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Organic compounds and liquid water are major aerosol constituents in the southeast United States 

(SE US). Water associated with inorganic constituents (inorganic water) can contribute to the 

partitioning medium for organic aerosol when relative humidities or organic matter to organic 

carbon (OM/OC) ratios are high such that separation relative humidities (SRH) are below the 

ambient relative humidity (RH). As OM/OC ratios in the SE US are often between 1.8 and 2.2, 

organic aerosol experiences both mixing with inorganic water and separation from it. Regional 

chemical transport model simulations including inorganic water (but excluding water uptake by 

organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH > 

SRH led to increased SOA concentrations,· particularly at night. Water uptake to the organic phase 

resulted in even greater SOA concentrations as a result of a positive feedback in which water 

uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol 

properties· such as the OM/OC and hygroscopicity parameter (κorg), were captured well by the 

model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 

2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble 

semivolatile species in the model, but most biogenically derived semivolatile species in the 

Community Multiscale Air Quality (CMAQ) model were highly water soluble and expected to 

contribute to water-soluble organic carbon (WSOC). Organic aerosol and SOA precursors were 

abundant at night, but additional improvements in daytime organic aerosol are needed to close the 

model–measurement gap. When taking into account deviations from ideality, including both 

inorganic (when RH > SRH) and organic water in the organic partitioning medium reduced the 

mean bias in SOA for routine monitoring networks and improved model performance compared to 

observations from SOAS. Property updates from this work will be released in CMAQ v5.2.

1 Introduction

Water is a ubiquitous component of atmospheric aerosol (Nguyen et al., 2016), which can 

interact with organic compounds in a number of ways to influence particulate matter (PM) 

mass and size, human health, and Earth’s radiative balance. While constituents such as 

sulfate and nitrate often drive aerosol water concentrations, inorganic and organic 

compounds are internally mixed under humid conditions (You et al., 2013), and hydrophilic 

organic compounds promote the uptake of water (Saxena et al., 1995). Uptake of water into 

the organic phase increases particle size, making particles more effective at interacting with 

radiation (Chung and Seinfeld, 2002), obscuring visibility (Lowenthal and Kumar, 2016), 

and forming clouds (Novakov and Penner, 1993). Water can serve as a medium for 

partitioning of soluble (Carlton and Turpin, 2013; Pun et al., 2002) and semivolatile (Chang 

and Pankow, 2010; Pankow and Chang, 2008; Seinfeld et al., 2001) gases, thus contributing 

to particulate matter concentrations. Once in the particle phase, organic compounds can 

participate in water-mediated reactions such as hydrolysis, driving isoprene epoxydiol 

uptake to the particle (Surratt et al., 2010; Pye et al., 2013) and loss of gas-phase organic 

nitrates (Fisher et al., 2016).

Organic-aerosol-water interactions have been examined in a number of laboratory and field 

studies, and results are mixed. The lack of a consistent relationship in laboratory work may 

be partially due to experimental conditions such as high mass loadings that minimize the 

effect of water for semivolatile systems (Pankow and Chang, 2008). Laboratory studies have 

Pye et al. Page 2

Atmos Chem Phys. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



observed no significant change in yield with increasing relative humidity (RH) (Edney et al., 

2000; Boyd et al., 2015), enhanced yields under dry conditions (Zhang et al., 2011), and 

higher yields with increasing aerosol water (Wong et al., 2015) depending on the precursor, 

oxidant, and seed. Trends in ambient aerosol organic carbon are consistent with the trend in 

decreasing aerosol water in the southeast US (Nguyen et al., 2015b), and Hennigan et al. 

(2008) observed episodic correlations of water-soluble organic carbon and water vapor. 

However, Hennigan et al. (2008) found no well-defined relationship over the entire summer 

in Atlanta, GA, and organic aerosol was not correlated with liquid water content in 

Pittsburgh, PA (Griffin et al., 2003). Saxena et al. (1995) found that the presence of organic 

compounds suppressed aerosol water in urban locations. In the atmosphere, the relative roles 

of different secondary organic aerosol (SOA) species change as a function of time and space, 

and each species may have a different sensitivity to aerosol water.

The interaction of primary organic aerosol (POA), SOA from low-volatility and semivolatile 

(Ci* < 3000 μgm−3) compounds, SOA from aqueous pathways, and the inorganic/water-rich 

phase is important for the concentration of organic aerosol (OA) as partitioning is a function 

of the availability of an absorptive medium. Current chemical transport models, including 

the Community Multiscale Air Quality (CMAQ) model (Carlton et al., 2010), consider SOA 

to be exclusively or dominantly formed via condensation of organic compounds in the 

absence of water. Individual model studies have examined hydrophobic and hydrophilic 

SOA through semi-mechanistic algorithms and surrogate structure information. Pun et al. 

(2002) used a decoupled approach in which organic species partitioned only to their 

dominant phase (aqueous vs. organic). Griffin et al. (2003) allowed compounds to partition 

to both phases in varying amounts based on their properties. Jathar et al. (2016) examined 

the implications of water uptake to the organic phase and the effects on OA concentrations. 

Pun (2008) allowed organic compounds to interact with water and separate into two phases 

if thermodynamically favorable. None of these approaches considered mixing of the 

inorganic and organic phases and often required computationally intensive calculations of 

activity coefficients. These models accounting for aerosol-water-organic interactions are not 

in widespread use and have not been evaluated with recently available observations of 

aerosol water.

Figure 1 shows the contribution of POA and water-soluble OA (determined from water-

soluble organic carbon, WSOC; Sullivan et al., 2004) to total OA as observed during the 

Southern Oxidant and Aerosol Study (SOAS) for June 2013 in Centreville, AL. Ambient 

measurements of WSOC are highly correlated with oxygenated organic aerosol (OOA) 

(Kondo et al., 2007), and water-soluble OA accounted for 90% of total OA on average in the 

southeast US during summer 2013 (Washenfelder et al., 2015). WSOC has also been 

proposed to contain SOA from aqueous pathways with evidence for reversible (El-Sayed et 

al., 2015) and irreversible (El-Sayed et al., 2016) formation. CMAQ tends to overpredict the 

concentration of POA by almost a factor of 2 during SOAS (Pye et al., 2015). CMAQ 

predicts a relatively minor role for aqueous OA with the dominant source of OA in CMAQ 

being dry processes (other SOA in Fig. 1).
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Through a series of sensitivity simulations (outlined in Sect. 2.1), this work aims to 

understand if interactions of aerosol water with semivolatile compounds can resolve model-

measurement discrepancies and to what degree OA predicted by models should be classified 

as water soluble. Semiempirical SOA in the CMAQ model (Sect. 2.2) was connected to a 

consistent set of properties useful for predicting atmospherically relevant behavior such as 

interaction with aerosol water. In cases where a specific molecular species was not already 

used as a surrogate, aerosol properties were linked to volatility and parent hydrocarbon 

(Sect. 2.3). These quantities allowed molecular weights, organic matter to organic carbon 

(OM / OC) ratios, Henry’s law coefficients, deposition properties, hygroscopicity (κi), phase 

separation (Sect. 2.4), water uptake (Sect. 2.5), and deviations from ideality (Sect. 2.7) to be 

predicted semiempirically and influence partitioning (Sect. 2.6). In addition, the fraction 

WSOC was estimated for model species (Sect. 2.8), and primary vs. secondary organic 

aerosol was estimated for monitoring networks (Sect. 2.9). The property updates will be 

available in CMAQ v5.2, and their effects on model predictions are illustrated in Sect. 3.1. 

The implications of the updates for OA and particle-phase liquid water content (LWC) are 

examined in the context of routine monitoring networks and Southern Oxidant and Aerosol 

Study (SOAS) observations (Sect. 3.2).

2 Method

2.1 Simulations

CMAQ v5.1 (Appel et al., 2016) with additional updates was run over the eastern United 

States for June 2013 at 12 km by 12 km horizontal resolution using the same domain and 

meteorological inputs as in the work of Pye et al. (2015). Anthropogenic emissions were 

based on the EPA National Emission Inventory (NEI) 2011 v1. Isoprene emissions were 

predicted with the Biogenic Emission Inventory System (BEIS) v3.6.1 (Bash et al., 2016). 

BEIS often predicts lower emissions than the Model of Emissions of Gases and Aerosols 

from Nature (MEGAN) (Carlton and Baker, 2011), and isoprene emissions were increased 

by 50% in this work to better agree with observations of isoprene and OH at the SOAS 

Centreville, AL (CTR), site (Fig. S1 i-h in the Supplement).

A baseline simulation including surrogate property updates detailed in Sect. 2.3 (molecular 

weight, Henry’s law coefficients, etc.) and three sensitivity simulations examining the 

implications of aerosol liquid water for SOA were conducted (Fig. 2). In the baseline 

simulation, POA and traditional SOA were designated hydrophobic and did not interact with 

aerosol water or SOA produced through aqueous pathways following common chemical 

transport model assumptions. Two sensitivity simulations examined the implications of 

aerosol water on semivolatile partitioning via increases in the partitioning medium assuming 

ideal mixing. In one simulation (ideal Wi), POA, traditional SOA, aqueous SOA, and water 

associated with inorganic constituents were assumed to form one ideal phase when RH was 

above the separation relative humidity (SRH) and to undergo liquid- liquid phase separation 

into organic-rich (POA and traditional SOA) and water-rich (aqueous SOA and inorganic 

constituents) ideal phases otherwise. When one phase was predicted to be present (SRH < 

RH), interactions of semivolatile organic compounds and inorganic water were assumed to 

be ideal. When phase separation occurred, semivolatile organic compounds did not interact 
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with water. In the second simulation, uptake of water to the organic phase (Wo > 0) was 

predicted based on its OM / OC and κ-Köhler theory (petters and Kreidenweis, 2007) (Sect. 

2.5). Thus, ideal Wi and Wo > 0 simulations are meant to capture the effects of inorganic and 

organic water under ideal conditions separately. The impacts of phase separation and water 

uptake to organic species along with deviations from ideality determined via an activity 

coefficient (γ) were simulated together in the third sensitivity simulation (γ ≠ 1).

