontology terms related to this AOP 

return items such as “Cholinergic synapse” pathways and “acetylcholinesterase activity” 

biological processes, which are implicitly related to acetylcholinesterase function.
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Use Case 1: Exploring and verifying the biological activity of a putative AOP – Androgen 
receptor agonism leading to reproductive dysfunction (Aop:23)

To summarize the AR agonism AOP in female teleost fish species, a chemical stressor binds 

to the androgen receptor and causes reduced testosterone and estrogen synthesis in the 

ovarian theca cells, eventually leading to a decrease in production of vitellogenin (egg-yolk 

protein) by females (Villeneuve, 2017). Established chemical initiators are comprised of 

non-aromatizable androgens, such as 17beta-trenbolone (Ankley et al., 2003).

We have queried the AOP-DB to show that the information stored within is consistent with 

the established literature, and provides avenues for further investigation. From the AOP gene 

targets stored in the AOP-Wiki, we returned the chemical lists, biological pathways, and 

diseases associated with androgen receptor agonism and its downstream effects 

(Supplemental Table 1). We confirm that the established chemical stressor trenbolone 

(Villeneuve, 2017) is implicated in this AOP through gene-target associations and identify 

additional potential chemical stressors such as metribolone and mibolerone, known AR 

agonists(Luderschmidt, Jawny, & Eiermann, 1987) (Hammond et al., 2001) (Table 2). This 

demonstrates that information in the AOP-DB is consistent with known chemical stressors 

listed for an AOP, and suggests additional chemicals potentially worthy of assay 

development. Through the AOP-DB’s gene orthology tables, we can examine which species 

and taxonomic divisions possess gene orthologs for the KE proteins necessary to the 

progression of the AOP (Figure 1B). For the AR agonism AOP, we see that vertebrate 

taxonomic groups across mammals, avians, reptiles, amphibians, and fish species all possess 

an ortholog for the AR; however, no invertebrate species were returned, suggesting that 

potential susceptibility of this AOP is limited to vertebrates.

By selecting KE genes, their closest gene interactions by confidence score, and the diseases 

most highly-associated with these genes, we can visually cluster the functional properties of 

an AOP. Figure 1C shows the clustering of protein-protein interactions based on confidence 

scores for the AR agonism KE genes, and includes disease associations with those genes. 

Filtering based on phenotypic outcome of interest, like diseases involving infertility, can 

provide predictions about the potential activity of an MIE in a wider context, identifying 

additional genes that may affect the progression of the AOP, as well as genes that participate 

in similar AOPs (Figure 1D).

Use Case 2: Examining overlap of a group of inter-related AOPs (AOPs with the 
“reproductive dysfunction” Adverse Outcome)

Figure 2B shows the KE and KE Object relationships for just the AR agonism AOP. By 

linking fourteen reproductive AOPs via KEs and object interactions shared between AOPs, 

we expand this view and distinguish between four major classes of reproductive dysfunction 

pathway initiators in the AOP-Wiki: cyclooxygenase inhibition, hormone receptor 

interference, aromatase interference, and HIF-1α-related dysfunctions (Figure 2C). The 

aromatase, AR/ER, and HIF-1α AOP groups all converge upon the KE “Vitellogenin 

accumulation into oocytes and oocyte growth/development, Reduction” and its downstream 

effects. Cyclooxygenase AOPs, on the other hand, lead to hormonal disruptions with a host 

Pittman et al. Page 8

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2019 March 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



of adverse outcomes (such as altered mating behavior and failed meiotic assembly 

checkpoints).

Use Case 3: Generating hypotheses for predicted AOPs – AChE Inhibition leading to 
Neuropsychological Dysfunction

Through casual exploration of disease links for proposed AOPs, we discovered that the gene 

targets involved in “Acetylcholinesterase (AChE) Inhibition Leading to Acute Mortality” 

(Russom, LaLone, Villeneuve, & Ankley, 2014) were also highly associated with negative 

neuropsychological effects, such as anxiety disorders (DisGeNET disease ID: 

umls:C0003469), impaired cognition (umls:C0338656), and memory impairment 

(umls:C0233794) (Figure 3B). Based on these associations, we predicted that AChE 

inhibition may also be associated with long-term neuropsychological dysfunction. In fact, 

this phenomenon is supported in the literature reference and is known as Chronic 

Organophosphate-Induced Neuropsychiatric Disorder (COPIND).

