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M. Icardo5, José Ramos-Vivas1,2,3*

1 Instituto de Investigación Valdecilla IDIVAL, Santander, Spain, 2 Servicio de Microbiologı́a, Hospital

Universitario Marqués de Valdecilla, Santander, Spain, 3 Red Española de Investigación en Patologı́a

Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain, 4 Departamento de Biologı́a Molecular,

Universidad de Cantabria, Santander, Spain, 5 Departamento de Anatomı́a y Biologı́a Celular, Universidad

de Cantabria, Santander, Spain

* jvivas@idival.org

Abstract

Acinetobacter baumannii is a cause of healthcare-associated infections. Although A. bau-

mannii is an opportunistic pathogen, its infections are notoriously difficult to treat due to

intrinsic and acquired antimicrobial resistance, often limiting effective therapeutic options.

A. baumannii can survive for long periods in the hospital environment, particularly on inani-

mate surfaces. Such environments may act as a reservoir for cross-colonization and infec-

tion outbreaks and should be considered a substantial factor in infection control practices.

Moreover, clothing of healthcare personnel and gadgets may play a role in the spread of

nosocomial bacteria. A link between contamination of hospital surfaces and A. baumannii

infections or between its persistence in the environment and its virulence has not yet been

established. Bacteria under stress (i.e., long-term desiccation in hospital setting) could con-

serve factors that favor infection. To investigate whether desiccation and/or starvation may

be involved in the ability of certain strains of A. baumannii to retain virulence factors, we

have studied five well-characterized clinical isolates of A. baumannii for which survival times

were determined under simulated hospital conditions. Despite a considerable reduction in

the culturability over time (up to 88% depending on strain and the condition tested), some A.

baumannii strains were able to maintain their ability to form biofilms after rehydration, addi-

tion of nutrients, and changing temperature. Also, after long-term desiccation, several clini-

cal strains were able to grow in the presence of non-immune human serum as fine as their

non-stressed homologs. Furthermore, we also show that the ability of bacterial strains to kill

Galleria mellonella larvae does not change although A. baumannii cells were stressed by

long-term starvation (up to 60 days). This means that A. baumannii can undergo a rapid

adaptation to both the temperature shift and nutrients availability, conditions that can be

easily found by bacteria in a new patient in the hospital setting.
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Bravo Z, Navas J, Icardo JM, Ramos-Vivas J

(2018) Acinetobacter baumannii maintains its

virulence after long-time starvation. PLoS ONE 13

(8): e0201961. https://doi.org/10.1371/journal.

pone.0201961

Editor: Vishnu Chaturvedi, Wadsworth Center,

UNITED STATES

Received: March 22, 2018

Accepted: July 25, 2018

Published: August 22, 2018

Copyright: © 2018 Chapartegui-González et al. This
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Introduction

A. baumannii is a non-motile opportunistic extracellular human pathogen. Antibiotic-resistant

A. baumannii has emerged as one of the most problematic nosocomial pathogens [1]. While

more than 80 complete genome sequences of several strains of A. baumannii have been pub-

lished, only very few potential virulence factors have been implicated in its disease pathogene-

sis [2]. The outer membrane protein (OmpA) and a capsular polysaccharide seem to be

involved in the interaction with epithelial cells in vitro or in virulence [3, 4]. Other surface

components or secreted proteins play a minor role both in vitro or in vivo. With these limited

number of virulence factors, it has been suggested that the fulminant course of disease might

be due to exaggerated host response to A. baumannii lipopolysaccharide [5–8].

As with other non-fermentative Gram-negative bacilli, A. baumannii can develop resistance

to all classes of antimicrobials; and multi-drug resistant (MDR) isolates are sharply increasing

in frequency, forcing clinicians to use last resort antibiotics such as colistin [9–11]. Several

studies showed the presence of this pathogen in various hospital environments where A. bau-
mannii is transmitted by direct contact with infected patients or indirect contact with contami-

nated inanimate surfaces [12–14]. Importantly, cross-transmission of microorganisms from

abiotic surfaces may have a significant role in ICU-acquired infections [15–17].

