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Abstract

The work here complements the overview analysis of the modelling systems participating in the 

third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on 

the performance for hourly surface ozone by two modelling systems, Chimere for Europe and 

CMAQ for North America.

The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to 

build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic 

methods are proposed. In addition to evaluating the “base case” simulation in which all model 

components are configured in their standard mode, the analysis also makes use of sensitivity 

simulations in which the models have been applied by altering and/or zeroing lateral boundary 

conditions, emissions of anthropogenic precursors, and ozone dry deposition.

To help understand of the causes of model deficiencies, the error components (bias, variance, and 

covariance) of the base case and of the sensitivity runs are analysed in conjunction with timescale 

considerations and error modelling using the available error fields of temperature, wind speed, and 

NOx concentration.
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The results reveal the effectiveness and diagnostic power of the methods devised (which remains 

the main scope of this study), allowing the detection of the timescale and the fields that the two 

models are most sensitive to. The representation of planetary boundary layer (PBL) dynamics is 

pivotal to both models. In particular, (i) the fluctuations slower than ~ 1.5 days account for 70–

85 % of the mean square error of the full (undecomposed) ozone time series; (ii) a recursive, 

systematic error with daily periodicity is detected, responsible for 10–20 % of the quadratic total 

error; (iii) errors in representing the timing of the daily transition between stability regimes in the 

PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of 

the network-average ozone observations in summer in both Europe and North America); (iv) the 

CMAQ ozone error has a weak/negligible dependence on the errors in NO2, while the error in 

NO2 significantly impacts the ozone error produced by Chimere; (v) the response of the models to 

variations of anthropogenic emissions and boundary conditions show a pronounced spatial 

heterogeneity, while the seasonal variability of the response is found to be less marked. Only 

during the winter season does the zeroing of boundary values for North America produce a 

spatially uniform deterioration of the model accuracy across the majority of the continent.

1 Introduction

The vast majority of the research and applications related to the evaluation of geophysical 

models make use of aggregate statistical metrics to quantify, in some averaged sense, the 

properties of the residuals obtained from juxtaposing observations and modelled output 

(typically time series of the variable of interest). This practice is rooted in linear regression 

analysis and the assumption of normally distributed residuals and has been proven to be 

reliable when dealing with simple, deterministic, and low-order models. Led by the rapid 

pace of improved understanding of the underlying physics, the paradigm is, however, 

changed nowadays in that models have grown in complexity and non-linear interactions and 

require more powerful and direct diagnostic methods (Wagener and Gupta, 2005; Gupta et 

al., 2008; Dennis et al., 2010; So-lazzo and Galmarini, 2016).

Evaluation of geophysical models is typically carried out under the theoretical umbrella 

proposed by Murphy in the early 1990s for assessing the dimensions of goodness of a 

forecast: consistency (“the correspondence between forecasters’ judgments and their 

forecasts”), quality (“the correspondence between the forecasts and the matching 

observations”), and value (“the incremental benefits realised by decision makers through the 

use of the forecasts”) (Murphy, 1993). Since 2010, the Air Quality Model Evaluation 

International Initiative (AQMEII, Rao et al., 2011) has focused on the quality dimension - 

the one most relevant to science, according to Weijs et al. (2010) - of air quality model hind-

cast products, aiming to build an evaluation strategy that is informative for modellers as well 

as to users.

Our claim is that the value of a model’s result depends strictly on the quality of the model 

that, in turn, depends on sound evaluation. The scientific problem of assessing the quality of 

a modelling system for air quality is tackled by Dennis et al. (2010) who distinguish four 

complementary approaches to support model evaluation-operational, probabilistic, dynamic, 

and diagnostic-which are also the four founding pillars of AQMEII. Several studies 
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performed under AQMEII have focused on the operational and probabilistic evaluation 

(Solazzo et al., 2012a, b, 2013; Im et al., 2015a, b; Appel et al., 2012; Vautard et al., 2012) 

and more recently efforts have been expanded to the diagnostic aspect (Hogrefe et al., 2014; 

Solazzo and Galmarini, 2016; Kioutsioukis et al., 2016; Solazzo et al., 2017).

Operational metrics usually employed in air quality evaluation (see Simon et al., 2012, for a 

review) have several limitations as summarised by Tian et al. (2016): interdependence (they 

are related to each other and are redundant in the type of information they provide), under 

determination (they do not describe unique error features), and incompleteness (how many 

of these metrics are required to fully characterise the error?). Furthermore, they do not help 

to determine the quality problem set above in terms of diagnostic power. Gauging (average) 

model performance through model-to-observation distance leaves open several questions 

such as (a) how much information is contained in the error? In other words, what remains 

wrong with our underlying hypothesis and modelling practice? (b) Is the model providing 

the correct response for the correct reason? (c) What is the degree of complexity of the 

system models can actually match? These questions have a straightforward, very practical 

impact on the use of models, the return they provide (the value), and their credibility. 

Answers to these questions are also relevant to the widespread practice of bias correction, 

which aims to adjust the model value to the observed value rather than correct the causes of 

the bias which might stem from systematic, cumulative errors.

The main aims of this study are to move towards tools devised to enable diagnostic 

interpretation of model errors, following the approach of Gupta et al. (2008, 2009), Solazzo 

and Galmarini (2016), and Kioutsioukis et al. (2016), and to advance the evaluation strategy 

outlined in the course of the three phases of AQMEII. In particular, the work presented here 

is meant to complement the overview analysis of the modelling systems participating in 

AQMEII3 (summarised by Solazzo et al., 2017) by concentrating on the performance for 

surface ozone modelled by two modelling systems: Chimere for Europe (EU) and CMAQ 

for North America (NA). This study attempts to

– identify the timescales (or frequencies) of the error of modelled ozone;

– attribute each type of error to processes by utilising modelling runs with 

modified fluxes at the boundaries (anthropogenic emissions and deposition at 

the surface and boundary conditions at the bounding planes of the domain) and 

breaking down the mean square error (MSE) into bias, variance, and covariance 

- this analysis allows us to diagnose the quality of error and to determine 

whether it is caused by external conditions or due to missing or biased 

parameterisations or process representations;

– investigate the periodicity of the ozone error which can be symptomatic of 

recursive (either casual or systematic) model deficiencies;

– determine the role of the error of precursor or meteorological fields in 

explaining the ozone error. The significance (or the non-significance) of a 

correlation between the ozone error and that of one of the explanatory variables 

can help to understand the impact (or lack of impact) of the latter on the ozone 

error as well as the timescale of the process(es) causing the error.
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Among the several models participating in AQMEII3, CMAQ and Chimere have been 

selected as the analysis proposed in this study requires additional simulations beyond those 

performed by all AQMEII3 groups, which implied additional dedicated resources that were 

not available to all groups. This of course opens an important issue connected with the 

relevance of models in decision making, the adequacy of their contribution, and 

consequently the fact that far more resources would be required by the present complexity 

and state of development of modelling systems to guarantee that deeper evaluation strategies 

are put in place. Although only these two modelling systems are analysed here, they 

represent two well-established systems that have been systematically developed over many 

years, are in use by a large number of research groups around the world, and also have 

participated in the various phases of AQMEII.

The data, model features, and error decomposition methodology are summarised in Sect. 2. 

Results of the aggregate time series and error decomposition analyses are presented in Sect. 

3 and results of the diagnostic error investigation through wavelet, autocorrelation, and 

multiple regression analysis are presented in Sect. 4. Discussion, conclusions, and final 

remarks are drawn in Sects. 5 and 6.

2 Methods

2.1 Data and models

Unless otherwise specified, analyses are carried out and results are presented for the rural 

receptors of three subregions over each continental area as shown in Fig. 1. The three 

subregions have been selected based on similarity analysis of the observed ozone 

fluctuations slower than ~ 1.5 days. The regions where the slow fluctuations showed similar 

characteristics were selected through unsupervised hierarchical clustering (details in Solazzo 

and Galmarini, 2015). Due to the similarity of the observations within these regions, which 

implies that they experience common physical and chemical characteristics, spatial 

averaging within these subregions was carried out.