COPIND describes the group of co-occurring neuropsychological features that appear in 

occupational workers exposed to organophosphate pesticides, such as farm workers and 

sheep dippers (Ahmed & Davies, 2009). Whereas initial symptoms of acute 

organophosphate poisoning include neurophysiological effects like muscle paralysis and 

ataxia, follow-up studies of affected individuals have revealed behavioral changes including 

confusion, anxiety, depression, and problems with memory and concentration (Arun & 

Palimar, 2005). These symptoms persist for years after the reported initial exposures 

(Davies, Mrcpsych, Ahmed, & Freer, 2009; Institute of Medicine, 2000). Increased 

hippocampal ACh signaling in the brain and ACHE knockdown in the hippocampus lead to 

depression-like behaviors in mice, suggesting that ACHE inhibition (and the resulting 

accumulation of acetylcholine) could be the cause of these behaviors in individuals exposed 

to ACHE inhibitors like organophosphates (Mineur et al., 2013).

We selected genes that were shared between organophosphate poisoning and any of the other 

three examined disease outcomes. These genes are considered candidate Objects of a 

molecular KE (Table 3). From these candidate genes, we queried the AOP-DB to 

characterize the biological space of their collective activity, finding 66 pathways in which 

they participate (Figure 3C). These pathways can be examined for links to the disease 

outcomes of interest, such as “Cholinergic synapse” activity and “Neurotransmitter 

Clearance.” Thus the AOP-DB can suggest avenues of AOP progression through the linkage 

of MIEs to functional pathways. We also examine the orthology of the candidate genes, 

finding that ACHE and BCHE are likely paralogs, as well as GSTM1 and GSTP1, as each 

pair is closely phylogenetically linked (Figure 3D). We also see that all candidate genes 

show some level of relatedness to a wide variety of taxa, including invertebrates and fungi. 

However, the Adverse Outcome of neuropsychological dysfunction is implicitly limited to 

animal species for which behavior disturbance can be measured

Discussion

We have presented the AOP-DB, a database resource that collects and connects public 

annotation information for chemicals, diseases, proteins, pathways, and their interactions 
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through gene IDs to associate them with putative Adverse Outcome Pathways. The AOP-DB 

mines AOP-gene associations from the AOP-Wiki in a direct and automated fashion, 

allowing for the instantaneous integration of all available information for putative AOPs as 

they are developed. Important AOP associations, such as ToxCast assays relevant to putative 

AOPs and DSSTox chemical entries identified as AOP stressors, are then fed into other EPA 

computational toxicology tools to interface between AOP Discovery and Development 

efforts and existing data. Through queries constructed to follow entity-relationships across 

multiple tables, we confirm that the database returns consistent results for the 

characterization of the activity and context of putative AOPs (Supplemental Figure 2, Figure 

1).

We predict that the data association types contained in the AOP-DB will be useful for 

researchers exploring the wider biological context of an AOP, for instance by: 1) providing 

expanded lists of genes potentially impacted by a given chemical stressor; 2) providing lists 

of genes that interact strongly with an AOP’s KE genes; 3) specifying potential disease 

outcomes of perturbations on KE genes, or genes of interest discovered through (1) and (2); 

4) the intersection between an AOP of interest and all other putative AOPs defined in the 

AOP-Wiki, defined by shared KEs and Objects.

Based on MIEs tagged in the AOP-Wiki, chemical-gene associations can be used to identify 

groups of chemicals that might initiate a given AOP or expand a list of potential stressors, as 

with our first case study in which we identified the potential chemical stressors like 

mibolerone and metribolone, non-aromatizable androgens similar in structure to the 

established chemical stressor trenbolone (Table 2). Because the AOP-DB is focused on 

chemicals relevant to environmental toxicity, the database is especially useful for generating 

hypotheses regarding the action and impact of environmental chemical stressors.