2.2 CMAQ organic aerosol

CMAQ v5.1 contains several types of SOA with different sensitivities to aerosol water: 

traditional semivolatile SOA from Odum two-product representations, nonvolatile SOA 

produced by volatile organic compound (VOC) reaction, heterogeneously produced SOA 

parameterized by an uptake coefficient, semivolatile organic nitrate SOA and its hydrolysis 

product, and other contributions from cloud processing and accretion/oligomerization 

reactions (Fig. 3, Table 1). The traditional SOA systems in CMAQ include SOA from 

isoprene, monoterpenes, sesquiterpenes, benzene, toluene, xylene, alkanes, and polycyclic 

aromatic hydrocarbons (PAHs) (Carlton et al., 2010; Pye and Pouliot, 2012). The 

semivolatile SOA from these precursors is allowed to oligomerize to a nonvolatile form on a 

29 h timescale (Carlton et al., 2010). Currently, low-NOx oxidation of aromatics leads to 

nonvolatile SOA in the traditional systems. Glyoxal (GLY), methylglyoxal, and epoxides 

undergo heterogeneous uptake to form SOA (Pye et al., 2013, 2015). Glyoxal SOA forms 

using a fixed uptake coefficient of 0.0029 (Liggio et al., 2005). Following the approach of 

Marais et al. (2016), methylglyoxal’s uptake coefficient was scaled to the glyoxal uptake 

coefficient by the relative Henry’s law coefficient (resulting in an uptake coefficient of 2.6 × 

10−4) in this work. Isoprene epoxydiol (IEPOX) SOA is parameterized with an uptake 

coefficient calculated as a function of aerosol phase constituents, including sulfate and water 

assuming an acid-catalyzed mechanism (Pye et al., 2013). In this work, the IEPOX 

organosulfate formation rate constant was updated to 8.83 × 10−3M−2s−1 using the ratio of 

2-methyltetrol to organosulfate formation rate constants from Piletic et al. (2013) and a 2-

methyltetrol rate constant of 9 × 10−4M−2s−1 (Eddingsaas et al., 2010). This organosulfate 

rate constant is more aggressive (overall and relative) than predicted by Riedel et al. (2016). 

Overestimates of the organosulfate in the model may compensate for missing IEPOX-

derived SOA species such as C5-alkene triols (Surratt et al., 2010) or additional oligomers 

(Lopez-Hilfiker et al., 2016). In addition, the Henry’s law coefficient was updated to 3.0 × 

107Matm−1 (Nguyen et al., 2014a), which improved model predictions of 2-methyltetrols 

(Supplement) and total isoprene SOA. The diffusivity of IEPOX in the particle (Da, cm2 s−1) 

was predicted by fitting a line through the data in the work of Song et al. (2015) resulting in

Da = 10(7.18RH − 12.7) (1)

for 0≤RH≤1. Semisolid organic aerosol (Da < 10−12 cm2s−1) is not expected in the humid 

eastern US during summer (Pajunoja et al., 2016). SOA from latergeneration high-NOx/

high-NO2 SOA species (methacrylic acid epoxide and hydroxymethyl-methyl-α-lactone) is 

relatively minor (Pye et al., 2013; Marais et al., 2016), consistent with observations from 

SOAS ground sites (Budisulistiorini et al., 2015). All SOA produced through heterogeneous 
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uptake is assumed to be nonvolatile in CMAQ v5.1. SOA from isoprene and monoterpene 

organic nitrates is semivolatile, but the nitrate groups hydrolyze in the particle to produce 

SOA, which is assumed to be nonvolatile, and nitric acid (Pye et al., 2015). SOA from cloud 

processing is predicted to result in less than 3% of total organic aerosol in CMAQ. POA and 

volatility-based SOA is treated as hydrophobic by default, while aqueous and in-cloud SOA 

is assumed to be hydrophilic and resides in a water-rich phase (CMAQv5.1 aero6i 

assumptions; Table 1).

2.3 Updating properties of semivolatiles

2.3.1 Molecular properties—For SOA systems, the molecular weight and OM / OC by 

mass must be specified for mass-to-molecule number unit conversions within CMAQ and to 

allow for post-processing of organic carbon (OC) from total SOA for comparison to 

observations. The number of carbons per molecule (nC) is also specified for the traditional 

semivolatile systems to allow for oligomerization to conserve carbon (Carlton et al., 2010). 

Historically, in CMAQ model formulations (v5.1 and prior), the nC, saturation concentration 

(Ci*), and OM/OC were set independently with the OM / OC obtained from chamber 

experiments and nC set to that of the parent hydrocarbon. The molecular weight was 

calculated to be consistent with the number of carbons and OM / OC. The OM / OC values 

were not a function of volatility or peroxy radical (RO2) fate. Thus, all SOA species from a 

given parent hydrocarbon were assumed to have the same properties (OM / OC, molecular 

weight, number of carbons) regardless of their volatility. When viewed in the O: C vs. Ci*

space (Baker et al., 2015), this leads to some apparent contradictions such as sesquiterpene 

SOA being more functionalized and having a longer carbon backbone at a given vapor 

pressure than isoprene or monoterpene SOA. This inconsistency is also seen in the 

molecular weight vs. Ci* space (Fig. 4). Most SOA constituents are expected to show that 

molecular weight is correlated with vapor pressure (Ci*) with more functionalized species 

having a shallower slope than less functionalized species (Shiraiwa et al., 2014). Systems 

examined by Shiraiwa et al. (2014) were found to reside between a line characteristic of O: 

C = 0 (alkane, CnH2n+2) and O: C = 1 (sugar, CnOnH2n-2). Sesquiterpene SOA in CMAQ 

v5.1 resides outside the molecular corridor bounds that correspond to O: C = 0 (OM / 

OC=1.17) and O: C = 1 (OM / OC = 2.3 to 2.5). The CMAQv5.1 Odum two-product 

isoprene SOA components imply an O: C > 1 (which is possible, but not observed by 

Shiraiwa et al., 2014, and infrequent in the work of Chen et al., 2015).

Structure-activity relationships or group contribution methods can be used to relate vapor 

pressure, molecular weight, and OM / OC (or molar O: C). Donahue et al. (2011) developed 

a relationship between the saturation concentration of a pure species (Ci* = C0, i* ), number of 

carbons per molecule, and number of oxygens per molecule (nO) ignoring sulfate and nitrate 

for use with the 2-D volatility basis set (VBS):

log10C0, i* = 0.475(25 − nC) − 2.3nO + 0.6nCnO/(nC + nO) . (2)
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Built into this relationship are assumptions about the functionality of semivolatile organic 

compounds (specifically equal alcohols and ketones with acid terminal groups), the volatility 

of a 25 carbon alkane (Ci*= 1 μg m−3), and how a given functional group affects volatility 

(from the SIMPOL model; Pankow and Asher, 2008). Note that considerable variability in 

atmospheric aging exists in terms of the addition of functional groups as indicated on van 

Krevelen diagrams (Chen et al., 2015). The number of oxygen is related to the molar O: C 

by

nO = nC(O:C) . (3)

O: C can be related to the mass-based OM / OC (Simon and Bhave, 2012):

O:C = 12
15

OM
OC − 14

15, (4)

which assumes only H, O, and C atoms and produces results consistent with aerosol mass 

spectrometry (AMS)-determined relationships between O: C and OM / OC (Cana-garatna et 

al., 2015). OM / OC was the focus of this work instead of O: C since OM / OC values are 

directly used to postprocess model output for comparison to observation network 

measurements of OC. In addition, OM / OC ratios are a useful quantity in reconstructing the 

total mass of PM and could be available routinely from the Interagency Monitoring of 

Protected Visual Environments (IMPROVE) network in the future using Fourier transform 

infrared spectroscopy (FTIR) analysis (Ruthenburg et al., 2014). The molecular weight (M) 

follows as

Mi = 12nC
OM
OC . (5)

Equations (2) to (5) provide four equations for six unknowns: nC, nO, O:C, OM / OC, Ci*, 

and Mi. Ci* was obtained from the Odum two-product fits (Odum et al., 1996) derived from 

laboratory data (Carlton et al., 2010; Pye and Pouliot, 2012) and nC was set to that of the 

parent hydrocarbon. The OM / OC and molecular weight were then calculated. nO and O: C 

were not needed for CMAQ (but could be easily obtained). Pankow et al. (2015) undertook a 

similar exercise in which they developed surrogates for each of the CMAQ v5.0 SOA 

species using SIMPOL and plausible structures. Their information was used when available, 

and Eqs. (2) to (5) were employed otherwise. For the systems on which Pankow et al. (2015) 

provide information, the results based on Eqs. (2) to (5) are very similar. For SOA from the 

explicit later-generation precursors (such as IEPOX, isoprene dinitrates, and monoterpene 

nitrates), the molecular properties were already tied to a specific surrogate identity. The 

CMAQ SOA species representing actual compounds were not updated.
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2.3.2 Deposition properties—The deposition-related properties of gases, such as their 

solubility, diffusivity, and reactivity, are related to molecular structure and composition. 

CMAQ uses a resistance in series method for dry deposition (Pleim and Ran, 2011). CMAQ 

v4.7 through v5.1 use adipic acid (Henry’s law coefficient, H = 2 × 108 M atm−1) as a wet 

deposition surrogate for gas-phase semivolatile organic compounds (SVOCs). Default dry 

deposition of SVOCs is based on acetic acid (H = 4.1 × 103 exp(63000 K(298 - T)/(298T))M 

atm−1; gas-phase diffusivity (Dg) =0.0944 cm2 s−1; dry articular resistance = 1200 s m−1; 

LeBas molar volume = 63 cm3 mol−1).

Hodzic et al. (2014) used the Generator of Explicit Chemistry and Kinetics of Organics in 

the Atmosphere (GECKO) to predict products from various SOA systems commonly 

represented in models. Henry’s law coefficients were then estimated based on the GROup 

contribution Method for Henry’s law Estimate (GROMHE) (Raventos-Duran et al., 2010). 