The stations used for the analysis are part of European (European Monitoring and 

Evaluation Programme: EMEP; http://www.emep.int/; European Air Quality Database 

AirBase; http://acm.eionet.europa.eu/databases/airbase/) and North American (USEPA Air 

Quality System AQS: http://www.epa.gov/ttn/airs/airsaqs/; Analysis Facility operated by 

Environment Canada: http://www.ec.gc.ca/natchem/) monitoring networks. Full details are 

given in Solazzo et al. (2017) and references therein.

Following the approach used in previous AQMEII investigations, modelled hourly 

concentrations in the lowest model layer (~20 m for both models) and corresponding 

observational data are paired in time and space to provide a verification data sample {modr
t , 

obsr
t ; t = 1,..., 8760; r = 1,..., nrecs} of nrecs (number of monitoring stations) record of 

matched modelled and observational data, where the rth pair modt0 and obst0 is evaluated at 

receptor r at a given time t0. Further, while the observations are reported at the hour at the 

end (for Europe) or at the beginning (for NA) of the hourly averaging window, the model 

values available in this study are provided instantaneously. Therefore, the model 
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concentrations were assumed to be linear between the instantaneous on-the-hour reporting 

times; the integration (average) between those times was used to construct hour starting (or 

ending) values in order to more directly compare to the averaging used in the observations. 

This is of particular relevance when estimating the error due to timing of the diurnal cycle 

discussed in Sect. 4.3.

For the analyses conducted in this study, the spatial average of the observed and modelled 

ozone time series has been carried out prior to any time aggregation; i.e. the spatial average 

is created by averaging the hourly values over all rural stations in each region. Missing 

values in the time series, prior to the spatial averaging, have not been imputed. The analysis 

is restricted to stations with a data completeness percentage above 75 % and located below 

1000 m above sea level. Time series with more than 335 consecutive missing records (14 

days) have been also discarded. The number of rural receptors nrecs for ozone is 38, 184, and 

40 for EU1, EU2, and EU3 and 73, 43, and 28 for NA1, NA2, and NA3, respectively. The 

EU continental domain used for analyses extends between −30 and 60° latitude and between 

25 and 70° longitude, whereas the NA continental domain extends between-130 and-40° 

latitude and between 23.5 and 69° longitude.

The configuration of the CMAQ and Chimere modelling systems for AQMEII3 is 

extensively discussed in Solazzo et al. (2017) with respect to resolution, parameterisations, 

and inputs of emissions, meteorology, land use, and boundary conditions. For completeness 

a short summary is provided hereafter.

The CMAQ model (Byun and Schere, 2006) is configured with a horizontal grid spacing of 

12 km and 35 vertical layers (up to 50 hPa) and uses the widely applied CB05-TUCL 

chemical mechanism (carbon bond mechanism; Whitten et al., 2010) for the representation 

of gas-phase chemistry. Emissions from natural sources are calculated by the Biogenic 

Emissions Inventory System (BEIS) model. The meteorology is calculated by the Weather 

Research and Forecast (WRF) model (Skamarock et al., 2008) with nudging of temperature, 

wind, and humidity above the planetary boundary layer (PBL) height. In CMAQ, dry 

deposition is used as a flux boundary condition for the vertical diffusion equation. A review 

of CMAQ dry deposition model as well as other approaches is provided in Pleim and Ran 

(2011).

Chimere (Menut et al., 2013) is configured with a grid of 0.25° (corresponding, 

approximately, to 25 km × 18 km over France), nine vertical layers (up to 500 hPa), and uses 

the Melchior2 chemical mechanism (Lattuati, 1997) for the representation of gas-phase 

chemistry. Natural emissions are calculated using the MEGAN model (Guenther, 2012). The 

hourly meteorological fields are retrieved from the Integrated Forecast System (IFS) 

operated by the European Centre for Medium-Range Weather Forecast (ECMWF). In 

Chimere the dry deposition process is described through a resistance analogy (Wesely, 

1989). For each model species, three resistances are estimated: the aerodynamical resistance, 

the resistance to diffusivity near the ground, and the surface resistance. For particles, the 

settling velocity is added. More information is included in Menut et al. (2013).
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Both models are widely used worldwide in a range of applications such as scenario analysis, 

forecasting, ensemble modelling, and model intercomparison studies.

2.2 Sensitivity runs with CMAQ and Chimere

The Chimere and CMAQ models have been used to perform a series of sensitivity 

simulations aiming for a better understanding of the causes of differences between the base 

model simulations and observed data. In particular, the following set of sensitivity runs was 

performed:

– One annual run with zeroed anthropogenic emissions provided an indication of 

the amount of regional ozone due to boundary conditions and biogenic 

emissions (referred to as “zero emi”).

– One annual run with a constant value of ozone (zero for NA and 35 ppb for EU) 

at the lateral boundaries of the model domain provided an indication of amount 

of ozone formed due to anthropogenic and biogenic emissions within the 

domain (in addition to the constant value for EU) (referred to as “zero BC” and 

“const BC”). All species other than ozone had boundary condition values of zero 

for both NA and EU in these sensitivity simulations.

– One annual run was performed where the anthropogenic emissions are reduced 

by 20 %. In addition, the boundary conditions for this run were prepared from a 

C-IFS simulation (detail in Galmarini et al., 2017, and references therein) in 

which global anthropogenic emissions were also reduced by 20 % (referred to as 

a “20 % red”).

– One run with ozone dry deposition velocity set to zero was available for the 

months of January and July (referred to as “zero dep”).

The analyses presented are not meant to intercompare the two modelling systems, as the 

CMAQ and Chimere models are applied to non-comparable contexts (different emissions, 

meteorology, and observational data). The response of each model to the changes in 

emissions, boundary conditions, and deposition needs to be interpreted independently.

2.3 Error diagnostic metric

To aid diagnostic interpretation, the mean square (or quadratic) error (MSE = E[mod—

obs]2) is decomposed according to

MSE = mod − obs 2 + (σm − σo)2 + 2σmσo(1 − r)
= bias2 + var + covar,

(1)

where σm and σo are the modelled and observed standard deviation, var and covar are the 

variance and covariance operators, r is the linear correlation coefficient, and bias is the time 

averaged offset between the mean modelled and observed ozone concentration. The 

decomposition in Eq. (1) (and several variations of it), derived e.g. by Theil (1961), has been 

extensively discussed in Potempski and Galmarini (2009), Solazzo and Galmarini (2016), 
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and Gupta et al. (2009). The first two moments (mean and variance) relate to the systematic 

error (unconditional bias) and variability (variance), respectively. All other differences 

between the statistical properties of modelled and observed chemical species (e.g. the timing 

of the peaks and autocorrelation features) are quantified by the correlation coefficient, i.e. in 

the covariance term (Gupta et al., 2009).

The MSE is a quadratic, parametric metric widely applied in many contexts and occurs 

because the model does not account for information that could produce a more accurate 

estimate. Put in an information theory context, the MSE provides a measure of the 

information about the observation that is missing from a Gaussian model centred at a 

deterministic prediction (Nearing et al., 2016). Ideally, the deviation of a perfect model from 

the observation should be zero or simply white noise (uncorrelated, zero mean, constant 

variance). Various flavours of MSE decomposition have been exploited in several 

geophysical contexts (Enthekabi, et al., 2010; Murphy, 1988; Wilks, 2011; Wilmott, 1981; 

Gupta et al., 2009), all stemming from the consideration that the bias, the variance, and the 

covariance characterise different (although not complementary and not exhaustive) 

properties of the error - accuracy, precision, and correspondence, respectively.

The relative contribution of each of the MSE components to the overall MSE is summarised 

by the Theil coefficients (Theil, 1961):

Fb = bias2/MSE
Fv = var/MSE
Fc = covar/MSE .

(2)

The overall MSE suffers from the limitations of the aggregate metrics discussed in the 

introductory section, lacking independence and explanatory power (Tian et al., 2016). When 

decomposed (e.g according to Eq. 1), however, the underdetermination issue is reduced and 

the MSE coefficients (Eq. 2) do offer diagnostic aid in interpreting the modelling error 

(Gupta et al., 2009).