Disease-gene associations can be used to recognize possible outcomes of perturbations on 

specific genes to generate hypotheses for potential AOPs, as with our case study predicting a 

potential AOP with the MIE “Acetylcholinesterase inhibition” and the AO 

“Neuropsychological dysfunction” (Figure 3C). Through exploration of the pathways linked 

to the disease-associated genes and confirmation through literature search, we named and 

identified the candidate KE “increased concentration of acetylcholine in the hippocampus,” 

leading to “increase in anxiety and depression-like symptoms.” Besides depression and 

anxiety, two organophosphate-related diseases were memory and cognitive impairment; 

however, we find that these sequelae require more evidence, or should perhaps comprise a 

separate adverse outcome, as we found no literature to support acetylcholine accumulation 

in the hippocampus directly leading to memory and cognitive dysfunction. Thus we show 

the AOP-DB’s utility in proposing potential AOPs, predicting constituent KEs, and 

identifying knowledge gaps that would benefit from additional research.

For a selected putative or computationally-predicted AOP, the AOP-DB can return a list of 

species that possess orthologs for all or some of those genes (Figure 1B). Use of such a 

result can provide a preliminary prediction for taxonomic applicability (e.g. if a taxonomic 

group lacks a functional ortholog for a gene that is fundamental to the progression of the 

MIE or downstream KEs, we then have information that these species are not at risk for that 
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particular AOP, informing chemical prioritization). In addition, consistency scores for 

orthology predictions can give a measure of confidence that a given gene pair is a functional 

ortholog. Thus, the AOP-DB has the capability to illustrate, for a given list of genes, which 

species are predicted to have orthologs for these genes, and with what confidence. This 

feature makes the AOP-DB a useful tool for establishing a computational framework for 

defining a taxonomic range of applicability for an AOP. Currently, the AOP-DB’s AOP-

gene, gene-pathway, and gene-orthology relationships are being combined to examine and 

compare the systems-level activity of AOP-related genes across organisms as part of a 

computational workflow to define taxonomic applicability for AOPs (Mortensen, Pittman et 
al., in prep). Note, however, that the confidence scores for orthology prediction are derived 

from consistency of annotation across several sources and not on physical similarity; 

therefore, some members of more-closely related taxonomic groups may show lower 

confidence scores than more distantly-related groups (see Figure 3D for examples of this 

phenomenon). In the future, we hope to include measures of protein similarity instead of 

annotation consistency.

The ontology terms tagged in the AOPwiki and stored in the AOP-DB can link a group of 

interrelated AOPs by shared KEs and objects, expanding predictive toxicity models and 

supporting the development of related AOPs. Reproductive dysfunction networks have been 

previously investigated by (Knapen et al. (2015)), in which multiple AOPs were linked via 

altered vitellogenin (egg-yolk protein) mRNA expression. Our AOP network constructed 

from the putative reproductive dysfunction AOPs is consistent with their finding that 

aromatase and AR/ER interference converge upon altered vitellogenin production; our 

methods also include HIF-1α AOPs in this group, as well as a separate class of reproductive 

AOPs initiated by Cyclooxygenase inhibition (Figure 2C). While previous methods used 

information curated manually from the AOP-Wiki, the AOP-DB allows for fast, automatic 

creation of these networks, thus dramatically expediting such efforts to aid in predictive 

toxicology.

The AOP-DB is uniquely useful as a single integrated source of biological information that 

is interconnected with AOP knowledge. We foresee the AOP-DB being used by researchers 

using the AOP-DB to elaborate upon their chemical and gene target hypotheses using 

association tables, or to elucidate mechanisms through pathway, gene interaction, and KE 

information tables. Many of the AOP-DB association tables cover a substantial amount of 

experimental and secondary association data, which can lead to the return of spurious 

results. Though confidence scores can provide a primary filter, this strategy comes with 

caveats. Confidence scores, for example those leveraged by the gene-orthology, gene-

disease, and gene-interaction associations, do not necessarily coincide with AOP-relevance. 

For AOPs that are not well-characterized in the scientific literature, associations may be 

mentioned by few sources, and thus return a relatively low confidence score compared to 

well-studied associations. While network computational analysis would be an interesting 

avenue to explore in the AOP-DB, prioritized ranking based on confidence scores alone 

would not necessarily converge with the biological evidence supporting an AOP of interest. 