One important factor contributing to the spread of A. baumannii in these environments

seems to be its capacity to withstand desiccation and starvation [18–20]. Also, it can produce

biofilms, a community of bacteria enclosed within a protective polymeric matrix [21]. This

ability to form biofilms is another potential virulence factor because it increases the survival

rate of this bacterium on dry surfaces and may contribute to its persistence in the hospital

environment, increasing the probability of causing nosocomial infections and outbreaks [1].

Despite the link among contamination, Acinetobacter survival in the patient care environ-

ment and the risk of healthcare-associated infections have not yet been established, gaining

insight into the mechanisms of long-term persistence of this pathogen in hospital settings is

fundamental to prevent clonal spread, and to the development of novel targets for both diag-

nostic tests and therapeutic agents. There is a knowledge gap concerning the bacterial transi-

tion from a stressed state (i.e., on inanimate surfaces) to a new environment with available

nutrients and higher temperature (i.e., inside a new host). Those bacteria under stress should

conserve or express factors that may favor subsequent colonization or infection. We want to

test this hypothesis by passing stressed cells into a favorable environment which simulates a

new host.

Materials and methods

Bacterial strains

Four A. baumannii clinical isolates were used in this work. All clinical isolates were obtained

from different patients (standard service of routine) at the Hospital Universitario Marqués de

Valdecilla. HUMV-1319 and HUMV-3743 were isolated from wound exudate, HUMV-2471

was isolated from sputum and HUMV-2790 was isolated from skin ulcer. Reference strain A.

baumannii ATCC1 19606T was also included. A. baumannii strains were routinely cultured

on blood agar (BA) plates, or Luria broth (LB) at 37˚C and stock cultures were frozen at -80˚C

with 20% (vol/vol) glycerol. For inocula preparation, strains were grown at 37˚C in LB with

shaking (175 rpm) for 24 h. Cells were collected by centrifugation (1.258 g for 20 min) and

washed three times with sterile saline solution (0.9% wt/vol NaCl). Finally, cell pellets were sus-

pended in sterile saline solution. Escherichia coli DH10B and BL21 strains were used as positive

controls for serum susceptibility.
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Bacterial growth curves

Growth curves were carried out to confirm that the strains used in our study grew at similar

growth rate. Bacteria from overnight cultures were diluted 1,000 folds in LB and were then

inoculated into each well of a 96-well polystyrene flat-bottom microtiter plates and incubated

at 37ºC for 24 h inside an Infinite1 200 microplate reader (Tecan). The plates were read every

30 minutes for 24 h at wavelengths of 600 nm with shaking before each cycle.

Long-term survival assays

A. baumannii cells from stationary phase were incubated at 22ºC in liquid or solid environ-

ments. Starvation was implemented by incubating cells in sterile saline solution or onto sterile

cotton white lab coat fragments (~1 cm2), plastic (bottom of wells in 24-well plates (1.9 cm2,

CorningTM CostarTM, Fisher Scientific)), or sterile glass cover slides (12 mm diameter, 1.13

cm2). For survival assays onto solid surfaces, glass cover slides, plastic, or white lab coat frag-

ments were inoculated with 50 μl spots of A. baumannii at a cell density of ~107 cells ml-1.

Cover slides and white lab coat fragments were sterilized by autoclaving (121ºC/20 min) and

24-well plates were purchased from Fisher Scientific (individually wrapped, sterilized by

gamma irradiation). For survival assays in the aqueous environment, experiments were carried

out in 50 ml polypropylene tubes (Fisher Scientific) containing 15 ml of sterile saline solution

reaching a bacterial density of ~107 cells ml-1.

Solid environments (cover slides, fragments of white lab coats, and plastic) were placed in

wells of several 24-well plates in the dark. Ambient relative humidity and temperature were

measured with a hygrometer/thermometer (Thermo Hygro) and maintained at a relatively

low humidity level (54 ± 1.6% humidity) and room temperature (RT) 22 ± 0.2ºC.