3 Sensitivity analysis to emissions and boundary conditions 

perturbations

3.1 Aggregated time series of ozone

Figures 2 and 3 show monthly and diurnal curves for the base and sensitivity simulations 

over the three subregions in each continent. Results show that the monthly averaged curves 

of the zeroed emission runs peak in April in NA and in July in EU (May to July in EU1 are 

approximately the same), indicating the periods when the impact of background 

concentration (boundary conditions) and biogenic emissions on regional ozone is largest: 

springtime in NA and summer in EU. The monthly curves of “zero BC” and “zero emi” for 

NA are anticorrelated between the months of April to July-August (“zero emi” curve 

decreasing and “zero BC” curve raising) and during autumn (“zero emi” curve rising and 

“zero BC” curve decreasing), framing the interplay among these two factors in terms of total 
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ozone loading: boundary conditions dominate in autumn-winter and biogenic plus 

anthropogenic emissions are more important during spring-summer. The springtime peak for 

the zero emissions case over NA is consistent with the springtime peak in northern 

hemispheric background ozone (Penkett and Brice, 1986; Logan, 1999) and the predominant 

westerly and north-westerly inflow into the NA domain. The background ozone springtime 

peak is thought to be caused by a combination of more frequent tropospheric-stratospheric 

exchange and in-situ photochemical production during that season (Atlas et al., 2003).

The daily averaged profiles of mean ozone for NA show that the observed peak (occurring 

between 16:00–18:00 LT in NA1 and NA2 and ~ 1 h earlier in NA3) is preceded by the peak 

in the base run by ~ 1 h in NA2 and by ~ 2–3 h in NA1, while the timing of the observed 

minimum (occurring at 08:00–09:00 LT) is captured by the base run in NA2 and NA3 while 

it is preceded by the base run by ~ 1 h in NA1. The modelled morning transition to 

convective conditions is in phase with the observations except for NA1, where the modelled 

transition occurs 1 h earlier than the observed one. The modelled afternoon transition in 

NA1 precedes the observed transition by 3–4 h, possibly due to errors in the partitioning 

between sensible and latent surface heat flux that causes a faster-than-observed collapse of 

the PBL. One possible reason, as discussed in Appel et al. (2017), could reside in the 

stomatal conductance function and the heat capacity for vegetation in WRF and the ACM2 

vertical mixing scheme in both WRF and CMAQ (relative to the version of WRF and 

CMAQ used in the current study). Recent updates to these processes in CMAQ lead to a 

change in the modelled diurnal cycle of ozone as well as other pollutants and meteorological 

variables. In particular, the updates lead to a delay in the evening collapse of the modelled 

PBL (Appel et al., 2017).

The shape of the “zero BC” curve is similar in amplitude to that of the base run, suggesting 

that the effect of the regional/background ozone represented through boundary conditions in 

a limited area model is mainly to shift the mean concentration upwards, while it has no 

major effect on the frequency modulation. By contrast, the absence of anthropogenic 

emissions has a major effect on the amplitude of the signal as well as its magnitude (“zero 

emi” curve). As discussed in the next section, these considerations translate into the bias 

and/or variance type of error due to the boundary conditions and emissions.

As for EU (Fig. 3), the observed daily profiles in EU1 and EU2 are closely matched by the 

Chimere model between 11:00 and 23:00 LT (underestimated outside these hours), while in 

EU3 the daily peak (observed at 19:00–20:00 LT) is consistently occurring earlier in the 

model and its magnitude is overestimated. The morning transition occurs earlier in the 

model than the observations and follows a significant model underprediction of nighttime 

and early morning ozone due to difficulties in reproducing stable or near-stable conditions 

(Bessagnet et al., 2016). In EU3, the model displays the poorest performance, with 

significant underestimation between midnight and 09:00 LT (5–7 ppb) and overestimation in 

daylight conditions (7–9 ppb).

As opposed to the CMAQ case for NA, the shape of the “zero emi” curve of Chimere closely 

follows the shape that of the base case (even when considering only the stations classified as 

“urban”; Fig. S2 in the Supplement). Due to the long time average (1 year), the daily profiles 
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displayed in Figs. 2 and 3 do not provide information about the exact timing of the minima 

and maxima for each season throughout the year. Figures S3 and S4 report the seasonal 

average diurnal profiles for the model predictions and the observations (network average 

over all stations) and show that the timing of the ozone diurnal cycle varies seasonally.

3.2 Error decomposition

The plots in Figs. 4 (NA) and 5 (EU) show the MSE decomposition according to Eq. (1) for 

the summer months of June, July, and August for the base case simulation as well as the 

sensitivity simulations, distinguishing between daylight (from to 05:00 to 09:00 LT) and 

nighttime hours (the remaining hours, from 10:00 to 04:00 LT). These plots are meant to aid 

the understanding of the relative impacts of potential errors in lateral boundary conditions, 

anthropogenic emissions, and the representation of ozone dry deposition on the total model 

error by comparing the magnitude and type of model error from these simulations against 

the model error for the base case.

The plots in Figs. 6 to 15 are complementary to Figs. 4 and 5 and show the error 

decomposition for both the summer and winter season in more detail, including the error 

coefficients Fb, Fv, and Fc of Eq. (2) (left vertical axis), the total MSE (right vertical axis), 

the sign of the bias and variance error (± for model over- and underprediction), and the 

values of the correlation coefficient. Furthermore, the maps in Figs. 16 and 17 show the root 

MSE (RMSE) at the receptors for the “base” case as well as ΔRMSE, i.e. the percentage 

change of RMSE of the sensitivity runs with respect to the “base” case simulation:

ΔRMSE = 100 ⋅ (RMSEs − RMSEbase)/RMSEbase,

where the subscript s indicates the zeroed emission or the zeroed (constant) boundary 

condition simulations (ΔRMSE is measured as percentage).

The CMAQ results for NA are presented in Figs. 4, 6–10, and 16 and can be summarised as 

follows:

– The MSE of the base case (MSEbase) during summer daylight is mainly due to 

bias (~35 % in NA1 and ~75 % in NA2 and NA3) and the remaining portion is 

due to covariance error. The fact that there is no variance error shows that the 

model is able to replicate the observed 3-month averaged variability. Possible 

reasons for the positive model bias (model overestimation) have been discussed 

in Solazzo et al. (2017) and includes overestimation of emissions precursors 

(Travis et al., 2016) and absence of correct parameterisations of forested areas 

on surface ozone (Makar et al., 2017).

– The effect of zeroing the emissions of anthropogenic pollutants on the summer 

MSE is a rise by a factor ~2 to 4 (daylight) and by a factor ~6 to 7 (nighttime) in 

NA1 and NA2 with respect to MSEbase; during night-time in NA3 the MSE stays 

approximately the same, indicating that the emissions play a negligible role in 

determining the total error in this subregion during summer night.
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– Furthermore, all the error components deteriorate in the simulations with zero 

anthropogenic emissions except for the bias in NA3. This is particularly true for 

the variance, signifying the fundamental role of emissions in shaping the diurnal 

variation of ozone. Indeed, this suggests that the absence of a variance error in 

the base case (see above) is due to the correct interplay between the temporal/

spatial distribution of the emissions, potentially coupled with the variability due 

to the meteorology.

– The covariance share of the error also increases (although only slightly in NA2) 

for the zero emissions case, indicating that the emissions play a role in 

determining the timing of the modelled diurnal ozone signal; this increase is 

more pronounced during nighttime.

– The zeroing of the input of ozone from the lateral boundaries has either no effect 

or only a limited effect (e.g. daylight summer in NA2; Fig. 4) on the variance 

and covariance shares of the error, while it has a profound impact on the bias 

portion. This impact is approximately equal during daylight and nighttime, as 

expected from the discussion of the daily cycle shown in Fig. 2.

– The removal of ozone dry deposition from the model simulations (results based 

on July only) has the most profound impact, increasing by 1 order of magnitude 

the MSE of the base case, which is approximately double the combined effect of 

the emissions and boundary conditions perturbation. This sensitivity gives a 

gross indication of the relative strength of this process vs. external conditions 

during summer, while the “zero BC” case has a larger effect than the “zero 

deposition” case in January (not shown). Similar to the “zero BC” case, the 

exclusion of ozone dry deposition from the model simulations acts as an additive 

term to the diurnal curve in NA1, leaving almost unaltered the shape and timing 

of the signal, while it impacts the variance and covariance error in the other two 

subregions. The small impact the removal of dry deposition has on the 

covariance error (timing of the ozone signal) together with the outweighing 

offsetting bias might suggest that the correct estimate of the deposition 

magnitude is more beneficial than, e.g. the time dependence of surface 

resistance. The role of the variance is, however, unclear and deserves further 

analyses.