GROMHE was found to reproduce Henry’s Law coefficients for organic-water systems with 

a mean absolute error of about 0.3 log units compared to 0.5 for HenryWin and 0.4 for 

SPARCv4.2 (SPARC Performs Automated Reasoning in Chemistry; Raventos-Duran et al., 

2010). For SOA systems, a strong relationship was observed between saturation 

concentrations and Henry’s law coefficients, with chemically aged species being less 

volatile, more functionalized, and more soluble than their parent hydrocarbon. Although the 

relationship between H and Ci* was relatively robust, variability in H spanned many orders 

of magnitude for a given Ci* bin without considering how inorganic species may modify the 

Henry’s law coefficient. The relationships derived by Hodzic et al. (2014) were used to 

predict the Henry’s law coefficients as a function of Ci* for each SVOC surrogate in 

equilibrium with the particle in the model. An enthalpy of solvation of 50 kJ mol−1 was also 

adopted to adjust the Henry’s law coefficients for temperature. Note that although the 

approach used by Hodzic et al. (2014) is also a group contribution method, it potentially 

represents the functional groups present in CMAQ SOA species with different groups than 

would be assumed by Eqs. (2)–(5).

Additional properties needed for deposition include the gas-phase diffusion coefficient, 

which was calculated as a function of molecular weight via Dg,i = 1.9(Mi)
−2/3 cm2s−1 

(Schnoor, 1996), and the LeBas molar volume (VLeBas), calculated assuming ring-opened 

products (Mackay et al., 1993):

VLeBas = 14.8nC + 7.4nO + 3.7nHcm3mol−1, (6)

where the number of hydrogens, nH, is calculated from the molecular weight assuming only 

carbon, oxygen, and hydrogen. Modifications were also made to the deposition parameters 

affecting H2O2, IEPOX, and organic nitrates to produce results consistent with Nguyen et al. 

(2015a) (parameters available in the Supplement).
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2.4 Predicting phase separation

The solubility of an organic compound in water generally decreases due to the addition of a 

salt with some exceptions, like glyoxal (Kampf et al., 2013). However, as atmospheric 

aerosols contain water, salts, and organic compounds, there are likely conditions where the 

solubility of an organic is more or less favorable in the water-inorganic- rich phase. Mixed 

organic-inorganic solutions have been observed to phase-separate into an organic-rich and 

inorganic- rich phase based on their degree of functionalization (as measured by O: C) and 

relative humidity. The O: C serves as a proxy for molar polarization, which dictates the 

magnitude of the salting-out effect through the Setchenov equation (Bertram et al., 2011). 

The relative humidity above which a single combined phase exists is called the separation 

relative humidity. The SRH is not expected to be a strong function of the organic-to-

inorganic ratio (Bertram et al., 2011; You et al., 2013), molecular weight of the organic 

species, or temperature between 244 and 290 K (You and Bertram, 2015). However, the 

SRH is a function of the type of salt present, with ammonium sulfate having higher SRH 

(and less frequent mixing) than ammonium bisulfate, sodium chloride, and ammonium 

nitrate for a given O: C. During SOAS, inorganic aerosol was dominated by (NH4)2SO4 and 

NH4HSO4, and SRH was diagnosed in CMAQ based on the You et al. (2013) experimental 

results for ammonium sulfate. The relationship for SRH (fraction between 0 and 1) as a 

function of O: C was recast in terms of OM / OC:

SRH = 1 + exp 7.7OM
OC − 15.8

−1
. (7)

Since ammonium sulfate has the highest SRH of the salts examined by You et al. (2013), 

choosing another salt would increase the frequency of phase mixing and difference 

compared to the base simulation.

For simulations considering phase separation in CMAQ (ideal Wi and γ ≠ 1), when the 

ambient relative humidity was below the SRH, the model separated the particle into a water-

rich phase (containing aqueous SOA) and an organic- rich phase (containing traditional SOA 

and POA). This separation of aqueous SOA and traditional SOA at low RH is consistent 

with the work of Ye et al. (2016), who found that iso- prene SOA surrogates unfavorably 

interacted with α-pinene SOA even at 60% RH.

2.5 Predicting water uptake to the organic phase

Water uptake to the organic phase (Wo > 0 and γ ≠ 1 simulations) was predicted in CMAQ 

using κ-Köhler theory and solving for the volume-equivalent diameter, D (Petters and 

Kreidenweis, 2007):

RH −
D3 − Dcore

3

D3 − Dcore
3 (1 − κ)

exp
4σwMw
RTρwD = 0 (8)

and
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Dcore = 6
π ∑

i ≠ Wo
V i

1/3

, (9)

where Dcore is the volume (V) equivalent accumulation mode diameter excluding water 

associated with organic species, Mw is the molecular weight of water, ρW is the density of 

water, R is the universal gas constant, T is temperature, and σw is the surface tension of 

water (0.072 J m−2). In order to calculate the volume-equivalent diameters, D and Dcore, 

particle density was needed. Density values in CMAQ v4.7- v5.1 for organic constituents are 

generally on the order of 2000 kg m-3. The densities of organic aerosol species were updated 

to chamber-specific information when available (Ng et al., 2007; Chan et al., 2009) and to 

1400 kg m−3 otherwise. The mass of particle liquid water associated with organic 

compounds per volume of air (Wo) was calculated from

Wo =
πNpρw

6 (D3 − Dcore
3 ), (10)

where Np was number of particles per volume air. Total aerosol water in the model was 

computed as the sum of water associated with inorganics (Wi) calculated with ISORROPIA 

v2.2 (Fountoukis and Nenes, 2007) and Wo.

The hygroscopicity parameter, κ, was calculated as a volume-weighted sum of the individual 

component κi (Petters and Kreidenweis, 2007) ignoring water associated with organics:

κ =
∑i ≠ Wo (κiV i)

∑i ≠ Wo (V i)
. (11)

Cloud condensation nuclei (CCN)-based κS were used following Lambe et al. (2011) due to 

the completeness of that study. The O: C values obtained by Lambe et al. (2011) were 

increased by 27% to account for a low bias in old calibrations (Canagaratna et al., 2015). In 

addition, the relationship was recast in terms of OM / OC, resulting in

κorg, i = 0.11OM
OC − 0.10. (12)

Equations in terms of O: C are available in the Supplement.

For subsaturated conditions, like those relevant to predicting water uptake, the hygroscopic 

growth factor (hgf) κ is most relevant (Pajunoja et al., 2015); however, CMAQ simulations 

used CCN-based κorg,i to predict water uptake. Hgf- based κ s from Duplissy et al. (2011) 

and Raatikainen et al. (2010) were combined with data from Jimenez et al. (2009) into a 

Pye et al. Page 10

Atmos Chem Phys. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



parameterization by Lambe et al. (2011). After correcting the parameterization to use 

updated O: C, the parameterization including hgf-based data resulted in one negative κ and 

three κ s higher than 0.6 (same as ammonium sulfate), which may be an upper limit on 

κorg,i (Ervens et al., 2011). Thus, contrary to the typical trend of κccn > κhgf, more than 

half of the species had κccn < κhgf. Variation from study to study may be higher than κccn 

vs. κhgf variations, which have been found to be within 30% for many compounds and 

unable to be resolved using common measurement techniques (Petters and Kreidenweis, 

2007).

In the processing of model output, the following equation was used to determine how errors 

in the concentration of organic compounds ([OA]), κorg, and RH propagated to errors in Wo:

Wo =
ρw
ρorg

[OA]κorg
1

(1/aw − 1) , (13)

with the activity of water (aw) defined as

aw = RH

exp
4σwMw
RTρwD

. (14)

2.6 Representing the effect of water on semivolatile partitioning

Partitioning of semivolatile organic species into an absorbing medium can be described by a 

modified Raoult’s law (Sein-feld and Pandis, 2006):

Ai/Mp
Gi

= RT
MpγiPi

sat , (15)

where Ai is the aerosol phase concentration of species i (μgm−3air), Giis the gas-phase 

concentration of i (μg m−3 air), Mp is the mass of the partitioning medium (μg m−3 air), Mp
is the molecular weight of the partitioning medium, γi is a mole-based activity coefficient, 

and Pi
sat is the saturation vapor pressure of pure i. This relationship (Eq. 15) is true 

regardless of how the partitioning coefficient (Ci* or κp,i) is defined. CMAQ, following 

Schell et al. (2001), defines Ci* as

Ci* ≡
MiγiPi

sat

RT , (16)

Pye et al. Page 11

Atmos Chem Phys. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



where the relevant molecular weight is the individual species molecular weight in contrast to 

the traditional definition of Pankow (1994), which uses the partitioning medium’s molecular 

weight:

Ci* ′ = 1
Kp, i

≡
MpγiPi

sat

RT . (17)

Model calculations in this work used the definition in Eq. 16 thus:

Ci* =
GiMiN

Ai
, (18)

where the total moles in the partitioning medium (N) are

N = Nother + ∑
i

(Ai/Mi) . (19)

Nother represents aerosol in the partitioning medium that is not semivolatile during 

calculation. Including water in the partitioning medium (either from uptake onto hydrophilic 

organic compounds or from the inorganic phase) increases the moles of partitioning medium 

by contributing to Nother. The inclusion of water, and even inorganic constituents, in the 

absorbing phase has been encouraged for simplified models in order to reproduce more 

detailed calculations (Zuend et al., 2010).

One equation for one unknown can be derived, where Ti is the total (Gi +Ai ) mass of the 

semivolatile determined by the mass-based stoichiometric coefficients and amount of parent 

hydrocarbon reacted (αi ᐃHC):

f (N) = 0 =
Nother

N − 1 + ∑
i

T i
Ci* + MiN

. (20)

Equation 20 was solved for N in the model.