Therefore, at present we recommend that AOP-DB analyses be accompanied by the 

interpretation of skilled toxicologists and biologists to identify likely candidates for further 

pathway exploration and to assess the implications of AOP relationships.
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The AOP-DB can therefore be considered as an AOP profiling and exploration tool that 

gives a broad, systems-level overview of the context in which putative AOPs operate. The 

AOP-DB simplifies the creation of network visualizations, using data points as nodes and 

association scores as edges, which will help researchers view and understand the action of 

KEs not only in the systems context of general biology, but also in the context of existing 

AOP vocabulary. Since one of the goals of the AOP structure is to use standardized language 

with a reusable “building block” philosophy for KEs and their relationships, the AOP-DB is 

especially suited for proposing new AOPs related to existing entries.

It should be noted that some of the AOP-DB’s parent IDs have no association data; for 

example, though the AOP-DB contains entries for 16.8 million Entrez genes, only 2.1 

million of those gene IDs have data for protein interaction scores. The AOP-DB stores all 

available gene, chemical, disease, etc. IDs from its constituent sources, regardless of whether 

these IDs have data for all association types. As new sources are added and existing sources 

are updated, we hope that these data gaps will be filled. In the meantime, orphan IDs and 

associations will remain to provide what information they can for hypothesis generation. 

Another caveat is that the AOP-DB stores the information found in its constituent sources 

without skepticism or alteration. Though we have ensured that all the sources from which 

the AOP-DB draws its information use robust and peer-reviewed methods, the false positives 

and false negatives native to these sources are transferred to the AOP-DB. However, we 

predict that our use of multiple sources for certain datatypes may offset some false 

negatives.

Finally, the relationships between AOPs and their KEs, objects, and chemical stressors are 

limited to those that have been defined in the AOP-Wiki. Some entries are still under 

development and may be subject to change before formal endorsement. These gaps and 

uncertainties will be resolved as the AOP-KB grows and matures, but in the meantime it 

should be noted that AOP discovery and development is in its preliminary stages, and by 

extension the information contained in the AOP-DB is under development.

In summary, the AOP-DB provides an interface between chemical prioritization efforts and 

the AOP-KB, and automatically integrates large-scale gene association data for the 

characterization of putative and predicted AOPs in a variety of contexts. Since the AOP-DB 

is standardized by gene linkages, future integration of new data sources and types is as 

simple as finding Entrez gene associations with the relevant data points. Because the AOP-

DB leverages gene-gene association scores to cluster gene lists by confidence-of-interaction 

level, one future use could be to computationally prioritize related gene interactions, and 

thus predict the downstream molecular effects of an MIE binding. Another potential use of 

the AOP-DB is to screen putative AOPs for disease and chemical association in order to 

characterize human population level genetic susceptibility (Mortensen, Chamberlin, et al., in 
prep), which directly contributes to the EPAs explicit consideration of vulnerable 

populations as laid out in the Frank R. Lautenberg Chemical Safety for the 21st Century Act 

to reform the Toxic Substances Control Act.
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AR Androgen Receptor
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CTD Comparative Toxicogenomics Database

DSSTox Distributed Structure-Searchable Toxicity
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HIF-1α Hypoxia-inducible factor 1-alpha
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KEGG Kyoto Encyclopedia of Genes and Genomes

MIE Molecular Initiating Event

MOA Mode of Action
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Figure 1. 
Visualizations for AR agonism gene association data. 1A: Flowchart depicting the nature of 

potential lines of inquiry and their application. Queries constructed to examine the 

chemicals, diseases, functional processes, and species applicability of Key Evene genes are 

applied to assay development and prioritization efforts. 1B: The red diamond-shaped nodes 

represent the two orthology groups for the AR gene (ko:K08557 sourced from KEGG 

Orthology; HG:28 sourced from NCBI HomoloGene). Both of these sources recognize the 

model organisms H. sapiens, M. mulatta, M. musculus, R. norvegicus, C. lupus familiaris, B. 

taurus, X. tropicalis, and G. gallus as possessing orthologs for this gene. KEGG recognizes 
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an additional 76 vertebrates with this gene. 1C: AR gene clustering based on STRING 

protein interaction confidence scores (visual cutoff = 0.5), and DisGeNET disease 

associations with those genes (visual cutoff = 0.1). The red circle and its edges represent the 