– The instances where the “20 % red” bias error is lower than the error of the base 

case occur when the mean ozone concentrations were overestimated in the base 

case (e.g. daylight for all subregions and NA2 and NA3 over nighttime summer) 

as illustrated in Figs. 6 and 7.

– The maps show that there are stations where the error is reduced with zero 

anthropogenic emissions (e.g. a reduction of 20–30 % in the southern coast of 

the US and in the far north-east during summer; Fig. 16d). This suggests the 

presence of other compensating model errors in both the base and sensitivity 

simulations that lead to better agreement with observations when prescribing an 

unrealistic emission scenario. The sources of these compensating errors need to 

be investigated in future work.
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– The “zero BC” run has profound negative effects over the whole continental area 

of NA during winter (Fig. 16e), while the effects are smaller during summer 

(Fig. 16f), especially over the southern coast, due to the relatively higher 

importance of photochemical formation of ozone during summer.

– The error characteristics of the daily maximum 8 h rolling mean (DM8h, Fig. 

10) resemble those of the daylight base case (Fig. 6, left column), but reduced in 

magnitude during winter, with almost null variance error and the same sign of 

the bias as the base case. The NA1, NA2, and NA3 standard deviations of the 

summer DM8h is of 7.6, 5.2, and 8.1 ppb and of 7.6, 6.5, and 7 ppb for the 

model and the observations, respectively. The model variability is therefore in 

line with the observed variability. The error of the DM8h for the sensitivity runs 

is reported in Fig. S5.

– On a network-wide average, removing anthropogenic emissions causes a RMSE 

increase of 25 % during summer and of 0 % (10 % at 75th percentile) during 

winter while a zeroing out of input from the lateral boundaries causes a RMSE 

increase of 30 % during summer and of 180 % during winter (median values; 

Fig. 16)

The allocation of the error of the Chimere model for EU varies greatly by subregion (Figs. 5, 

11–15, and 17):

– The summer daylight RMSEbase ranges between ~ 20ppb2 (EU1, ~ 60% 

covariance and ~20% bias) and ~85ppb2 (EU3, 95% covariance). In EU3, the 

nighttime bias of ~75 % outweighs the covariance, as seen in Fig. 11.

– Removing the anthropogenic emissions had almost no effect on the covariance 

share of the MSE (if not a slight reduction with respect to the base case in EU2 

and EU3 and also during nighttime), indicating that the error in the timing of the 

signal is influenced not by the emissions but rather by other processes. 

Moreover, the variance portion is left almost unchanged (1 ppb increase in EU1 

and EU2), in contrast to the CMAQ results for NA. This would indicate that the 

variability of ozone concentration is hardly influenced by anthropogenic 

emissions in Chimere. The bias is the error component most sensitive to 

emissions reductions, especially in EU2 and less so in EU3. This is in line with 

the discussion of the daily profiles of Fig. 2b (which showed similar shapes of 

for the “zero emi” and of the “base” profiles) and contrasts with the NA case 

where the “zero emi” daily profiles are flatter than the base case.

– The effect of imposing a constant ozone boundary condition value of 35 ppb 

(and of zero for all other species) has a net small effect on the variance of the 

ozone error but significantly reduces the covariance share of the error in favour 

of the bias (Figs. 5 and 14). The total MSE is similar to that of removing the 

anthropogenic emissions as far as the total MSE and the bias of EU2 are 

concerned. It outweighs the latter for the total MSE, bias, and variance in EU3 

and covariance and nighttime bias component in EU1. We can infer that the 

variability of the boundary conditions has a significant role in determining the 
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timing of the ozone signal in EU1 (close to the western boundary of the domain) 

as the correlation coefficient degrades from 0.89 (base case) to 0.66 (“const 

BC”) (Figs. 5, 11, and 14). The bias staying the same in EU1 daylight summer 

depends on the magnitude of the constant value (35ppb were chosen here) that is 

in close agreement with that of the base case while the small variance error (~2 

ppb) vanishing with respect to the base case might be explainable with 

numerical compensation.

– During summer in EU2 and EU3 changing the ozone boundary condition only 

influences the bias with marginal impacts on variance and covariance, while in 

winter (Fig. 14) there is also a significant reduction of the correlation coefficient, 

meaning that the boundary conditions modulate the timing of the signal. This 

also implies that the variability of the boundary conditions becomes more 

important in winter.

– EU3 deserves special consideration as the RMSEzero emi is approximately the 

same as the RMSEbase, which mostly consists of covariance error during 

daylight and bias error during nighttime (Fig. 5e). Due to the local topography, 

EU3 is typically characterised by stagnant conditions that are difficult to model. 

For example, 50 % of the observed wind speed is below 1.65ms−1, while 

Chimere predicts 1.95 ms−1. The largest impact on the total MSE is seen in the 

“const BC” run and arises in the bias portion, pointing to the importance of 

properly characterising background (regional) concentrations.

– With respect to the base case, the DM8h (Fig. 15) shows a reduced share of the 

covariance error with respect to the mean ozone (Fig. 11) at the expense of an 

increase in variance error; the timing error is now shifted towards seasonal 

timescales. The variability of the DM8h is governed by synoptic processes 

which are likely responsible for the variability error of the DM8h. The EU1, 

EU2, and EU3 standard deviations of the summer DM8h is of 3, 6.2, and 8.6ppb 

and of 6, 11, and 10.2ppb for the model and the observations, respectively. The 

model therefore underestimates the observed variability (as indicated by the 

“minus” sign in the variance share of the error in Fig. 15) by up to 50 % in EU1. 

A range of processes could be responsible for the lack of variability in Chimere, 

from emission to chemistry to transport. The error of the DM8h for the 

sensitivity runs is reported in Fig. S6.

– On a network-wide average, removing anthropogenic emission causes an RMSE 

increase of 21 % during summer and 12 % during winter (median values; Fig. 

17c,d).

– The effect of setting the dry deposition velocity of ozone to zero (July only, Fig. 

5) increases not only the bias error but also the variance and covariance shares of 

the error. Thus in Chimere the deposition not only acts as a shifting term on the 

modelled concentration but also influences the variability and timing of ozone 

more profoundly than for the CMAQ case examined earlier.
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4 Timescale error analysis and diagnostic

The focus of this section is ΔO3, the time series of the deviation between the base case and 

observations. The nature of ΔO3 is examined for time-frequency patterns using wavelet 

analysis and for error persistence using autocorrelation functions (ACFs). The causes of ΔO3 

are also tentatively investigated as dependencies on other fields using multiple regression 

analysis combined with bootstrapping to sample the relative importance of the regression 

variables.

4.1 Spectral considerations

The coefficients of the ACFs (Appendix A) can be interpreted as the Fourier transform of the 

power spectral density. Frequency analysis of a signal is often performed by constructing the 

periodogram (or spectrogram; see e.g. Chat-field, 2004). This approach has proven useful 

when dealing with harmonic processes superimposed on a baseline signal (Mudelsee, 2014) 

but, at the same time, periodograms often contain high noise. Therefore, examining a signal 

at specific frequencies can be instructive, for instance by resorting to wavelet transform, 

which has the further advantage of enabling a 3-D time-frequency-power visualisation. 

Compared to a power spectrum showing the strength of variations of the signal as function 

of frequencies, wavelet transformation also allows the allocation of information in the 

physical time dimension other than phase space. Here, wavelet analysis of the periodogram 

of seasonal ΔO3 is performed using the Morlet wavelet transform (Torrence and Compo, 

1997).

From inspecting Fig. 18 (NA) it emerges that the highest values of spectral energies for ΔO3 

for the three subregions (corresponding to the 99th percentile of the spectrum) are observed 

for periods spanning the whole year (i.e. the intensity keeps the same high value during the 

whole year and is associated with a periodicity higher than ~300 days). These high values of 

the energy spectrum are likely associated with the slow variability of the non-zero bias 

throughout the investigated period that acts as a slow envelop modulation of the error at 

shorter timescales. Such a process is more evident in NA1 and NA2 and its magnitude is 1 

order of magnitude (or more) higher of the 90th percentile value.