Populations from solid surfaces were recovered adding 1 ml of saline solution to a glass or

plastic surfaces and scraping off the cells from the bottom using a 200 μl tip. To recover A. bau-
mannii from the white lab coat, the coat fragments were placed in a 15 ml polypropylene tube

with 5 ml of saline solution and vigorously shaken with a vortex.

During long-time survival experiments, samples from solid surfaces and saline microcosms

were collected at different time points (days 0, 1, 3, 10, 20, 30, 40, 50, 60), serially diluted in

saline solution and used to inoculate Luria agar (LA) or LA amended with sodium pyruvate

(0.5% wt/vol) [22, 23] to determine the number of colony-forming units (CFUs). Sodium

pyruvate was added directly to LA before autoclaving.

Along the desiccation survival period or long-term starvation in saline, and to determine

the regrowth capacity, recovered A. baumannii cells from solid media were resuspended in 1

ml of LB. For saline, 5 μl of the bacterial suspensions were inoculated into 1 ml of LB. These

bacterial cultures were placed in wells of 24-well plates and incubated for 48 h at 37ºC. Visual

inspection confirmed the purity of cultures on their colonial morphology after plating and by

immunofluorescence staining with a specific antiserum against A. baumannii [24]. Three

long-time survival independent experiments were performed.

Biofilm formation

Biofilm formation capacity of stressed cells and fresh inocula was estimated after addition of 1

ml of LB medium to all solid surfaces contained on 24-well plates (white lab coat, plastic, and

glass) and 5 μl of the bacterial inocula for saline, according to previously described protocols

[25]. Briefly, after addition of 1 ml LB medium, the microplates were incubated for 48 h at

37˚C without shaking. Planktonic cells were removed, and wells were rinsed three times with

distilled water, and the remaining adherent bacteria were stained with 1.5 ml/well of crystal

violet (CV) (0.7% [wt/vol] solution) for 12 min. Excess stain was removed by washing with
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distilled water, and CV was extracted with 1.5 ml of acetic acid (33%). Plates were incubated at

RT in an orbital shaker for 1 min at 400 rpm to release the dye into the solution. Then, a sam-

ple of 100 μl was transferred to another 96-well flat-bottom plate, and the amount of dye (pro-

portional to the density of adherent cells) was determined at 620 nm using a microplate reader

(Multiskan FC; Thermo Fisher). In each experiment, results were corrected for background

staining by subtracting the value for crystal violet bound to uninoculated controls. The num-

ber of planktonic cells (CFUs) was converted to a logarithmic scale, and normalized biofilms

were calculated by dividing the total biofilm value (expressed as the OD620) by the bacterial

growth for each strain (expressed in CFUs). The biofilm assay was performed three times, with

duplicates in each assay.

Confocal Laser Scanning Microscopy (CLSM)

Bacterial viability during the survival assays on cover slides was determined as previously

described [26]. Briefly, bacteria were stained using the BacLight LIVE/DEAD kit (Molecular

Probes Inc.) for 20 min at RT in the dark. A series of optical sections were obtained with a

Nikon A1R confocal scanning laser microscope; the excitation wavelengths were 488 nm

(green) and 561 nm (red), and 500 to 550 nm and 570 to 620 nm emission filters were used,

respectively. Images were captured at random with a 40× Plan Apo (numerical aperture [NA],

0.75) objective. Reconstructions of confocal sections were assembled using NIS-Elements soft-

ware, version 3.2. The volume measurement tool of the NIS-Elements software was used to

readily recognize the relative biomass of live (green fluorescence) and dead cells (red fluores-

cence). The percentage of biomass that was alive and the percentage of biomass that was dead

in all z-stack images from representative assays was calculated.

Galleria mellonella killing assays

G. mellonella caterpillars in the final-instar larval stage (Bichosa, Salceda de Caselas, Galicia,

Spain) were stored in the dark and used within 3 days from the day of shipment. Caterpillars

(250 ± 25 mg in body weight) were employed in all assays.

Two strains of A. baumannii were arbitrarily selected (HUMV-2790 and HUMV-1319)

after starvation in saline solution (60 days). Bacterial suspensions were adjusted to ~107 CFUs

ml-1, and the same bacterial suspension was prepared from a fresh culture of these strains. Bac-

terial infection of G. mellonella was carried out primarily as described by Peleg et al. [27].