Mp ≈ Mifor the interpretation of data from chamber experiments only, and it allows for 

Ci* ′ ≈ Ci* in a singleprecursor chamber experiment so that the Odum two-product fit can be 

determined. Table 2 indicates this was a realistic assumption for most systems as the two 

surrogate molecular weights vary by less than 10%. This assumption was not necessary 

within the CMAQ model.
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2.7 Estimating solubility and deviations from ideality

When deviations from ideality were considered, the saturation concentration used in the 

modified Raoult’s law was adjusted using an activity coefficient. All organic-organic 

interactions were assumed to be ideal, and only the inclusion of water drove deviation from 

ideality. Observations during SOAS indicate that despite a factor-of-7 change in ambient 

aerosol water concentration from night to day, xw (mole fraction of water in the partitioning 

medium) typically varied over a narrow range (80 to 96% by mole) throughout the day. The 

activity coefficient for each organic species, γi·, was determined using a one-constant 

Margules equation:

ln(γi) = xw
2 ln(γi

∞) . (21)

Since γi
∞ (the temperature-dependent constant in the Mar- gules equation) corresponds to the 

activity coefficient at infinite dilution in water (xw = 1), it can be estimated based on Henry’s 

law combined with Raoult’s law:

γi
∞ =

Miρw
HiC0, i* RTMw

, (22)

where C0, i*  is the pure species saturation concentration at T. γi
∞ is related to solubility (Si) in 

mass per volume of water:

Si = HiC0, i* RT . (23)

The saturation concentration as a function of water becomes

Ci* = C0, i* (γi
∞)

Nw
2 /N2

, (24)

where Nw is the moles of aerosol water in the partitioning medium. This equation applies 

across the entire organic-to- water spectrum and shows that γi
∞ represents Ci* of a species in 

water (xw = 1) normalized to the pure species C0, i* . Evaluating Ci* for pure water provides, 

CH, i* , the saturation concentration at infinite dilution:

CH, i* =
Miρw

HiRTMw
. (25)
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Values are available in Table 2. The solubilities of nonvolatile species derived from 

traditional precursors (oligomers/accretion products) were estimated based on assuming a 

C0, i*  between 10−2 and 10−5 μg m−3and the Henry’s law coefficients of Hodzic et al. (2014).

This representation of deviations from ideality resulted in competing effects due to the 

addition of aerosol water to the partitioning medium. Adding water increased the 

partitioning medium as described in Sect. 2.6, which led to more SOA. However, adding 

water also increased the activity coefficient via the Margules model (Fig. S2), leading to 

higher Ci* and less favorable partitioning (Fig. S3). The Margules model, combined with the 

fact that all deviations are observed to be positive for the species examined here, indicated 

that large additions of water reduced SOA due to the activity coefficient adjustment. Indeed, 

all saturation concentrations for partitioning into pure water (CH, i* ) are higher than those into 

pure organic (C0, i* ) by 1 to 4 orders of magnitude (Table 2). A priori assumptions regarding 

the solubility and activity of monoterpene nitrates were so nonideal that particulate nitrate 

was driven entirely out of the particle, inconsistent with observations (Xu et al., 2015a, b). 

As a result, the Henry’s law coefficient for monoterpene nitrates (MTNO3) was increased by 

a factor of 100 and all activity coefficients were reduced by a factor of 10 compared to a 

priori values in the CMAQ γ ≠ 1 simulation. These adjustments, determined through a series 

of sensitivity simulations, may have been necessary due to inaccuracies in the Henry’s law 

coefficients, effects of inorganics, pure species saturation concentrations, molecular weights, 

Margules model, or a combination of all of the above. A posteriori parameters used in γ ≠ 1, 

which include a factor-of-100 increase in MTNO3 solubility and factor-of-10 decrease in 

activity coefficients, are available in Table S6.

2.8 Estimating WSOC

WSOC is an operationally defined species measured by adding water to a system and 

analyzing the dissolved compounds (Sullivan et al., 2004). Particulate compounds with 

solubilities greater than 10 g L−1 tend to be measured as WSOC regardless of the sampling 

and extraction method, while compounds with solubilities less than 1 × 10−4 g L−1 are 

insoluble (Psichoudaki and Pandis, 2013). To determine the fraction of OA extracted as 

WSOC (WSOCp), the particle phase can be modeled as an equilibrium between two phases: 

a and b. The fraction of species, i, in phase a compared to the total particulate species 

concentration is

f a, i = 1 +
Ca, i* Nb
Cb, i* Na

−1
, (26)

where Na and Nb are the number of moles in phases a and b, respectively. If phase b has no 

water and is ideal, while phase a is dominated by water and obeys Henry’s law, then the 

fraction of aerosol species i extracted as WSOCp (fwsoc,i) is
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f WSOC, i = 1 + γi
∞WIOA

LWC
Mw
Mi

−1
, (27)

where WIOA and LWC are concentration of water-insoluble OA and liquid water in mass 

per volume of air. Thus WSOC depends on the amount of insoluble material, liquid water, 

Henry’s law coefficient, and pure species saturation concentration.

2.9 Observations for evaluation

Simulations were evaluated by comparing to OC from IMPROVE, Chemical Speciation 

Network (CSN), and South-Eastern Aerosol Research and Characterization (SEARCH) 

network observations in the eastern US. For comparisons to SEARCH observations, the 

Jefferson Street, Atlanta, GA (JST), and Birmingham, AL (BHM), urban sites as well as 

Yorkville, GA (YRK), and CTR, rural sites were considered. In order to estimate secondary 

organic carbon (SOC), the method of Yu et al. (2007), which uses OC / EC (elemental 

carbon) ratios, was revised to account for the semivolatile nature of POA. For estimating 

observed POA from total OA only, POA in CMAQ is assumed to correspond to emissions of 

Ci* ≈ 3000 μg m−3 and lower-volatility compounds. The volatility distribution of gasoline 

vehicle POA from May et al. (2013) and used by the CMAQ-VBS (Koo et al., 2014) was 

used to estimate how much POA is expected in the particle under ambient conditions.

The fraction of POA in the particle (fP) for each observation data point was estimated as

f p = ∑
i = 1

5 αi
1 + Ci*/(OCobs(OM/OC)mod) , (28)

where the volatility profile is described by one nonvolatile and Ci* = 1, 10, 100, and 1000 μg 

m−3 surrogate species in the following mass-based abundance (αi): 0.27, 0.15, 0.26, 0.16, 

and 0.17. Observed SOC was estimated from each observed OC by

SOCobs = OCobs − f p(POC/EC)modECobs; (29)

therefore,

POCobs = f p(POC/EC)modECobs . (30)

This calculation only accounts for the effect of dilution and partitioning on POC (primary 

organic carbon) and does not account for chemical processing that may convert POA to 

SOA. In addition, compared to other volatility profiles such as diesel POA, this profile tends 

to be weighted toward lower- volatility compounds. As a result, this approach may be an 

upper bound on the amount of POC (lower bound on SOC).
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In addition to the routine monitoring network data, model predictions were compared to data 

from the CTR (87.25° W, 32.90° N) and Look Rock, TN (LRK; 83.94° W, 35.63° N) sites 

from the SOAS field campaign in the southeast United States. Observations include water-

soluble organic carbon in both particle and gas phase (Xu et al., 2016; Sullivan et al., 2004), 

aerosol LWC (Nguyen et al., 2014b; Guo et al., 2015), OA (Xu et al., 2015a, b; 

Budisulistiorini et al., 2015; Hu et al., 2015), and gas-phase species (Nguyen et al., 2015a; 

Budisulistiorini et al., 2015). The Supplement provides additional evaluation such as a 

comparison to OH (Feiner et al., 2016), isoprene (Su et al., 2016; Misztal et al., 2017), and 

2-methyltetrol (Isaacman et al., 2014; Isaacman-VanWertz et al., 2016) concentrations.

3 Results and discussion

3.1 Updated base model

3.1.1 Effect of property updates—Figure 4 shows the updated molecular weights as a 

function of pure species saturation concentration and colored by OM / OC. Values are 

summarized in Table 2. Four species that were initially outside the O: C = 0 and O: C = 1 

bounds in CMAQ v5.1, ISOl, ISO2, SQT, and BNZ3, were moved within the bounds or just 

slightly outside as a result of implementing Eq. (2) through (5) for traditional OA. The 

impact of updated OM / OC and molecular weight had small impacts on OM (up to ~4% 

decreases) and larger impacts on OC (5–8% decrease in OC across the southeast). This 

change was driven by an increase in the OM / OC of biogenic (semivolatile isoprene and 

monoterpene) SOA.

Note that there is likely inconsistency in the structure and assumed vapor pressure for 2-

methyltetrols and 2- methylglyceric acid. The model considers IEPOX-derived SOA to be 

mainly 2-methyltetrols and organosulfates with a small amount of oligomers (Pye et al., 

2013). All IEPOX- derived species were treated as nonvolatile, but they should be 

semivolatile given their molecular weight. Lopez-Hilfiker et al. (2016) indicate that IEPOX-

derived organosulfates and 2-methyltetrols measured by common techniques include 

decomposition products of accretion reactions and that IEPOX-SOA should be relatively 

nonvolatile, consistent with Hu et al. (2016) and the nonvolatile assumption here. The 

nonvolatile assumption is, however, inconsistent with 2-methyltetrols being present in the 

gas phase as observed by Xie et al. (2014). The glyoxal SOA in CMAQ also corresponded to 

a monomeric unit. If oligomers are the dominant form for aqueous methylglyoxal SOA 

(Altieri et al., 2008), then the molecular weight would need to be increased. Given the 

nonvolatile nature of IEPOX-derived SOA and glyoxal SOA, they were not significantly 

affected by the sensitivity simulations.

In the base and updated models, dry deposition of OA played a relatively minor role in 

removing semivolatile compounds from the system. Volatility was the primary factor 

determining the relative role of gas vs. particle deposition for a given species with the 

specific value of the Henry’s law coefficient being less important as indicated by relatively 

small changes in overall deposition between the base and update (Fig. 5). At 298 K, the less 

volatile SVOCs became more soluble than predicted by base CMAQv5.1, while the more 

volatile SVOCs became less soluble. With the new parameters, dry deposition of gas-phase 

SVOCs increased by 20%, while wet deposition decreased by 6%. Total SOA+SVOC 
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deposition changed by less than 2%, and surface concentrations changed by less than 3%. 