NA3 and to a lesser extent NA2 show a high spectral power of the error for periodicities of 

1–2 months and lasting from January to May with a weaker wake extending up to the end of 

the year, potentially pointing to errors in the characterisation of larger-scale background 

concentrations associated with boundary conditions. NA3 also exhibits a high spectral power 

for errors associated with a periodicity of ~20 days during January-February and June-July 

and ~15 days during October and December. This may point to errors in representing the 

effects of changing weather regimes on simulated ozone concentrations.

Except for the long-term variations of the model error with periodicities greater than 2 

months discussed above, NA1 is the only subregion that shows only weak power associated 

with model errors of shorter periodicities from June to December. This suggests that 

fluctuations caused by variations in large-scale background and changing weather patterns 

are better captured in this region compared to the other two subregions.
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The energy associated with the daily error is again higher and more pronounced in NA3 than 

in the other subregions, where it is most pronounced during summer (NA1) or between 

March to October (NA2). While during winter and autumn the daily error is likely driven by 

difficulties in reproducing stable PBL dynamics, during spring and summer it is also 

influenced by the chemical production and destruction of ozone, a process entailing NOx 

chemistry, radiation, biogenic emission estimates, and chemical transformation, and thus 

difficult to disentangle from boundary layer dynamics. Wavelet plots of the ozone error for 

periods between 12 h and 6 days are reported in Figs. S7 and S8, allowing us to better 

identify the periods (and/or the periodicity) affecting the error of the fast fluctuations, e.g the 

daily error in NA3 (all year) and the high energy spot towards the end of April in NA2 with 

a periodicity of ~6 days and above, that could be associated with an ozone episode, but 

analysis of episodes is beyond the scope of this investigation.

For the EU (Fig. 19) a notable feature is the very high daily error energy in EU3 that is 

present throughout the year and most pronounced in summer. Such high energy suggests 

persistent problems in representing processes having a periodicity of 1 day. Further, EU3 

shows an area of high energy associated with a period of 1 to 2 months and extending from 

February, peaking in April and May, and ending in September (mostly model 

underestimation; Fig. 19c), while the error of the winter months in EU3 receives high energy 

from slower processes, acting on timescales of ~6 months and beyond. Considering that the 

EU3 region is surrounded by high mountains, tropopause folding (e.g. Bonasoni et al., 2000; 

Makar et al., 2010) together with the lack of modelling mechanisms for the tropopause/

stratosphere exchange could offer an explanation of the high energy of the error at long 

timescales (also considering that the higher level modelled by Chimere is well below the 

tropopause and that vertical fluxes are those prescribed by the C-IFS model). Errors in the 

biogenic emissions also remain a plausible cause of ozone error during spring and summer 

months.

The similarity of the wavelet spectra for NA3 (Fig. 18c) and EU1 (Fig. 19a) (both regions 

are located on the western edge of their domain) at the beginning of the year for periods of 1 

to 2 months might be indicative of the periodicity of the bias induced by the boundary 

conditions. Compared to CMAQ, the error of the Chimere model is more concentrated 

during spring and early summer, with a periodicity of 10–20 days.

Having identified some relevant timescales for the ΔO3 error, in the next sections methods 

are proposed for its detection and quantification.

4.2 Temporal characteristics of the error of ozone

In a recent study, Otero et al. (2016) analysed which synoptic and local variables best 

characterise the influence of large-scale circulation on daily maximum ozone over Europe. 

The authors found the majority of the variance during spring over the entire EU continent is 

accounted for in the 24 h lag autocorrelation while during summer the maximum 

temperature is the principal explanatory variable over continental EU. Other influential 

variables were found to be the relative humidity, the solar radiation, and the geopotential 

height. Camalier et al. (2007) and Lemaire et al. (2016) found that the near-surface 
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temperature and the incoming short-wave radiation were the two most influential drivers of 

ozone uncertainties.

The ACFs and PACFs (partial autocorrelation function) of ΔO3 (see Appendix A for a 

definition of both functions) reveal a strong periodicity for periods that are multiples of 24 h 

(Figs. 20 and 22) (note that the first derivative of ΔO3 is used in this analysis to achieve 

stationarity). The structure of the error is such that it repeats itself with daily regularity, 

indicating either a systematic error in the model physics or a missing process at the daily 

scale, possibly related to radiation and/or PBL-related variables. While the presence of a 

daily periodic forcing due to the deterministic nature of day-night differences superimposed 

on the baseline ozone is expected, the periodicity maintained in the error structure is not and 

deserves further analysis.

The PACF plots confirm that the error is not simply due to propagation and memory from 

previous hours but rather arises at 24 h intervals and hence stems from daily processes. On 

average, for NA corr(ΔO3 (h), Δ03(h+1)) (i.e. the correlation between ΔO3(h) and ΔO3(h+1)) 

is ~0.45, while the corr(ΔO3(h), ΔO3(h+24) ~0.68, for any given hour h. Similarly for EU, 

corrΔO3(h) and ΔO3(h+1)) ranges between 0.31 (EU2) and 0.54 (EU3), while corrΔO3(h), 

ΔO3(h+24)) ~0.70 for all subregions. Thus, the ozone error with a 24 h periodicity has a 

longer memory than the error with a 1 h periodicity. Since the 24 h periodicity of the error is 

present in the entire annual time series, the periodic error is not associated with particular 

conditions (e.g. stability) but is rather embedded into the model at a more fundamental level. 

Moreover, similar periodicity is observed for

– the ACF analysis repeated for the “zero emi” scenario (Fig. S9);

– the ACF of ΔWS and ΔTemp for both models (Fig. S10);

– the ACF of primary species (PM10 for EU and CO for NA) (Fig. S11);

– the ACF of ozone error for the “zero emi” scenario at three stations where 

isoprene emissions are low (Fig. S12). These stations have been selected by 

looking at the locations where isoprene emissions accumulated over the months 

of June, July, and August as provided by the two models analysed here.

In all cases, the error has a marked daily structure, strengthening the notion that a daily 

process affecting several model modules is not properly parameterised. The error due to 

chemical transformation at daily scale is screened out by the daily periodicity of the ACF of 

the primary species, while the daily periodicity of the zeroed emission scenario allows the 

reinforcement of the claim that the PBL dynamics is the most probable cause of the error.

Since the individual daily processes directly or indirectly affecting the PBL dynamics cannot 

be untangled, here “PBL error” is meant to encompass errors in the representation of the 

variables affecting boundary layer dynamics (i.e. radiation, surface description, surface 

energy balance, heat exchange processes, development or suppression of convection, shear 

generated turbulence, and entrainment and detrainment processes at the boundary layer top 

for heat and any other scalar) and their non-linear interdependencies.
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By removing the diurnal fluctuations (i.e. by screening out the frequencies between 12 h and 

up to ~1.5 days by means of the Kolmogorov-Zurbenko (KZ) filter, as described in Hogrefe 

et al., 2000) from the modelled and observed time series, the daily structure of the ACF 

disappears (Figs. 21 and 23), replaced by a slow decay and negative (EU1, EU2 and partially 

NA1, NA2) or fluctuating (NA3, EU3) correlation values. The PACF plots in Figs. 21 and 23 

suggest that some significant correlation persists up to ~40 h, likely due to leakage from the 

removed diurnal component. As extensively discussed in several earlier works, the KZ filter 

does not allow for a clear separation among components and thus some leakage is expected 

(see e.g. Galmarini et al., 2013; Solazzo et al., 2017). The amount of overlapping variance 

between the isolated diurnal fluctuations and the remainder of the time series is of ~4–9%.

The relative strength of the MSE for the undecomposed ozone time series and for the ozone 

time series with the diurnal fluctuations removed and with only the diurnal fluctuations is 

reported in Table 1. With the exception of NA1 and EU3, the baseline error (denoted with 

“noDU”) accounts for ~70 to 85 % of the total error, while the diurnal fluctuations (denoted 

with “DU”) are responsible for 10 to 23 % of the total error (and even less during nighttime). 

The “DU” error outweighs the “noDU” error (67% to 26%) only in EU3, where the daily 

PBL issue has been pointed out in the previous section.