AR agonism AOP and its direct gene associations. The three large clusters represent the 

three taxa whose AOPwiki object IDs were associated with the AR gene identifier (in 

yellow): Human, Mouse, and Rat. Genes that are highly associated with AR (shown in blue) 

are clustered based on interaction confidence score. The human cluster (bottom) also shows 

gene-disease relationships for these closely-associated genes, with diseases represented by 

purple nodes. 1D: A subset of Network 1C, showing the genes that were both highly 

associated with the AR gene AND highly associated with the diseases “Female infertility” 

and “Male infertility”.
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Figure 2. 
Visual diagrams to show the relationships between AOPs, constituent KEs, and the objects 

upon which they act. 2A: Flowchart depicting the series of queries made to the AOP-DB to 

characterize the concordance and divergence between groups of AOPs. 2B: KE and object 

relationships for the AR agonism AOP alone, with the AOP shown in green, KE nodes 

shown in pink, and object nodes in blue. 2C: KE and object relationships for all 

“Reproductive Dysfunction” AOPs. The red circles represent the two major classes of 

reproductive dysfunction AOPs: Cyclooxygenase Inhibition AOPs (left), and altered 

Vitellogenin (VTG) production AOPs (right). Within the altered VTG class, there are three 
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sub-classes of AOP types: those resulting from alteration in hormone receptor activity, those 

stemming from aromatase inhibition, and those resulting from an increase in HIF-1α 
concentration (demarcated by blue circles).
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Figure 3. 
Cytoscape visualizations for a proposed AOP, “acetylcholinesterase inhibition leading to 

neuropsychological dysfunction”. 3A: Flowchart depicting the series of steps taken to 

develop a predicted AOP from the AOP-DB. 3B: Four selected disease outcomes and their 

associated genes, clustered by gene interaction scores. Red nodes represent the diseases of 

interest, and blue nodes represent associated genes, clustered by association confidence 

score. 3C: Pathway membership for candidate genes in the predicted AOP “ACHE 

Inhibition leading to neuropsychological dysfunction.” Red nodes represent diseases of 

interest. Blue nodes represent the candidate genes associated with Organophosphate 
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Poisoning and at least one of Anxiety Disorders, Memory Impairment, and Impaired 

Cognition. Each yellow node represents a pathway in which the indicated genes are active. 

3D: Orthology confidence scores for gene candidates. The large light blue nodes are labelled 

with the identity of the gene candidate, and edges connect nodes of gene orthologs for 

different species based on confidence score. Edges connecting different genes (e.g. ACHE 

and BCHE genes) indicate paralogs (genes evolved after a duplication event).
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Table 1

Enumeration of each information type in the AOP-DB, with sources. The CTD chemical-gene associations, 

disease-gene associations, gene-gene interactions, and pairwise orthology scores are derived from secondary 

databases that combine multiple sources, in some cases calculating a confidence score. It should be noted that 

queries to these tables, especially for disease-gene and chemical-gene associations, often return large lists with 

spurious results due to the nature of the association derivation. For those tables that include confidence scores, 

it is recommended to use a threshold confidence score to filter out weaker association results, or to filter based 

on keywords to the biological question being asked.

Biological
category

Data type Count Sources (Download Link)

Gene Unique gene IDs: 16808216 NCBI Gene (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/)

Pairwise gene interaction scores: 443295364 STRING (http://string-db.org/cgi/download.pl)

Taxonomy & orthology Entrez-supported organisms: 19292 NCBI Taxonomy (ftp://ftp.ncbi.nlm.nih.gov/pub/HomoloGene/)

Orthologous groups: 63138 HomoloGene (ftp://ftp.ncbi.nlm.nih.gov/pub/)

KEGG Orthology (http://www.kegg.jp/kegg/rest/keggapi.html)

Taxa supported by ortho groups: 469

Pairwise orthology confidence 
scores: 40450671 metaPhOrs (ftp://phylomedb.org/metaphors/)

Taxa with pairwise confidence 
scores: 1258

AOP Supported AOPs: 103
AOP-wiki (https://aopwiki.org/)

AOP-gene targets: 564

Chemical

CTD chemicals: 164640
CTD (http://ctdbase.org/downloads/)