Overall, particle-phase deposition accounted for 22% of the loss of SOA+SVOC mass. Dry 

deposition of gas-phase SVOCs accounted for 32%, and wet deposition of gas-phase SVOCs 

accounted for 46%. The relative role of gas-phase SVOC wet deposition was twice as 

important as predicted by Hodzic et al. (2014), consistent with the greater contribution from 

soluble biogenic species in the southeast in this work. The combined effects of the molecular 

weight, OM / OC, and deposition updates resulted in a 10% decrease in predicted OC over 

the southeast.

3.1.2 Isoprene SOA—Heterogeneously derived IEPOX SOA in CMAQ was assumed to 

be nonvolatile and, thus, was not greatly affected by the sensitivity simulations. Positive 

matrix factorization (PMF) analysis of Aerosol Chemical Speciation Monitor (ACSM) data 

and high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) data identified 

a factor with prominent m/z 82 signals (Fin et al., 2012; Xu et al., 2015a, b). This factor was 

referred to as “IEPOX-OA” and “isoprene-OA”, respectively. While it is largely attributed to 

IEPOX uptake, it may not be entirely due to IEPOX (Xu et al., 2015a, b; Schwantes et al., 

2015). The term “isoprene- OA” will be used to refer to the ambient PMF factor regardless 

of technique.

Liu et al. (2015) report that only half of the isoprene RO2 + HO2 SOA is from IEPOX in 

laboratory experiments. Furthermore, the AMS isoprene-OA PMF factor is not fully 

speciated. During SOAS at the CTR site, Lopez-Hilfiker et al. (2016) were able to explain 

roughly 50% of the AMS isoprene-OA at the molecular level. Hu et al. (2015) explained 

78% of isoprene-OA at CTR by molecular tracers measured online (Isaacman et al., 2014) 

and identified on filters, but only 26% of isoprene-OA was linked to tracers at LRK 

(Budisulistiorini et al., 2015). The lack of mass closure in these studies may have resulted 

from a lack of authentic standards for quantifying accretion products (oligomers and 

organosulfates).

Regional modeling also indicates that a number of later- generation species besides IEPOX 

contribute significantly to isoprene-derived SOA in the United States. Marais et al. (2016) 

indicate that isoprene SOA in the eastern US consists mainly of IEPOX (58%) and glyoxal 

(28%) uptake products, with 14% due to other species. Ying et al. (2015) attribute only 20% 

of isoprene-OA to IEPOX uptake, with roughly an equal contribution from methylglyoxal 

(MGLY) uptake. Semivolatile isoprene SOA and its oligomers accounted for just under 10% 

of isoprene SOA in their work. Thus, it is unclear if models can consider only SOA from 

IEPOX for the isoprene system as a surrogate for AMS-measured isoprene- OA.

Figure 6 shows three model definitions of isoprene- OA: SOA due only to IEPOX-reactive 

uptake, SOA due to IEPOX-reactive uptake and semivolatile isoprene + OH products, and 

SOA due to IEPOX and glyoxal/methylglyoxal uptake. Also included are the PMF factor 

observations of isoprene-OA from Xu et al. (2015a) for CTR and Budisulistiorini et al. 

(2015) for LRK. SOA is examined relative to sulfate as sulfate provides the acidity and 

aerosol medium for heterogeneous uptake (Pye et al., 2013; Marais et al., 2016). Modeled 

SOA due to IEPOX-reactive uptake was increased relative to CMAQ v5.1 as a result of the 

higher rate constant for organosulfate formation implemented in this work compared to the 
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work of Pye et al. (2013). At the CTR site, all definitions of isoprene-OA led to 

overestimates of observed isoprene-OA relative to sulfate. Isoprene-OA based on IEPOX 

uptake + semivolatile Odum two-product surrogates led to the highest predicted 

concentrations and a slope of 0.70 compared to the observed slope of 0.45. As a result, 

CMAQ IEPOX-OA could respond more strongly to changes in SOx emissions than ambient 

data would suggest as the regression coefficient has been interpreted as the magnitude of the 

sulfate control on isoprene-OA (Xu et al., 2015a). However, no direct relationship between 

Odum two-product isoprene SOA and sulfate exists in CMAQ. The correlation between 

isoprene-OA and sulfate for all three model representations was high (r > 0.8) and close to 

the observed value (r = 0.91), which is also consistent with ongoing modeling work with 

CMAQv5.1 (Vasilakos et al., 2017). On an absolute basis, predicted IEPOX + SV 

(semivolatile) OA reproduced observed isoprene-OA within 6% overall with small 

underestimates in the afternoon. However, modeled sulfate concentrations were lower than 

observed by 30% and ISOPOOH + IEPOX concentrations (Nguyen et al., 2015a) were 

overestimated by a factor of 2.4 in the model consistent with other modeling work 

(Vasilakos et al., 2017). Thus, as better agreement is obtained for the gas-phase isoprene 

species, additional increases in processes that convert isoprene RO2 + HO2 products to the 

particle phase may be needed despite the overestimates relative to sulfate shown in Figure 6 

for Centreville. These additional processes may include accounting for partitioning of 2-

methyltetrols to the gas phase, formation of C5-alkene triols, and/or faster oligomerization 

(Lopez-Hilfiker et al., 2016; Xie et al., 2014; Surratt et al., 2010).

At LRK, the different model representations of isoprene- OA closely resembled the observed 

isoprene-OA to sulfate ratio of 0.83. IEPOX uptake alone resulted in a slope of 0.61, and 

IEPOX uptake along with semivolatile isoprene + OH products results in a slope of 0.79. 

The model showed only a slightly stronger relationship to sulfate than the observations 

(observed r = 0.87), with the different model representations indistinguishable in their 

correlation with sulfate (model r = 0.93 to 0.95). Similar to the model at the CTR site, 

CMAQ underpredicted sulfate at LRK by about 30%. IEPOX + SV isoprene-OA was biased 

lower than observed isoprene-OA by almost 40%, and the bias in isoprene- OA (IEPOX + 

SV) was correlated with the bias in sulfate. ISOPOOH + IEPOX was underestimated by 

60% at LRK, in contrast to the CTR site, where it was overestimated (Supplement). Thus, 

isoprene products in the model were too efficiently converted to SOA at LRK despite the 

low sulfate.

3.1.3 Total OA—Model predictions of OC, SOC, and POC were compared to network 

observations using the methods described in Sect. 2.9 to determine how model errors in POA 

(specifically the nonvolatile assumption) could mask errors in SOA. An IMPROVE network 

observation with a value of 16.9 μg Cm−3 (at SHMI1, Shamrock Mine, CO) had a Cook’s 

distance (Cook, 1977) much greater than 1 in a base model-observation comparison and was 

subsequently removed from all analysis. For the IMPROVE network, 86% of observed OC 

was predicted to be secondary in nature (Eq. 29), while CMAQ predicted 46% of OC was 

secondary. The variability in predicted SOA fraction (standard deviation, s, of 0.21) was 

much higher than the variability in observed SOA fraction (s = 0.08). The CSN network 

(with a greater proportion of urban sites) was slightly less secondary in nature with 79% of 

Pye et al. Page 18

Atmos Chem Phys. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



OC as SOC (s = 0.11) and CMAQ predicting 40% of model OC as SOC (s = 0.19). The 

SEARCH network was the most influenced by SOA of the three networks. SEARCH OC 

was predicted to be 88% SOC (s = 0.06), while CMAQ indicated 58% SOC (s = 0.19). PMF 

analysis at the urban JST site during summer 2011 and 2013 indicates that POA 

(hydrocarbon-like organic aerosol (HOA), biomass burning OA (BBOA), cooking organic 

aerosol (COA)) factors accounted for 18–30% of total OA (Xu et al., 2015a; Budisulistiorini 

et al., 2013), while CMAQ predicted a 42% contribution of POC to OC averaged across the 

urban and rural sites here.

Figure 7 indicates that overestimates in POC roughly compensated for underestimates in 

SOC in the updated CMAQ model. CMAQ predicted that total OC was within 20% of 

average observed OC across each network. The normalized mean bias (NMB) for POC and 

SOC was much larger in magnitude than for total OC but relatively constant between 

networks. Specifically, SOC was lower by 40%, while POC was higher by a factor of 1.7 to 

1.8. The overestimate in model POC at the routine network locations was consistent with the 

model overestimate in AMS/ACSM-measured POA at SOAS CTR and LRK sites. Neither 

site resolved a HOA- type aerosol (Xu et al., 2015a; Budisulistiorini et al., 2015), indicating 

that POA from fossil fuel sources contributed less than 5% of total OA. A BBOA-type 

aerosol was resolved at the CTR site and episodic in nature. Comparing CMAQ- predicted 

POA from all sources to the BBOA factor at CTR indicated that CMAQ generally 

overestimated POA by a factor of 2, similar to the overestimate for network OC 

observations.

Additional insight into biases can be obtained by examining the diurnal profiles of OC (Fig. 

8). The diurnal profile of observed OC is relatively flat at the SEARCH sites, consistent with 

flat total OA (Xu et al., 2015b). CMAQ predictions had a pronounced diurnal profile, with 

higher concentrations (and relatively good performance or overpredictions) at night and 

lower concentrations (coinciding with underestimates) during the day. Averaged across the 

two urban sites (JST and BHM), however, CMAQ showed no bias as a result of 

compensating diurnal and spatial errors. Rural OC (YRK and CTR) was underpredicted by 

about one-third. Also included in Fig. 8 is the diurnal profile of POC in red dashes. Modeled 

POC at the Atlanta site correctly showed high concentrations in the morning (06:00 LT) and 

evening (19:00 LT), but tended to peak several hours earlier than HOA observed at JST in 

2012 (Budisulistiorini et al., 2016). JST total model- predicted POC during morning and 

evening transition hours was roughly the same magnitude as total observed OC, further 

indicating that CMAQ tends to overestimate primary organic aerosol.