4.3 Covariance error: phase shift of the diurnal cycle

This section explores the nature of the covariance error which occurs, among other reasons, 

when the two signals being compared are not in phase. The first and second moments of the 

error distribution are invariant with respect to a phase shift between the two signals (Murphy, 

1995); i.e. the mean of the signal and the amplitude of the oscillations with respect to the 

mean value are not affected by a phase shift, which therefore does not have an impact on the 

bias and variance components of the error. The correlation coefficient, in contrast, is 

impacted by a lagged signal, producing a net increase of the covariance error.

The analysis of the phase lag between the daily component of the modelled and observed 

cycles is reported in Figs. 24 (NA) and 25 (EU), while winter and summer are analysed 

separately.

To perform this analysis, the modelled and observed ozone time series are first filtered to 

isolate the diurnal component using a KZ filter. Then, the cross covariance between the two 

time series is calculated. The time at which the maximum covariance value occurs is taken 

as the phase shift between the two signals. The method has an error of ±0.5 h.

In NA, the modelled diurnal peak occurs 1–2 h earlier than the observed diurnal peak at 

many stations and up to 3–4 h earlier at some Canadian stations. By taking into 

consideration the 0.5 h error of the estimate, the receptors at the western border 

(approximately corresponding to NA3) are least affected by this timing error (especially in 

summer Fig. 24b), and therefore the covariance share of the error shown in Fig. 4 is not due 

to daily phase shift in this region but probably due to the shifting of longer (or shorter) time 

periods induced for example by errors in transport (wind speed and/or direction). Figure S13 

in the Supplement reports the same analysis repeated for the “zero emi” and “zero BC” runs.
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In the EU (Fig. 25), no phase shift (or a phase shift compatible with the 0.5 h estimation 

error) is observed in Romania, Germany, or the UK during winter, while a significant phase 

shift (the modelled peak occurs upto6h early) is observed in the north of Italy and Austria, 

with France and Spain oscillating between positive 3 (model delay upto5h in the south of 

Madrid) and negative 5 and 6 h phase shifts, with the net effect of a spatially aggregated 

daily cycle that is in phase with the observations (Fig. 3b). During summer the phase shift is 

larger and extends also to the countries where the phase shift was null during winter. 

Moreover, some country-wise grouping can be detected, as for example at the border 

between Belgium and France, Spain and France, and Finland to Sweden, possibly due to the 

different measurement techniques and protocols among EU countries (e.g. Solazzo and 

Galmarini, 2015). Figure S14 in the Supplement reports the same analysis repeated for the 

“zero emi” run. The difference between the time shift of the base case and the zeroed 

emission scenario (Fig. S15) reveals the effects of the timing of the anthropogenic emissions 

on the covariance error. The effect is null over EU (median value of the difference of zero) 

and is very limited in NA (median value of zero during summer and of —1 during winter), 

reinforcing the conclusion that the timing of the emissions is not responsible for (or 

contributes very little to) the daily error.

While errors in emission profiles obviously can be one cause of the phase shift and thus the 

covariance error of the modelled ozone signal, the representation of boundary layer 

processes clearly can be a factor as well. As discussed in e.g. Herwehe et al. (2011), the 

parameterisation of vertical mixing during transitional periods of the day can cause a time 

shift in the modelled ozone concentrations due to its effects on the near-surface 

concentrations of NOx and ozone, which in turn affect the chemical regime and balance 

between ozone formation and removal.

To quantify the importance of the covariance error caused by a phase shift relative to other 

sources of error, Fig. 26 shows the curves of normalised MSE as the observed ozone time 

series is shifted with respect to itself between −10 and 10 h. The MSE curve equals zero for 

a zero-hour lag and is symmetric with respect to the sign of the lag. Since this analysis 

compares the observed signal to itself (with varying degrees of time lags), the MSE fraction 

of bias and variance is zero while all of the MSE is due to the covariance.

The curves in Fig. 26 shows that a phase lag in the diurnal cycle of ±6 h causes a MSE error 

in the diurnal component of magnitude ~var(obs) (in both EU and NA), where var(obs) is 

the variance of the measured diurnal cycle (top panel). The effect on the full 

(undecomposed) time series is that a phase lag of ±4 (EU) and ±5–6 (NA) hour in the 

diurnal cycle causes a MSE error of magnitude ~var(obs), where in this case the variance is 

that of the undecomposed time series of ozone (lower panel).

Therefore, a modelled ozone peak that occurs 4 to 5 h too early (a feature that is detected at 

some EU3 and Canadian stations) corresponds to a covariance error of 9.0ppb (i.e. the 

standard deviation of the network-average ozone observations in summer in both EU and 

NA). This result also helps explain the large covariance error in EU3, which can be at least 

partially attributed to the large phase shift of the daily cycle.
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4.4 Explaining the error of ozone

In this section a simple linear regression model for the error of ozone ΔO3 is applied with 

the goal of detecting the causes of model errors on the daily and longer-term scales 

identified in the previous section. Although a linear model is overly simplistic and other 

methods are available (e.g kernel smoothers), we employed the simpler approach (i) since it 

is not the aim of this study to build a statistically accurate model for the model error and (ii) 

by pursuing simple reasoning we hope to identify the timescale of the error and the most 

likely fields causing it at that timescale. More advanced techniques are likely to 

overcomplicate the results and their interpretations but could be pursued in future studies.

The available regressors (explanatory variables) are the errors of the variables for which 

measurements have been collected within AQMEII, i.e. NO (EU only), NO2, Temp, and 

WS:

ΔO3 =  β1ΔNO + β2ΔNO2 + β3ΔTemp + β4ΔWS + k, (3)

where βi are the coefficients of the multiple linear regression, and the intercept k is the 

portion of the ozone error not explainable by any of the regressors. A bootstrap analysis 

(Mudelsee, 2014; Groemping, 2006) is used to calculate the relative importance of each 

error field in explaining the variance of ΔO3 (Figs. 27 and 28) with an uncertainty of ~5 %. 

The analysis is restricted to stations of ozone, NOx, WS, and Temp that are located within a 

maximum horizontal distance of 1000 m and maximum vertical displacement of 250 m, to 

avoid error due to spatial heterogeneity. The number of stations is 61 in EU and 45 in NA.

The errors of temperature and wind speed explain about a third of the daylight winter ozone 

error of CMAQ, while ~20 % of the ozone error variability during daylight summer ozone is 

associated with the error in temperature and, to a lesser extent, wind speed (Fig. 27). In 

contrast, in Chimere the NO and NO2 error over EU during winter is correlated with the 

error of ozone, especially during nighttime (Fig. 28). Overall, there is no instance where the 

variance explained by the available variables (quantified through the coefficient of 

determination R2) exceeds 0.45 (corresponding to a linear correlation coefficient of ~0.67). 

The ACFs of the residuals of the regression show that there is an overwhelming daily 

memory of the error that can only partially be attributed to errors of the available regressor 

variables, pointing to the need to include additional variables in future applications of this 

regression analysis.

A straightforward limitation of Eq. (3) is that it assumes that successive values of the error 

terms are independent, while in practice this is not the case. Table 2 reports the correlation 

coefficient of the diurnal fluctuations of the residuals, obtained by filtering out fluctuations 

faster than ~1.5 days from the measured and observed time series (for the analysis of Table 2 

the co-location restriction on the rural receptors is removed to allow spatial considerations, 

the only constraint is on the the vertical displacement among stations to be less than 250 m). 

Several significant collinearities can be detected (e.g between ΔWS and ATemp and between 

ΔNO2 and ATemp, especially in winter).

Solazzo et al. Page 18

Atmos Chem Phys. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



In addition to the collinearity issue, there are other endogenous variables that are not part of 

the regression analysis but whose error contributes to total ΔO3, as revealed by the ACFs and 

PACFs of the first-order differentiated residuals of the regression, reported in the last panels 

of each plot. Such missing variables are likely to correlate with both the dependent (AO3) 

and the explanatory variables. For instance, errors in the cloud cover and/or radiation 

scheme, land use masking, etc. are shared by the chemical species (ozone and its precursors) 

as well as by the meteorological fields. The ACFs and PACFs suggest that the common 

omitted error of the fit propagates with daily recurrence and is not explained by the available 

variables, stressing the findings of the previous section and again pointing to PBL-related 

errors.