CTD chemical-gene associations: 846574

DSSTox chemicals: 22038

AOP-wiki (https://aopwiki.org/)Direct DTX-AOP associations: 188

Inferred DTX-AOP associations: 29768

ToxCast assays: 347
ToxCast (ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/Summary_Files)

Inferred ToxCast assay-AOP links: 353

Pathway

Total pathways: 75830 KEGG Pathways (http://www.kegg.jp/kegg/rest/keggapi.html)

Pathway-entrez links: 3663296 Reactome (http://www.reactome.org/pages/download-data/)

Inferred AOP-pathway associations: 7340 ConsensusPathDB (http://consensuspathdb.org/)

Disease

Unique disease IDs: 15093

DisGeNET (http://www.disgenet.org/web/DisGeNET/menu/downloads)Disease-gene associations: 429036

Inferred AOP-disease associations: 33735

Ontology
Unique GO Term IDs: 25713 NCBI Gene (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/)

Ontology-gene associations: 1658739
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Table 2

An excerpt of query results for potentially-relevant chemicals to the androgen receptor agonism AOP. 

Trenbolone acetate, a form of the known AR agonist 17beta-trenbolone, is returned as a chemical that “binds 

to and results in increased activity of AR protein.” In addition, a host of other chemicals that act on the AR 

protein to increase its activity are also returned. For example, we see that the chemical metribolone (17beta-

Hydroxy-17alpha-methylestra-4,9,11-trien-3-one, a synthetic non-aromatizable androgen) has many 

associations with AR and AR activity. Thus the information in the AOP-DB is consistent with known chemical 

stressors listed for an AOP, and suggests additional chemicals potentially worthy of assay development.

MeSHID Chemical Name Interaction

C003600 11-ketotestosterone 11-ketotestosterone binds to and results in increased activity of AR protein

C026486 1,2,5,6-dibenzanthracene 1,2,5,6-dibenzanthracene binds to and results in increased activity of AR protein

C517232 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane binds to and results in increased 
activity of AR protein

C010422 2,4,6-trichlorophenyl 4-nitrophenyl ether 2,4,6-trichlorophenyl 4-nitrophenyl ether binds to and results in increased 
activity of AR protein

C003524 4,16-androstadien-3-one 4,16-androstadien-3-one analog binds to and results in increased activity of AR 
protein

D015741 Metribolone Metribolone binds to and results in increased activity of AR protein

C100075 mibolerone mibolerone binds to and results in increased activity of AR protein

D015058 1-Naphthylisothiocyanate binds to and results in increased activity of AR

D009640 Norethindrone Norethindrone binds to and results in increased activity of AR protein

D009641 Norethynodrel Norethynodrel binds to and results in increased activity of AR protein

D016912 Levonorgestrel Levonorgestrel binds to and results in increased activity of AR protein

D053139 Oseltamivir Oseltamivir binds to and results in increased activity of AR protein

D010110 Oxymetholone Oxymetholone binds to and results in increased activity of AR protein

D011239 Prednisolone Prednisolone binds to and results in increased activity of AR protein

D011245 Pregnadienes Pregnadienes analog binds to and results in increased activity of AR protein

D011374 Progesterone Progesterone binds to and results in increased activity of AR protein

D013739 Testosterone Testosterone binds to and results in increased activity of AR protein

C479553 tetrahydrogestrinone tetrahydrogestrinone binds to and results in increased activity of AR protein

D014112 Toxaphene Toxaphene binds to and results in increased activity of AR protein

D014204 Trenbolone Acetate Trenbolone Acetate binds to and results in increased activity of AR protein

D014260 Triclosan Triclosan binds to and results in increased activity of AR protein
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Table 3

Candidate genes for ACHE Inhibition Leading to Neuropsychological Dysfunction. These genes are those that 

were highly associated to Organophosphate poisoning and at least one of the following negative 

neuropsychological disease endpoints: anxiety disorders (DisGeNET disease ID: umls:C0003469), impaired 

cognition (umls:C0338656), and memory impairment (umls:C0233794).

Entrez Symbol Gene name

5444 PON1 Paraoxonase 1

43 ACHE Acetylcholinesterase

2952 GSTT1 Glutathione S-transferase theta 1

2950 GSTP1 Glutathione S-transferase pi 1

590 BCHE Butyrylcholinesterase

2944 GSTM1 Glutathione S-transferase mu 1
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