3.2 Role of water

3.2.1 Effect on network OC—Figure 9 shows how including water interactions in 

absorptive partitioning calculations affected model predictions of OC at routine monitoring 

network locations. While including water associated with inorganic species (ideal Wi 

simulation) in the partitioning medium for SOA decreased the bias in SOC for all networks, 

it led to small increases in the mean error. Except for the SEARCH network, including 

organic water (W0 > 0) also reduced the mean bias at the expense of mean error. The 

simulation taking into account nonideality (γ ≠ 1) resulted in low normalized mean bias (≤ 
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10%) and large improvements in the mean bias compared to all other simulations. The mean 

error for γ ≠ 1 was marginally increased over the base simulation.

Figure 9 highlights that increases in bias occurred during the night (SEARCH network). The 

largest increases in bias occurred for the Wo > 0 simulation as a result of a large contribution 

of organic water. Similar to the results for the CTR site (Sect. 3.2.3), daytime concentrations 

of SOC increased but were still low compared to observations. In general, the variability in 

the bias increased as a result of water interactions, while the mean bias decreased.

Some caution should be applied when comparing model predictions and observations. 

Measurements of total aerosol mass from IMPROVE and CSN networks are made under 

relative humidities of 30–50%, and quartz filters for OC analysis from IMPROVE may be 

subject to ambient conditions in the field and during shipping before analysis (Solomon et 

al., 2014). Exposure to low RH could cause evaporation of reversible aqueous SOA (El-

Sayed et al., 2016). Kim et al. (2015) have reported that the IMPROVE measurements of OC 

were 27% lower than colocated SEARCH measurements during the summer of 2013 and 

hypothesized the difference to be due to evaporation from the IMPROVE filters during and 

after sampling. Episodic field campaign observations may be subject to sampling biases as 

well. Dryers are used ahead of many online aerosol chemistry instruments, and most aerosol 

water is expected to evaporate in an aerodynamic lens inlet used on many instruments 

(Zelenyuk et al., 2006; Matthew et al., 2008). Such drying can cause changes in the aerosol 

phase state (Pajunoja et al., 2016) and could potentially lead to changes in partitioning of 

soluble organic compounds. El-Sayed et al. (2016) have reported a loss of WSOC after 

drying. Those authors used a post-drying residence time of 7 s, which is much longer than 

the post-drying time used by the AMS in SOAS (approximately 1 s) and the time in the 

aerodynamic lens (approximately 0.01 s). A prior study reported that evaporation of 

ammonium nitrate, a water-soluble and semivolatile species, was not observed when using 

post-drying residence times of about 1 s (Guo et al., 2016). While this topic should be 

subject to additional research, the AMS data in SOAS are unlikely to have significant biases 

due to this effect.

3.2.2 Frequency of phase separation—Figure 10a shows the June 2013 predicted 

average OM / OC across the model domain for the simulation in which phase separation and 

ideal interactions with inorganic water were predicted (ideal Wi). Emitted POA in CMAQ 

has an OM / OC of 1.25 for vehicles, 1.7 for biomass burning, and 1.4 for other sources, and 

heterogeneous aging of the POA results in the OM / OC increasing with time (Simon and 

Bhave, 2012). The urban sites of Birmingham, AL, and Atlanta, GA, had predicted OM / 

OC ratios between 1.3 and 2.2 with a mean of 1.8, while the rural SEARCH sites of 

Centreville, AL, and Yorkville, GA, had values between 1.7 and 2.2 with a mean of 1.9, 

consistent with previous work (Simon et al., 2011).

You et al. (2013) found that particles never undergo phase separation for OM / OC above 2.2 

(O: C = 0.8) and are always phase-separated when OM / OC is less than 1.8 (O: C = 0.5). 

Based on Figure 10b and Eq. (7), phase separation was a frequent, but not constant, 

occurrence. Phase separation was predicted to be more common in urban areas where OM / 

OC was low and near the western portion of the domain where RH was low. Figure 10c 
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shows RH, SRH, and phase separation for the CTR site. During the day, SRH decreased as a 

result of increasing OM / OC ratios for both SOA and POA. The increase in frequency of 

separation during the day was driven by low RH values during the day. At CTR, the highest 

frequency of phase separation was predicted in the late morning. For other sites, separation 

was more frequent in the afternoon. These results demonstrate the complexity of aerosol 

phase behavior in the atmosphere, and this complexity impacts the way observations are 

collected and interpreted.

Model-predicted RH was lower than the observed RH by about 6% (mean bias). Since phase 

separation occurred when RH was below the SRH, the frequency of separation using model 

RH was biased high. In addition, since the model used the SRH predicted for ammonium 

sulfate, predictions further represent an upper bound on the frequency of phase separation. 

Thus, particles should be internally mixed without phase separation more often than reported 

in this work. As phase separation was most consistent with default model assumptions, 

parameterizing the SRH using data from another salt (and using observed RH) would only 

increase OA as a result of a greater frequency of inorganic water in the partitioning medium.

3.2.3 Effect of water on OA concentrations at CTR—Figure 11 shows the 

influence of water on aerosols at the Centreville SOAS site during June 2013. The base 

simulation underestimated OA overall, but most substantially during the day. Including 

inorganic water in the partitioning medium when RH > SRH (ideal Wi) resulted in increased 

OA concentrations at all times of day. Reducing phase separation (under ideal conditions in 

ideal Wi compared to base) has been shown to increase OA concentrations in box modeling 

(Topping et al., 2013). In CMAQ, concentrations of OA predicted in ideal Wi were 1.5 times 

higher than observations at night when RH and aerosol liquid water concentrations were 

highest. Note that nocturnal mixing may be underestimated in the model as indicated by low 

boundary layer depths, high monoterpene concentrations, and high NOx concentrations 

compared to observations at night (Pye et al., 2015). The simulation considering uptake of 

water into the organic phase (Wo > 0) produced the highest predicted OA concentrations out 

of all simulations as a result of feedback in the model. Specifically, uptake of water and 

inclusion in the partitioning medium caused OA concentrations to increase, which further 

increased the amount of water in the particle and OA. Daytime OA predictions did not 

exceed observations, but nighttime model concentrations were a factor of 2 higher than 

observed. A comparison of model-predicted aerosol water with observed aerosol water (Fig. 

11e) indicated that the model overpredicted aerosol LWC by 2–3 × at night when 

interactions were ideal in the Wo > 0 simulation.

The simulation accounting for nonideality in addition to phase separation and uptake of 

water into organic compounds (γ ≠ 1), produced results similar to the simulation considering 

phase separation and ideal interactions with inorganic water only (ideal Wi) in terms of total 

OA as a function of time of day (model: observation correlation coefficient = 0.5; NMB = 

10% (γ = 1), 20% (ideal Wi)). However, the composition of the aerosol was different. Both 

simulations in which water interactions were ideal (ideal Wi and Wo > 0) resulted in 

overpredictions of less oxidized oxygenated aerosol (LO-OOA) and particle-phase organic 

nitrates (Supplement). Even with the factor-of-100 increase in Henry’s law coefficient for 

monoterpene nitrates and the factor-of-10 decrease in activity coefficient implemented in γ 
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= 1 compared to a priori estimates, the predicted concentration of organic-nitrate-derived 

SOA did not substantially change between the base and γ ≠ 1 simulation. The nonideality 

resulting from including water roughly compensated for the increase in partitioning medium 

in the case of organic nitrates.

3.2.4 Predicting water uptake onto organic compounds—All simulations 

indicated that OM / OC ratios tend to peak during the day and were near a value of 2, 

consistent with observations (Fig. 11c). Semivolatile SOA in the model tended to have lower 

OM / OC ratios than nonvolatile SOA, which resulted in lower OM / OC ratios overall in the 

sensitivity simulations compared to the base. These differences in OM / OC between the 

simulations propagated to predicted κorg values (Fig. 11d). The base simulation best agreed 

with the observationally constrained κorg values of Cerully et al. (2015), but the model κorg 

was biased low in all simulations.

Basing the κ values for organic species on OM / OC (or O: C) may tend to overestimate the 

κ values for organic nitrates (Suda et al., 2014). However, good agreement with the LO-

OOA factor (κ = 0.08 ± 0.02, Cerully et al., 2015) is obtained for a 50 / 50 mixture of 

MTNO3 and its hydrolysis product (κ = 0.09). The predicted monoterpene SOA κ (0.1) is in 

agreement with laboratory values (κ = 0.03 to 0.14; Alfarra et al., 2013). In addition, the κ 
for monoterpenes is higher than the κ for sesquiterpenes consistent with the trend (but not 

magnitude) in the work of Alfarra et al. (2013). The κ for IEPOX-derived OA (Table 2) was 

consistent with isoprene-OA value of Cerully et al. (2015) (κ = 0.2 ± 0.02) for a 40% 

organosulfate: 60% 2-methyltetrol composition (κ = 0.23).

Figure 11e shows two observations of aerosol liquid water content compared to model 

predictions. In the model, aerosol LWC was represented as the sum of water due to inorganic 

species (Wi, referred to as inorganic water) and water due to organic species (Wo, referred to 

as organic water). The ideal Wi and base simulations resulted in the same predictions of 

aerosol water as only inorganic species were considered in calculating LWC. The difference 

between the base simulation and observed LWC indicate a potential role for water associated 

with organic species. The contribution of LWC due to organic species has been estimated as 

35% during SOAS with higher contributions (50%) at night (Guo et al., 2015). Both organic 

and inorganic water were predicted to be highest in concentration during the night or early 

morning as a result of the diurnal variation in RH.

Both simulations with uptake of water into organic species (Wo > 0 and γ ≠ 1) overpredicted 

LWC at night, with the Wo > 0 simulation resulting in greater overprediction as a result of 

the feedback mentioned earlier. Figure 11f attributes the overprediction in organic water for 

the γ = 1 simulation to errors in the concentration of OA, hygroscopicity parameter for 

organic aerosol (κorg), and aw (or RH) (Eq. 13). For simplicity in the attribution analysis, RH 

was converted to activity using a fixed particle diameter of 200 nm (Hu et al., 2016). W0 was 

not directly measured, but estimated using measured properties. Figure 11f indicates that 

overestimates in the concentration of OA at night resulted in overestimates in Wo. 