Briefly, a 10-l Hamilton syringe was used to inject 10 μl aliquots of the inocula into the hemo-

coel of each caterpillar via the last left proleg. Ten G. mellonella larvae were injected with ~105

bacteria and were placed in a 9.0 cm Petri dish lined with 8.5 cm Whatman paper, then incu-

bated at 37ºC in the dark.

Bacterial colony counts on LA were used to confirm all inocula. Larvae were individually

examined for melanization, and time of death was recorded. Caterpillars were considered dead

when they displayed no movement in response to touch. Assays were allowed to proceed for

only 4 days as pupa formation could occasionally be seen by day 4. Two independent replicates

of each infection experiment were performed per infection strain. Two negative control groups

were always prepared: one group that underwent no manipulation to control for background

larval mortality (no manipulation control) and one group (uninfected control) that was

injected with saline solution to control for the impact of physical trauma.

Serum bactericidal assays

All studies involving human samples were performed following international standards for

research ethics and were approved by the local institutional review board (Hospital
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Universitario Marqués de Valdecilla). Human sera were isolated from whole venous blood

obtained from healthy human volunteers after informed consent. Venous blood was drawn

aseptically and allowed to clot, and the serum was separated by centrifugation. Complement

was inactivated by heating serum at 56˚C for 30 minutes when required. Two different final

serum concentrations (25% and 50%) of normal (N) and inactivated (I) human serum (pre-

pared in PBS) were used against 2 clinical strains maintained for 60 days under starvation

(HUMV-1319 and HUMV-2790). CFUs were determined at 0, 30, 90 and 180 min by serial

dilution and cultured in LA plates. Experiments were performed three times.

Scanning Electron Microscopy (SEM)

Bacterial presence in white lab coats was analyzed qualitatively using scanning electron

microscopy. White lab coats fragments infected with A. baumannii inside 24- well plates at

time 1 h or after 60 days were processed directly inside the plates. The entire wells were fixed

with ice-cold 3% glutaraldehyde for 20 min at 4˚C. Samples were then dehydrated in a graded

ethanol series, cut into small pieces, dried by the critical point method, coated with gold in a

Fine Coat ion sputter (JFC-1100; JEOL), and observed with an Inspect S microscope (FEI

Company) working at 15 or 20 kV. Uninoculated autoclaved white lab coat fragments were

used as the control for the presence of bacteria.

Statistics

Data were described with means and Standard deviation and median and interquartile range

when appropriate. Dichotomous variables were described with percentages. Comparisons of

the quantitative data was carried out by comparing means with the paired Student t-test. The

alpha error was set at 0.05, and all p values were bilateral. In addition, for dichotomous vari-

ables, survival curves were obtained and equality of survival distributions was tested by using

the Log Rank (Mantel-Cox) test. We conducted all statistical analyses using Microsoft1 Excel

version 16.14.1. G. mellonella mortality curves were plotted using the Graph Pad Prism version

7.0a.

Results

The effects of time (60 days period) and nutrient deprivation upon culturability of A. bauman-
nii populations on solid surfaces and saline solution are shown in Fig 1. On average, A. bau-
mannii culturability was reduced by 46.66%, 40.40%, 71.78%, and 11.94% in plastic, glass,

white lab coat, and saline, respectively. The less resistant strain on solid surfaces was the refer-

ence strain ATCC1 19606T where its culturability was reduced in 59.68%, 58.95%, and 88.11%

in plastic, glass, and white lab coat, respectively. The most resistant strain on plastic and glass

was HUMV-1319, with survival rates of 67.51% and 74.76%, respectively. Strain HUMV-2471

was the most persistent on white lab coat fragments, with a reduction of 54.88% in culturability

on this surface after 60 days, indicating that near half the population of this strain survive on a

white lab coat for at least two months.

The effect of starvation on bacterial populations maintained under starvation in saline solu-

tion was minimal. In all cases, we observed that strains kept survival rates above 83%, and did

not change throughout the experiment’s duration.