However, since we are not in a position to estimate the errors associated with PBL variables 

(radiation, temperature, turbulence), an alternate approach is to filter out the diurnal process 

from the modelled and observed time series and repeat the analysis based on Eq. (3) (Figs. 

S16 and S17). The correlation coefficients of the residuals with the diurnal component 

filtered out are reported in Table 3. The collinearity has been largely removed, especially for 

NA, while for EU some strong correlation persists (ΔNO2 and ANO, and between ΔWS and 

ΔTemp in winter).

The R2 of the regression for the “no-DU” case drops drastically in NA, while keeping 

approximately the same values in EU (but in EU3 R2 does not exceed 0.10; not shown) as 

shown in Figs. S16 and S17. Moreover, this analysis and its comparison to the results 

presented in earlier sections lead to the following conclusions:

– A strong daily error component is common to all variables investigated here.

– This error manifests itself in the correlation coefficient and thus is due to a 

variance/covariance type of error (otherwise, if it was a bias-type error, the R2 

would have been similar between the analysis of the signal with and without the 

diurnal component).

– By inspecting the “no-DU” case, at least in NA (Fig. S16), the bias error 

discussed in Sect. 3 cannot be explained simply in terms of the fields NO2, 

Temp, and WS. Hence, the bias of the CMAQ model over the NA continent 

appears to be associated with processes with longer timescales (i.e. longer than 

daily), such as boundary conditions (inducing mostly bias error, as discussed in 

Sect. 3), deposition, and/or transport (potential systematic errors in wind 

direction, for example, would likely produce a bias-type error).

– The impact of ANO2 and ANO in EU (all subregions, mostly daylight) and of 

AWS in EU1 (and partially EU2) on the error of ozone (not shown) is similar 

with and without the diurnal fluctuations, indicating cross correlation of these 

error fields for periods longer than 1 day.

5 Discussions

The application of several diagnostic techniques in conjunction with sensitivity scenarios has 

allowed in-depth analysis of the timescale properties of the ozone error of CMAQ and 
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Chimere, two widely applied modelling systems. The main results, as stemming from 

various aspects of the investigation, are that the largest share of MSE (~70–85 %) is 

associated with fluctuations longer than the daily scale and mostly due to offsetting error in 

NA and due to covariance error in EU, while the remaining MSE is due to processes with 

daily variation. The causes of the long-term error need to be sought in the fields that produce 

(mainly) a bias type of error such as emissions, boundary conditions, and deposition for NA, 

while the time shift of the slow fluctuations in EU is possibly due to timing error of the 

synoptic drivers or other synoptic processes.

By excluding other plausible causes, and assuming that observational data are “correct” (not 

affected by systematic errors), we can conclude based on multiple indicators that the 

dynamics of the boundary layer (which in turn depend on the representation of radiation, 

surface characteristics, surface energy balance, heat exchange processes, development or 

suppression of convection, shear generated turbulence, and entrainment and detrainment 

processes at the boundary layer top for heat and any other scalars) are responsible for the 

recursive daily error. The most revealing indicator is the analysis of the ACF and PACF of 

the time series of ozone residuals that shows a daily periodicity: the 24 h errors are highly 

associated throughout the year; i.e. the error repeats itself with daily regularity. This could 

be caused by multiple processes occurring on a daily timescale, such as chemical 

transformations, the timing of the emissions, and PBL dynamics. However, analyses of the 

error periodicity of primary species (to exclude the role of chemical transformations) and of 

the scenario with zeroed anthropogenic emissions (to exclude the role of emissions) have 

shown the same error structure, pointing to PBL processes as the main cause of daily error.

Due to the spatial aggregation of these analyses and the non-linearity of the models’ 

components, it is possible that the periodicity of the error could be due to a combination of 

multiple processes at specific sites. However, the absence of a spatial or emission 

dependence and the persistence of the daily periodicity indicate that the main cause of the 

daily error stems from PBL dynamics. Furthermore, the analogies of the time shift of the 

diurnal component of the base and zeroed emission cases suggest that the timing error (pure 

covariance error) is not caused by anthropogenic emissions (with the possible exception of 

winter in NA where some small differences are present).

6 Conclusions

This study is part of the goal of AQMEII to promote innovative insights into the evaluation 

of regional air quality models. This study is primarily meant to introduce evaluation methods 

that are innovative and that move towards diagnosing the causes of model error. It focuses on 

the diagnostic of the error produced by CMAQ and Chimere applied to calculate hourly 

surface ozone mixing ratios over North America and Europe.

We argue that the current widespread practice (although with several exceptions) of using 

time-aggregate metrics to merely quantify the average distance (in a metric space) between 

models and observations has clear limitations and does not help target the causes of model 

error. We therefore propose to move towards the qualification of the error components (bias, 

variance, covariance) and to assess each of them with relevant diagnostic methods. At the 
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core of the diagnostic methods we have devised over the years within AQMEII is the quality 

of the information that can be extracted from model and measurements to aid understanding 

of the causes of model error, thus providing more useful information to model developers 

and users than can be gained from aggregate metrics. Applying such approaches on a routine 

basis would help boost the confidence in using models prediction for various applications. 

At the current stage, the methods we propose help identify the timescale of the error and its 

periodicity. The step to link the error to specific processes can only be reached by integrating 

the analysis with sensitivity model runs. For instance, we can infer that the timing error of 

the diurnal component is (at least partially) associated with the dynamics of the PBL, but 

further analyses are necessary to isolate the components of the PBL responsible for that 

error.

While remarking that the analyses carried out are not meant to compare the two models but 

are rather meant to show how the two models, applied to different areas and using different 

emissions, respond to changes, the main conclusions of this study are as follows:

– While the zeroing/modification of input of ozone from the lateral boundaries 

causes a shift of the ozone diurnal cycle in both CMAQ and Chimere, the 

response of the two models to a modification of anthropogenic emission and 

deposition fluxes is very different. For CMAQ, the effect of removing 

anthropogenic emissions causes a shift and a flattening of the diurnal curve (bias 

and variance error), while for Chimere the effect is restricted to a shift. In 

contrast, setting the ozone dry deposition velocity to zero causes a shift (bias 

error) for CMAQ, while a profound change of the error structure occurs for 

Chimere with significant impacts on not only the bias but also the variance and 

covariance terms.

– The response of the models to variations in anthropogenic emissions and 

boundary conditions show a pronounced spatial heterogeneity, while the 

seasonal variability of this response is found to be less marked. Only during the 

winter season does the zeroing of boundary values for North America produce a 

spatially uniform deterioration of the model accuracy across the majority of the 

continent.

– Fluctuations slower than ~1.5 days account for 70–85% of the total ozone 

quadratic error. The partition of this error into bias, variance, and covariance 

depends on season and region. In general, the CMAQ model suffers mostly from 

bias error (model overestimation during summer and underestimation during 

winter), while the Chimere model is rather “centred” (i.e. almost unbiased) but 

suffers high covariance error (associated with the timing of the signal and thus 

likely to synoptic drivers).

– A recursive, systematic error with daily periodicity is detected in both models, 

responsible for 10–20 % of the quadratic total error, possibly associated with the 

dynamics of the PBL.

– The modelled ozone daily peak accurately reproduces the observed one, 

although with significant exceptions in France, Italy, and Austria for Chimere 
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and with the exceptions of Canada and some areas in the eastern US for CMAQ. 

Assuming the accurateness of the observational data in these regions, the 

modelled peak is anticipated by up to 6 h, causing a covariance error as large as 

9ppb. The analysis suggests that the timing of the anthropogenic emissions is not 

responsible for the phasing error of the ozone peaks but rather indicates that it 

might be caused by the dynamics of the PBL (although the role of biogenic 

emissions and chemistry cannot be ruled out).

– The ozone error in CMAQ has a weak/negligible dependence on the error of 

NO2 and wind speed, while the error of NO2 impacts significantly the ozone 

error produced by Chimere. On timescales longer than 1.5 days, the Chimere 

ozone error is significantly associated with the error of wind speed and 

temperature.

Although having exploited several evaluation frameworks over the past 10 years within 

AQMEII (operational, diagnostic, and probabilistic) the goal of clearly associating errors to 

processes has not yet been achieved. As already suggested in the conclusions of the 

collective analysis of the AQMEII3 suite of model runs summarised by Solazzo et al. 