Underestimates in RH and κorg decreased the overestimate. Thus, predictions of aerosol 

water in the sensitivity simulations can be most improved by improving the concentration of 

OA in the model.

Pye et al. Page 22

Atmos Chem Phys. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



The concentration of organic water and contribution to total aerosol water is shown across 

the model domain in Fig. 12. Wo was generally predicted to peak in the same locations 

where OA (Fig. 12c) was high. This trend was not true in locations where RH drove higher 

or lower water uptake than expected or OA was dominated by fresh POA with low OM / 

OC. For example, high RH over the Great Lakes and off the northeast coast resulted in high 

concentrations of organic water. High concentrations of OA from fires in Colorado did not 

translate to high aerosol water as a result of low RH and low OM / OC ratios leading to low 

κorg. κorg was lower in urban areas as well (near 0.09) due to low OM / OC. Regionally, κorg 

ranged between 0.11 and 0.14. The contribution to aerosol water resulting from organic vs. 

inorganic species (Fig. 12b) reflected the ratio of organic-to- sulfate concentrations as 

aerosol water is proportional to their concentrations.

3.2.5 Model relationship to WSOC—The Particle-into-Liquid Sampler (PiLS) 

instrument used to measure WSOCp adds an equivalent volume of water of 6 × 106 μg m
−3air, which is significantly higher than the concentration of aerosol water observed during 

SOAS at CTR (less than 73 μg m−3; Nguyen et al., 2015b; Guo et al., 2015). Figure 13a 

shows the fraction of particulate OA present in the aqueous (vs. insoluble) phase (Eq. 27). 

For the PiLS instrument during SOAS, compounds with γi
∞ < 100 000 (solubilities as low as 

0.1 g L−1) were expected to be part of measured WSOCp. Biogenic-VOC-derived SOA was 

particularly soluble, except for potentially MTNO3. Alkane and aromatic SOA had 1000 < 

γi
∞ < 100 000 (0.1 < S < 10) and, thus, were less soluble. Note that none of the species have 

very low solubilities, so all SOA species were expected to be at least partially water soluble 

during extraction depending on ambient conditions. Using the PiLS estimate of the fraction 

of water-soluble OA of 90% (Washenfelder et al., 2015), the mole-weighted γi
∞ for ambient 

OA was predicted (Eq. 27) to be 10 000 000, much higher than the coefficient predicted for 

any individual semivolatile constituent in the model.

The base simulation provided a good representation of WSOCp at night but underestimated 

total OC at all hours of the day, particularly during the daytime. γ ≠ 1 provided a better 

estimate of total OC but overpredicted WSOCp at night if compounds with γ∞ < 1000 (S > 

10gL−1) were entirely considered WSOC. Recall that the a priori estimate of solubility for 

MTNO3 was increased by a factor of 100 to reconcile modeled and observed LO-OOA and 

particulate organic nitrate for γ ≠ 1. Even with the factor-of-100 increase in Henry’s law, 

MTNO3 remained the least soluble biogenically derived SOA species in the model. The 

large increase in OC for the nonideal simulation was a result of compounds with solubilities 

greater than 10 gL−1 or γ∞ < 1000 (Fig. 13c) which were dominated by traditional biogenic 

SOA and its accretion products. The accretion product from traditional semivolatile SOA is 

not well constrained in terms of its structure or volatility. In this work, as in the work of 

Carlton et al. (2010) and Pankow et al. (2015), the species was assumed to be nonvolatile 

with an OM / OC of 2 to 2.1. The solubility of low-NOx monoterpene-derived species 

remained above 10gL−1, even down to species with a saturation concentration of 1 0 × 10−10 

μg m−3 using Henry’s law coefficient values from Hodzic et al. (2014). If the accretion 

products (AOLGB) were better represented by a less functionalized species and effectively 

insoluble, observation-model disagreement in WSOCp in γ ≠ 1 would be reduced. Another 
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way to reconcile observed and modeled WSOCp may be to take into account deviations 

from equilibrium during PiLS extraction, which were not considered here.

Figure 14 shows observed water-soluble organic carbon compounds in the gas phase 

(WSOCg, measured by mist chamber and total carbon analyzer; Hennigan et al., 2009) 

compared to (a) semivolatile SOA precursors (i.e., those associated with dry organic aerosol 

in Table 1) and (b) semivolatile and aqueous SOA precursors currently in CMAQ. The figure 

indicates that considering semivolatile SOA precursors as the only source of WSOCg in the 

model underestimated the daytime amount of WSOCg but that both observed WSOCg and 

modeled semivolatile SOA precursors were on the same order of magnitude. Thus, the 

semivolatile surrogates in the model represented a significant pool of soluble gases. When 

IEPOX, glyoxal, and methylglyoxal were included in the model estimate of WSOCg, the 

daytime WSOCg was slightly overestimated. However, given the factor of 2.4 overestimate 

in IEPOX+ISOPOOH in the model compared to observations (Supplement), the specia- tion 

of WSOCg differed in the model and observations. Figure 14 indicates that during the 

daytime, either additional water-soluble SOA precursors need to be implemented in the 

model or the model is correct and a significant portion of ambient WSOCg does not lead to 

SOA. Indeed, observed WSOCg may have large contributions from compounds such as 

formic acid that are not considered significant SOA constituents (Liu et al., 2012).

4 Conclusions

Current chemical transport models consider the dominant pathways to SOA to be dry 

processes governed by condensation of low-volatility organic compounds in the absence of 

water. In addition, models generally do not consider uptake of water by organic species. In 

this work, the CMAQ model was updated to consider aerosol water interactions with 

semivolatile SOA species and uptake of water into OA with a focus on simulating conditions 

during the Southern Oxidant and Aerosol Study of 2013. A method (γ ≠ 1 simulation) was 

developed to take into account deviations from ideality using an activity coefficient 

calculated based on the species Henry’s law coefficient, pure species saturation 

concentration (C0, i* ), and the mole fraction of water in the particle that resulted in a 

normalized mean bias of −4, −10, and −2% for IMPROVE, CSN, and SEARCH SOC. 

Monoterpene nitrates were predicted to be the least soluble semivolatile in the model, 

consistent with SOA yields from β -pinene + NO3 being comparable under dry and humid 

conditions (Boyd et al., 2015). However, most biogenic hydrocarbon-derived semivolatile 

SOA was highly soluble and predicted to be measured as WSOC. Thus, even aerosol formed 

through dry processes in models may be classified as WSOC as measured by instruments 

such as the PiLS.

Based on current observations, aerosol water cannot be added to the partitioning medium for 

semivolatile organic compounds without simultaneously accounting for deviations in 

ideality. Otherwise, aerosol liquid water and aerosol carbon are overestimated at night. This 

finding is consistent with the work by Pun (2008), who found that aerosol water 

concentrations would more than double if ideality was assumed. Hodas et al. (2015) also 

found that organic-inorganic water-uptake experiments could not be modeled assuming 
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ideal, well-mixed liquids, and assuming ideality overpredicted α-pinene SOA concentrations 

by 100–200% in the work of Zuend and Seinfeld (2012).

All simulations in this work, including the more aggressive ones assuming ideality, could not 

reproduce daytime observed OA in the southeast US (at SEARCH sites) solely by adding 

water to the partitioning medium. Including water resulted in increased model error but 

could reduce the bias in OC. Additional pathways (new precursors and/or new pathways) to 

OA, particularly during the daytime, are still needed in models.

The updates described here are in three stages of model readiness:

1. Properties of semivolatile OA constituents can immediately be updated in models 

to be consistent with their assumed volatility and parent hydrocarbon. Base 

model performance was good in terms of isoprene-OA and total OC compared to 

routine networks. Property updates in this work (Table 2) are scheduled for 

public release as part of CMAQv5.2.

2. Prediction of organic water is more uncertain, but OM / OC is a useful proxy and 

can be used to parameterize water uptake onto organic species via Eq. (12) and 

κ-Kohler theory.

3. The effects of water on semivolatile OA partitioning requires additional research 

as deviations from ideality are important. γi
∞ or CH, i*  are recommended as useful 

parameters for characterizing solubility. Models such as the Aerosol Inorganic-

Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model 

(Zuend et al., 2008) and UManSysProp (Topping et al., 2016) offer opportunities 

to perform detailed calculations.

In addition, these areas of model improvement are suggested for future work:

1. A treatment of semivolatile primary OA is needed to reproduce observed 

surrogates for POA. Factor-of-2 overestimates in POA were predicted to 

compensate for underestimates in SOA on the order of 40% in IMPROVE and 

CSN networks.

2. Improvements to sulfate and gas-phase isoprene chemistry will lead to an 

improved isoprene-OA representation in models as isoprene-OA is correlated 

with sulfate, but precursors to IEPOX-derived SOA were overestimated at CTR 

during SOAS. Predictions of isoprene SOA could be further improved by 

considering the volatility of IEPOX-derived species (such as 2-methyltetrols and 

C5-alkene triols) (Isaacman- VanWertz et al., 2016) as well as formation of 

additional species (Riedel et al., 2016).

3. Model-predicted aerosol LWC that includes water associated with organic 

compounds can be most improved by improving the concentration of OA, which 

may require a number of updates in different areas.