When colony-forming units were enumerated on LA supplemented with sodium pyruvate

(recovery medium), no significant differences were found (p>0.05, data not shown).

We tested the capability of the starved bacterial survivors to resume growth and to express

adherence factors to form biofilms by CV assays. Despite a reduction in culturability over 60
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days, some populations recovered from starvation on solid surface experiments and retained

their ability to regrow and to form biofilms after rehydration with culture medium (S1 Fig).

The number of CFU was converted to a logarithmic scale, and normalized biofilms were

calculated by dividing the total biofilm value (expressed as the OD620) by the bacterial growth

for each strain (expressed in CFUs) (Fig 2).

Growth curves confirmed that the strains used in our study grew at a similar growth rate

(S2 Fig). Our results indicate that some strains retain, or even increase, their ability to form

biofilms after rehydration.

Staining of A. baumannii strains spotted on the glass by using the BacLight LIVE/DEAD

bacterial viability kit demonstrated the transition from mostly viable populations (0 days, most

of the cells fluoresced in green) to populations where cells with compromised cytoplasmic

membranes predominated (red fluorescent cells) (Fig 3). A more precise quantification using

reconstructions of confocal sections by the NIS-Elements software reveals fewer differences

between live and dead bacteria at early time-points, but overall, the presence of a fraction of

cells with intact cell membranes (green fluorescent cells) could be detected after 60 days. More-

over, the time required for the loss of membrane integrity differed between strains. After 20

days of desiccation, a significant proportion of the cells of the strain ATCC1 19606T fluo-

resced in red (Fig 3 left) while most of the populations of the clinical isolates remained viable,

in some cases, up to 60 days (Fig 3 (right) and S3 Fig).

We examined white lab coat fragments inoculated with bacteria by scanning electron

microscopy to study the morphology of bacterial adherence on that surface. SEM revealed

some cells with slightly altered cell morphology after long-term starvation and desiccation (Fig

4E and 4F) in comparison with fresh samples (Fig 4C and 4D). Bacteria seem to be firmly

attached to the lab cotton fibers even after several washing steps and a series of ethanol washes

during the sample processing.

Fig 1. Survival of A. baumannii strains in different environments. Survival times of strains inoculated onto white lab

coat, plastic, or in glass coverslips (54% relative humidity), or suspended in sterile saline solution, and kept at room

temperature. Colony counts on LA determined cell survival. Each point represents the mean of three independent

experiments expressed as a reduction in culturability with respect to day 0 (100%). Error bars show the standard error

of the mean.

https://doi.org/10.1371/journal.pone.0201961.g001
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G. mellonella larvae were challenged with fresh inocula of two A. baumannii strains and

compared with larvae challenged with stressed bacteria (prepared from saline suspensions) of

the same strains. Survival was recorded every 12 h for up to 84 h. 105 CFUs (per larvae) from

strains HUMV-2790 and HUMV-1319 killed 50% of larvae after 72 h, and 50% and 70% of lar-

vae after 84 h, respectively. Nevertheless, these strains killed more than 60% of larvae after 72 h

after having suffered stress. Moreover, stressed strain HUMV-2790 killed 90% of larvae after

84 h (Fig 5).

Fig 2. Quantification of biofilm formation. Biofilm formation by A. baumannii strains after desiccation and rehydration with LB.

Quantification of biofilm formation was performed after crystal violet extraction and measurement (OD620). Normalized biofilm

formation, calculated as the total biofilm (expressed as the OD620) divided by growth (expressed in CFUs). Time is indicated in days.