(2017), future model evaluation activities would benefit from incorporating sensitivity 

simulations and process specific analyses that help to disentangle the non-linearity of the 

many model variables, possibly by focusing on smaller modelling communities. The “theory 

of evaluation” being put forward by the hydrology modelling community (Nearing et al., 

2016, and references therein) may provide a template for the air quality community to 

further advance their model evaluation approaches.

Data availability.

The modeling and observational data generated for the AQMEII exercise are accessible 

through the ENSEMBLE data platform (http://ensemble.jrc.ec.europa.eu/) upon contact with 

the managing organizations. References to the repositories of the observational data used 

have been provided in Sect. 2.1.
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Appendix A

The ACF is derived by the autocovariance (ACV) and expresses the correlation of a time 

series with its lagged version (e.g. Chatfield, 2004):

ACV(k) =  E [X t − μ][X t + k − μ]
= Cov X t X t + k ;

ACF k = ACV k /ACV 0 .

At any lag k, the ACV coefficients ck are given by

ck = 1
N ∑

t = 1

N − k
(xt − x)(xt + k − x) .

As usual, the autocorrelation coefficients are given by normalising ck with c0.

The PACF measures the excess of correlation between two elements of X(t) lagged by s 
elements not accounted for by the autocorrelation of the intermediate s-1 elements. In other 

words, the ACF of X(t) and X(t+s) includes all the linear dependence between the 

intermediate s - 1 lags. The PACF allows us to investigate the direct effect of lag t on the lag 

t +s.

The advantage of using ACFs and PACFs is that they are a function of the lag k only (and 

not of the specific time t). This condition holds only if X (t) is stationary (i.e. its mean and 

variance do not change over time). Several tests are available to check X (t) for stationarity 

(e.g. Chatfield, 2004). Differencing the time series is typically a way to achieve stationarity.
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Figure 1. 
Continental domains and subregions used for analysis. The networks of ozone receptors are 

also shown.
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Figure 2. 
Average monthly (column a) and diurnal curves (column b) constructed from the January-

December 2010 time series of hourly ozone observations and model simulations for three 

North American subregions.
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Figure 3. 
Average monthly (column a) and diurnal curves (column b) constructed from the January-

December 2010 time series of hourly ozone observations and model simulations for three 

European subregions.
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Figure 4. 
MSE decomposition for June-August hourly ozone into bias, variance, and covariance for 

the three North American (NA) subregions. Results are presented separately for daylight 

hours (a) and nighttime hours (b).
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Figure 5. 
MSE decomposition for June-August hourly ozone into bias, variance, and covariance for 

the three EU subregions (the zero dep data refers to the month of July only). Results are 

presented separately for daylight hours (a) and nighttime hours (b).
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Figure 6. 
CMAQ MSE breakdown for summer and winter for the base case (hourly time series of 

ozone) over NA. The error coefficients Fb, Fv, and Fc are reported on the left axis and the 

total MSE (ppb2) on the right axis (red triangles). The + and — signs within the bias and 

variance portions of the errors indicate model over- and underprediction of mean 

concentration or variance, respectively. The values in the covariance portion indicate the 

correlation coefficient between modelled and observed time series. Results are provided 

separately for daytime and nighttime.
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Figure 7. 
As in Fig. 6 for the hourly time series of “20 % reduction” scenario.
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Figure 8. 
As in Fig. 6 for the hourly time series of “zeroed anthropogenic emissions” scenario.
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Figure 9. 
As in Fig. 6 for the hourly time series of the “zeroed boundary conditions” scenario.
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Figure 10. 
As in Fig. 6 for the rolling average daily maximum 8 h ozone time series.
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Figure 11. 
Chimere MSE breakdown for summer and winter for the base case (hourly time series of 

ozone) and sensitivity simulations over EU. The error coefficients Fb, Fv, and Fc are reported 

on the left axis, the total MSE (ppb2) on the right axis (red triangles). The + and — signs 

within the bias and variance portions of the errors indicate model over- and underprediction 

of mean concentration or variance, respectively. The values in the covariance portion 

indicate the correlation coefficient between modelled and observed time series. Results are 

provided separately for daytime and nighttime.
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Figure 12. 
As in Fig. 11 for the hourly time series of “20 % reduction” scenario
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Figure 13. 
As in Fig. 11 for the hourly time series of “zeroed anthropogenic emissions” scenario.
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Figure 14. 
As in Fig. 11 for the hourly time series of the “constant boundary conditions” scenario.
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Figure 15. 
As in Fig. 11 for the rolling average daily maximum 8 h ozone time series.
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Figure 16. 
(a, b) Spatial maps of RMSE (in ppb) for the base case. (c, d) Percentage RMSE changes for 

the zeroed emissions case with respect to the base case. (e, f) Percentage RMSE changes for 

the zeroed boundary condition case with respect to the base case. (a, c, e) Winter months 

(DJF); (b, d, f) summer months (JJA).
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Figure 17. 
(a, b) Spatial maps of RMSE (in ppb) for the base case. (c, d) Percentage RMSE changes for 

the zeroed emissions case with respect to the base case. (e, f) Percentage RMSE changes for 

the constant boundary condition case with respect to the base case. (a, c, e) Winter months 

(DJF); (b, d, f) summer months (JJA).
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Figure 18. 
Annual time series of differences between CMAQ and observed O3 (ΔO3, top portion of 

each panel) and Morlet wavelet analysis of the periodogram of ΔO3 (lower portion of each 

panel) for the three NA subregions. Black contours lines identify the 95 % confidence 

interval. The period (in days) is reported in the vertical axis, while the quantiles of the power 

spectral density are measured in ppb2. (The scale reports the quantiles of the power 

spectrum.)
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Figure 19. 
Same as in Fig. 18 for Chimere over the three EU subregions.
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Figure 20. 
CMAQ model: autocorrelation (ACF) and partial autocorrelation (PACF) functions for the 

differenced time series of residuals of ozone (model-observations). The differentiation is 

necessary to remove non-stationarity and thus to convey the ACF and PACF values 

depending on lag only.
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Figure 21. 
As in Fig. 20 for the differenced time series of residual of ozone obtained by filtering out the 

diurnal fluctuations from the modelled and observed time series.
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Figure 22. 
Chimere model: autocorrelation (ACF) and partial autocorrelation (PACF) functions for the 

differenced time series of residuals of ozone (model-observations). The differentiation is 

necessary to remove non-stationarity and thus to convey the ACF and PACF values 

depending on lag only.
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Figure 23. 
As in Fig. 22 for the differenced time series of residual of ozone obtained by filtering out the 

diurnal fluctuations from the modelled and observed time series.
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Figure 24. 
Phase shift of the diurnal cycle (in hours). A positive phase shift indicates that the model 

peak is “late”, while a negative phase shift indicates that the modelled peak precedes the 

observed peak. This analysis includes urban and suburban stations in addition to rural 

stations.
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Figure 25. 
As in Fig. 24 for EU.
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Figure 26. 
Normalised MSE produced by lagging the observed diurnal cycle with respect to itself. The 

MSE due to such a shift is entirely due to covariance error. The plots are presented for EU2 

(b, d) and NA2 (a, c) for the months of JJA. Panels (a, b) shows the impact of the phase shift 

on the DU component, and (c, d) show results for the undecomposed time series (FT). For 

EU2, a shift of ±3 h causes an MSE of ~ 0.5 times the variance of the observations
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Figure 27. 
Percentage of variance explained by the regressors (the total R2 for the regression is reported 

in the title of each panel). The relative importance of each variable is assessed by using a 

bootstrap resampling. The plots at the bottom show the ACF and PACF of the yearly time 

series of residual of the fit, i.e. the portion of the ozone time series that was not captured by 

the linear regressions on the available variables. The analysis encompasses 47 co-located 

stations (the NA stations for ozone, NO2, WS, and Temp that fall in a radius of 1000 m and 

vertical displacement less than 250 m).
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Figure 28. 
Same as Fig. 27 for EU. The analysis encompasses 61 co-located stations (the EU stations 

for ozone, NO, NO2, WS, and Temp that fall in a radius of 1000 m and vertical 

displacement less than 250 m).
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