4. New precursors to SOA are likely needed, especially during the day when OA is 

underestimated and gas- phase semivolatile model species are less plentiful. 
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Additional precursors for the isoprene system may include multifunctional 

hydroperoxides (Riva et al., 2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Contribution of POA (observed biomass burning OA, BBOA; Xu et al., 2015a), SOA, water-

soluble OA (estimated as 2.1 × WSOC from the Particle-into-Liquid Sampler 

(PiLS);Sullivan et al., 2004), and aqueous (aq.) SOA (model only) to total OA during June 

2013 observed at CTR during SOAS and modeled by standard CMAQ. Insoluble OA is the 

difference between measured total OA and water-soluble OA. Modeled “other SOA” is 

formed via partitioning to a dry organic phase.
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Figure 2. 
Interactions of the inorganic phase (e.g., sulfate, nitrate, ammonium, aerosol water), aqueous 

SOA, vapor-pressure-driven SOA, and POA in the base and sensitivity simulations. Blue 

arrows depict water partitioning/uptake. Red arrows indicate semivolatile partitioning 

interactions via modified Raoult’s law. The white dashed arrows indicate aqueous SOA 

interaction with the inorganic phase (via liquid water, acidity, and particle size).
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Figure 3. 
Schematic of SOA treatment in current CMAQ-aero6i. Species are described in Table 1. 

Species in grey boxes are nonvolatile. Species with names in red make up POA (i.e., POA = 

POC + NCOM, where POC stands for primary organic carbon and NCOM stands for non-

carbon organic matter). Species with names in blue form in the model as a direct result of 

interactions with water.
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Figure 4. 
The volatility, molecular weight, and OM / OC of SOA species in CMAQ. Nonvolatile 

species are arbitrarily plotted at a saturation concentration of 0.01 μg m−3, The arrows start 

at the old molecular weights assumed in CMAQ v5.1. The arrows end at the new (CMAQ 

v5.2) molecular weights in Table 2. Lines indicate the properties of alkanes and sugars. The 

molecular weight of sesquiterpene SOA in CMAQ v5.1 is off the scale at 378 g mol−1.
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Figure 5. 
Contribution of wet (blue) and dry (red) deposition of gas (striped) and particle (solid) 

SVOCs binned by volatility and overall compared to the base simulation (CMAQ v5.1). 

Nonvolatile species are indicated by C* < 0.01 μg m−3. POA is not included.

Pye et al. Page 39

Atmos Chem Phys. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 6. 
Isoprene-OA vs. sulfate at (a) CTR and (b) LRK and the slope (b, forced through 0) and 

correlation coefficient (r) for each data set. Model representations of isoprene-OA include 

SOA from IEPOX uptake and semivolatile isoprene + OH SOA (IEPOX + SV). SOA from 

IEPOX uptake (IEPOX). and SOA from IEPOX and glyoxal uptake (IEPOX + GLY).
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Figure 7. 
Aerosol OC, POC, and SOC predicted by the base model simulation (Mi) compared to CSN, 

IMPROVE, and SEARCH (JST, BHM, CTR, and YRK) observations (Oi). Mean bias 

(MB = 1
n ∑i = 1

n (Mi − Oi)) and mean absolute gross error (ME = 1
n ∑i = 1

n Mi − Oi ) are in 

micrograms of carbon per cubic meter. X symbols indicate mean bias. Boxplots indicate 5th, 

25th, median, 75th, and 95th percentile.r2 based on a zero intercept. n is the number of 

observations. NMB =
∑i = 1

n (Mi − Oi)

∑i = 1
n Oi

.
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Figure 8. 
OC as a function of hour of the day for a SEARCH urban (Atlanta, JST) and rural (CTR) 

site during June 2013. Bars/shading indicate 25th to 75th percentiles. Lines indicate means. 

Red dashed lines indicate model-predicted POC.
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Figure 9. 
Bias (model-observation) in SOC for IMPROVE, CSN, and SEARCH networks, SEARCH 

data are divided into daytime (06:00 to 19:59 LT) and nighttime observations, SOC is 

calculated using OC / EC ratios and estimating evaporation of semivolatiles as described in 

Sect, 2.9. X symbols indicate mean bias, Boxplots indicate 5th, 25th, median, 75th, and 95th 

percentile, r2 based on a zero intercept.
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Figure 10. 
June 2013 mean predicted (a) OM / OC, (b) percentage of time spent separated into organic-

rich and inorganic-rich phases, and (c) conditions at CTR-SOAS for the ideal Wi simulation. 

Separation occurs when RH < SRH. Observed RH at SOAS is from the SEARCH network. 

Panel (c) includes a prediction of time separated using model-predicted RH (solid) and 

observed RH (dashed).
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Figure 11. 
Observed and predicted concentration of (a) organic aerosol (Xu et al., 2015a), (b) AMS 

LO-OOA factor (Xu et al., 2015a) and model-predicted organic-nitrate-derived SOA, (c) 
OM / OC (Hu et al., 2015), (d) κorg, (e) aerosol liquid water measured by nephelometer and 

the Georgia Tech group (solid black) (Guo et al., 2015) and measured by particle growth and 

the Rutgers/NC State group (dashed black) (Nguyen et al., 2014b), and (f) ratio of predicted 

to observed quantities influencing organic water (Wo) at CTR (for the γ ≠ 1 simulation 

only). Observed κorg is determined by applying a Korg,i; value of 0.31, 0.20, 0.16, and 0.08 

to observed BBOA, isoprene-OA, MO-OOA, and LO-OOA, respectively (Cerully et al., 

2015). Grey shading represents the interquartile range of the observed data (mean in black). 

Colors represent different simulations in (a)-(e) and different quantities in (f).
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Figure 12. 
June 2013 mean predicted (a) aerosol water due to organic species, (b) contribution of 

organic water to total aerosol water, (c) total organic aerosol, and (d) hygroscopicity 

parameter for the γ ≠ 1 simulation.
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Figure 13. 
Fraction of OA present in aqueous phase (a) as a function of activity coefficient at infinite 

dilution and observed OC and WSOCp at CTR compared to model predictions (b-c). Panel 

(a) boxplots indicate observed LWC from Rutgers/NC State (Nguyen et al., 2014b) and 

GeorgiaTech (Guo et al., 2015) during SOAS. Forpredictions (a), WIOAis 1 μg m−3 and the 

species molecularweightis set to 180gmol-1. Predictions in dark grey shading span a factor 

of 2 in WIOA (0.5 to 2μg m−3). Predictions in light grey shading (a) indicate a factor of 10 

in WIOA (0.1 to 10μg m−3). Panel (b) corresponds to model predictions in the base 

simulation, while panel (c) corresponds to predictions in the γ ≠ 1 simulation. Model 

predictions of OC are stacked and divided into POC, compounds with γi
∞ > 1000

(solubilities less than 10gL−1, Table 2), monoterpene nitrate OC, compounds with γi
∞ < 1000

(solubilities greater than 10gL−1), the organic nitratehydrolysis product, and aqueous SOC.
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Figure 14. 
Observed WSOCg (Hennigan et al., 2009; Xu et al., 2016) and model SOA precursors 

considering only semivolatile surrogates (a) and semivolatile and aqueous surrogates (b). 
Grey shading represents the interquartile range of the observed data (mean in black). Colors 

represent different simulations.
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Table 1.

SOA and semivolatile organic compound (SVOC) species in CMAQ v5.1-aero6i (Carlton et al., 2010; Pye and 

Pouliot, 2012; Pye et al., 2013, 2015). CMAQ model species names are generally preceded by the letter A to 

indicate aerosol. Semivolatile surrogates have a corresponding gas-phase species whose name is preceded by 

the letters SV.

Species Species or production pathway description Partitioning medium in CMAQ v5.1

ALK1 alkane + OH SOA/SVOC Dry organic aerosol

ALK2 alkane + OH SOA/SVOC Dry organic aerosol

BNZ1 benzene + OH high-NOx SOA/SVOC Dry organic aerosol

BNZ2 benzene + OH high-NOx SOA/SVOC Dry organic aerosol

BNZ3 benzene + OH low-NOx SOA Dry organic aerosol

DIM IEPOX-derived dimers Aqueous aerosol

GLY glyoxal + methylglyoxal SOA Aqueous aerosol

IEOS IEPOX-derived organosulfate Aqueous aerosol

IETET 2-methyltetrols Aqueous aerosol

IMGA 2-methylglyceric acid Aqueous aerosol

IMOS MPAN-derived organosulfate Aqueous aerosol

ISO1 isoprene + OH SOA/SVOC Dry organic aerosol

ISO2 isoprene + OH SOA/SVOC Dry organic aerosol

ISO3
acid-catalyzed isoprene SOA

* Dry organic aerosol

ISOPNN isoprene dinitrate Dry organic aerosol

MTHYD organic nitrate hydrolysis product Aqueous aerosol (from dry organic aerosol parent)

MTNO3 monoterpene nitrate Dry organic aerosol

OLGA Oligomers from anothropogenic SOA/SVOCs Dry organic aerosol

OLGB oligomers from biogenic SOA/SVOCs Dry organic aerosol

ORGC glyoxal+methylglyoxal SOA Cloud droplets

PAH1 naphthalene + OH high-NOx SOA/SVOC Dry organic aerosol

PAH2 naphthalene + OH high-NOx SOA/SVOC Dry organic aerosol

PAH3 naphthalene + OH low-NOx SOA Dry organic aerosol

SQT sesquiterpene + OH, O3, NO3, O3P SOA/SVOC Dry organic aerosol

TOL1 toluene + OH high-NOx SOA/SVOC Dry organic aerosol

TOL2 toluene + OH high-NOx SOA/SVOC Dry organic aerosol

TOL3 toluene + OH low-NOx SOA Dry organic aerosol

TRP1 monoterpene + OH, O3, O3P SOA/SVOC Dry organic aerosol

TRP2 monoterpene + OH, O3, O3P SOA/SVOC Dry organic aerosol

XYL1 xylene + OH high-NOx SOA/SVOC Dry organic aerosol

XYL2 xylene + OH high-NOx SOA/SVOC Dry organic aerosol

XYL3 xylene + OH low-NOx SOA Dry organic aerosol

*
AISO3 contains the sum of 2-methyltetrols and IEPOX-derived organosulfates in CMAQv5.1-aero6. It is not used in aero6i as those species are 

represented individually. Prior to v5.1, AISO3 was determined as an enhancement over AISO1 + AISO2 based on [H+] (Carlton et al., 2010).
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