Values are presented as the mean ± standard error (SE) of three independent experiments. Asterisks indicate: �, p<0.05; ��, p<0.01.

https://doi.org/10.1371/journal.pone.0201961.g002

Fig 3. Confocal Laser Scanning Microscopy of live/dead cells. CLSM images of two A. baumannii strains after survival onto glass coverslips at different times (up to

60 days). Representative examples of strain A. baumannii ATCC1 19606T (the worst survivor, left), and of HUMV-2790 (the best survivor, right) are shown. Bacteria

were stained with the BacLight LIVE/DEAD viability kit. Live cells fluoresce in green with Syto 9 dye, and dead cells are stained red with propidium iodide. Original

magnification: ×400. Lower panel: fluorescence (live/dead) for each strain represented in the upper panel, expressed as a percentage.

https://doi.org/10.1371/journal.pone.0201961.g003
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To analyze the contribution of stress adaptation to human serum resistance or sensitivity,

we tested strains HUMV-2790 and HUMV-1319 in a serum survival assay. Inocula from these

strains were prepared from populations maintained in liquid environments or onto lab coat

fragments and compared with fresh cultures (inoculum). Both strains were resistant to human

serum when suspensions were made from LB medium. After long-term starvation, both strains

were also resistant when inocula from lab coat fragments were tested. Strain HUMV 1319

shows a reduction in viability when bacteria came from saline and was resuspended in normal

serum but not in inactivated serum (unpaired T-test, p = 0.002). Conversely, strain HUMV

2790 grows well in both normal and inactivated serum (Fig 6). As expected, E. coli strains were

susceptible to human serum (S4 Fig).

Discussion

The survival of pathogenic microorganisms in the healthcare environment has a significant

role in nosocomial infections. Patient contamination may result from healthcare workers’

Fig 4. SEM analysis. Scanning electron microscopy analysis of the morphology of A. baumannii (strain ATCC1

19606T) cells maintained on white lab coat fragments for up to 60 days. Panel shows random microscopy fields

observed at different magnifications. a,b, control samples, and c,d, infected samples at the beginning of the

experiments (day 0). e,f, infected samples after 60 days at 22ºC. Original Magnification: a, ×100; b,c,e, ×2.500; d,

×10.000; f, ×5.000. Scale bars: a, 0,5 mm; b, 20 μm; c,e, 25 μm; d, 5 μm; f, 10 μm.

https://doi.org/10.1371/journal.pone.0201961.g004
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hands, medical devices, or also by the direct patient shedding of bacteria, which can survive up

to several months on inanimate surfaces [28]. Since different surfaces may influence the sur-

vival times, we used materials that are typical for the hospital environment to study the survival

ability of A. baumannii strains, including white laboratory coats used by professionals in the

medical field and those involved in laboratory work. According to several authors, A.

Fig 5. Galleria mellonella killing assays. Survival rate of worms after challenge with two A. baumannii strains. Ten

larvae were infected with saline alone, with 105 CFU of each strain or uninoculated (no manipulation control),

incubated at 37˚C for 84 h and the time of the death of the larvae was recorded. Results are the mean of two separate

experiments.

https://doi.org/10.1371/journal.pone.0201961.g005

Fig 6. Effect of stress conditions on A. baumannii survival in human serum. Survival ability of A. baumannii strains

from fresh cultures or different stress conditions in 50% (N50, solid lines) and 25% (N25, dotted lines) non-immune

human serum (blue) or in inactivated serum (orange). Results are presented as percentage survival relative to 100% of

the initial inoculum. Values shown are means of three replicates from three independent experiments.

https://doi.org/10.1371/journal.pone.0201961.g006
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baumannii can survive desiccation, although this ability varies dramatically depending on the

strains tested [18, 21, 29, 30]. Our results show that the long-term survival of A. baumannii on

dry surfaces was only slightly affected by the material used because a constant reduction in cul-

turability was observed onto plastic, glass, and lab coat surfaces. In general, the resistance to

stressful conditions was high, being the reference strain the most susceptible to desiccation.

Remarkable is the survival of all strains on the white lab coat fragments. In a recent study,

Munoz-Price found concordance between contamination of hands of healthcare workers

and their white lab coats [31] and their results include strains of Acinetobacter spp. as

contaminants.

Staining of A. baumannii strains spotted on glass demonstrated the presence of cells with

intact cell membranes after long-term starvation and desiccation. Again, reference strain

ATCC1 19606T was the most sensitive to these conditions. Viable but nonculturable state was

not induced in A. baumannii under these conditions because adding sodium pyruvate to the

recovery medium does not affect culturability [22, 23]. Our SEM analysis also confirmed that

some strains remain attached to cotton fibers on the white lab coat fragments after long-term

starvation and desiccation.

Our results correlate with those of Bravo et al. with A. baumannii populations starved in a

liquid environment and with our previous findings using A. pittii strains, a less well-known

species of the genus Acinetobacter [26].

Among the responsible mechanisms that could allow nosocomial pathogens to persist with

these stress conditions are their ability to resist desiccation and to form biofilms. The ability of

A. baumannii to form biofilms is a potential virulence factor that has received some attention.

However, although adherence is a prerequisite for infection, A. baumannii shows low adher-

ence to epithelial cells [24]. In this work, we used three biofilm-forming and two non-biofilm-

forming strains. Importantly, biofilm-forming strains retain or even increase their capacity to

form biofilms after rehydration, despite a considerable reduction in culturability over time.

A. baumannii must first evade serum bactericidal activity to establish infection. Several

studies show that a significant proportion of clinical A. baumannii strains are resistant to kill-

ing by normal human serum [32–34]. We wanted to know if long-term starvation may reduce

A. baumannii resistance to human serum, which could help the immune system to fight

opportunistic infections. Our results show that bacteria, despite being under stress for a long

time, retain their capacity to resist and even to grow in human immune serum. Interestingly,

one strain seems to reduce its capacity for growth in 50% serum after being a long time on the

cotton surface.

Following with virulence traits, we wanted to know if G. mellonella larvae can be killed by

A. baumannii stressed cells. Testing virulence of strains from lab coat experiments would be

also interesting but we have not obtained enough bacteria to perform the Galleria assays.

Using strains maintained for 60 days under starvation (saline), when compared with their

respective fresh inocula no loss of virulence was observed in the Galleria model. This suggests

a rapid adaptation of bacteria to the temperature shift (from room temperature to 37ºC) and

to the availability of nutrients (from starvation to food availability), conditions that bacteria

can easily find in a new patient. The data presented here contribute to a better understanding

of the resilience and risk of A. baumannii in hospital settings.

Although more than 80 full genome sequences of A. baumannii have been published, very

few potential virulence factors have been identified. We have recently shown that A. bauman-
nii can escape from macrophages but is easily eliminated by other human immune cells [35].

This means that Acinetobacter could merely perform its job by resisting the serum bactericidal

activity, multiplying in blood and releasing its potent stimulator of the immune response, the

lipopolysaccharide.

Acinetobacter survival and virulence

PLOS ONE | https://doi.org/10.1371/journal.pone.0201961 August 22, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0201961


Supporting information

S1 Fig. Biofilm formation by A. baumannii strains after desiccation and rehydration with

LB medium. Shown are representative examples of biofilm formation in 24-well plates by the

5 A. baumannii strains spotted onto various surfaces after rehydration and growth in LB

medium for 48 h at 37˚C. Wells were stained with crystal violet.

(TIF)

S2 Fig. Growth curves of A. baumannii strains growing in 96-well plates in Luria broth.

Values are means of bacterial density measured at OD600. Bars indicate mean±SD of four inde-

pendent replicates.

(TIF)

S3 Fig. Confocal Laser Scanning Microscopy of live/dead cells. Representative examples of

CLSM images of three A. baumannii strains after survival onto glass cover slips at different

times (up to 60 days). Bacteria were stained with the BacLight LIVE/DEAD viability kit. Live

cells fluoresce in green with Syto 9 dye and dead cells are stained red with propidium iodide.

Original magnification: ×400. Lower panel: fluorescence (live/dead) for each strain repre-

sented in the upper panel, expressed as percentage.

(TIF)

S4 Fig. Effect of human serum on a susceptible bacterium. Escherichia coli DH10B a) and

BL21 b) strains were used as positive controls for serum susceptibility in 50% non-immune

human serum (blue) or in inactivated serum (orange). Results are presented as percentage sur-

vival relative to 100% of the initial inoculum. Values shown are means of three replicates from

three independent experiments.

(TIF)
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