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Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the world’s most common liver disease, estimated to affect up to 
one-fourth of the population. Hallmarked by hepatic steatosis, NAFLD is associated with a multitude of detrimental effects 
and increased mortality. This narrative review investigates the molecular mechanisms of hepatic steatosis in NAFLD, focus-
ing on the four major pathways contributing to lipid homeostasis in the liver. Hepatic steatosis is a consequence of lipid 
acquisition exceeding lipid disposal, i.e., the uptake of fatty acids and de novo lipogenesis surpassing fatty acid oxidation 
and export. In NAFLD, hepatic uptake and de novo lipogenesis are increased, while a compensatory enhancement of fatty 
acid oxidation is insufficient in normalizing lipid levels and may even promote cellular damage and disease progression by 
inducing oxidative stress, especially with compromised mitochondrial function and increased oxidation in peroxisomes and 
cytochromes. While lipid export initially increases, it plateaus and may even decrease with disease progression, sustaining 
the accumulation of lipids. Fueled by lipo-apoptosis, hepatic steatosis leads to systemic metabolic disarray that adversely 
affects multiple organs, placing abnormal lipid metabolism associated with NAFLD in close relation to many of the current 
life-style-related diseases.
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Introduction

Affecting 25% of the adult population, non-alcoholic fatty 
liver disease (NAFLD) is currently the most common liver 
disease in the world [1]. Regional prevalence rates are cur-
rently highest in the Middle East (32%) and South America 
(30%) and lowest in Africa (13%), but prevalence rates are 
even higher in specific subpopulations such as severely 
obese (90%) and patients with type 2 diabetes (76%) [1]. 
Furthermore, NAFLD in lean individuals is far from uncom-
mon with prevalence rates around 16% [2, 3]. NAFLD is 
associated with increased mortality, particularly due to car-
diovascular disease, hepatocellular carcinoma, and liver-
related events [4]. The escalating prevalence, particularly 
during the last decades, has made NAFLD the second most 
common cause of liver transplantation in the United States 

[5]. The hallmark of NAFLD is hepatic steatosis, but the 
disease also encompasses non-alcoholic steatohepatitis 
(NASH) characterized by hepatic inflammation, hepatocyte 
damage, and fibrosis, highlighting the potentially progres-
sive nature of the disease. The stage of hepatic fibrosis 
predicts both overall and liver-related mortality and is the 
strongest predictor of long-term clinical outcomes, with 
advanced fibrosis (stages 3 and 4) conveying the highest 
risk of mortality [6]. However, progression to fibrosis also 
occurs in patients with steatosis alone [7], although rates 
of progression and overall mortality rates are increased in 
NASH [1, 8]. In addition, metabolic dysfunctions, such as 
insulin resistance, dyslipidemia, and cardiovascular disease 
are all associated with hepatic steatosis, and seem to be more 
related to hepatic fat accumulation and NAFLD than obesity 
status per se [2, 9, 10].

The liver constitutes an essential organ in lipid metabo-
lism. As a central regulator of lipid homeostasis, the liver 
is responsible for orchestrating the synthesis of new fatty 
acids, their export and subsequent redistribution to other 
tissues, as well as their utilization as energy substrates [11] 
(Fig. 1). These processes are closely regulated by complex 
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interactions between hormones, nuclear receptors, and tran-
scription factors, keeping hepatic lipid homeostasis under 
tight control [12]. The disruption of one or more of these 
pathways may precipitate the retention of fat within the 
liver and the subsequent development of NAFLD. Hepatic 
fat accumulation results from an imbalance between lipid 
acquisition and lipid disposal, which are regulated through 
four major pathways: uptake of circulating lipids, de novo 
lipogenesis (DNL), fatty acid oxidation (FAO), and export 
of lipids in very low-density lipoproteins (VLDL) (Fig. 2). 
However, the molecular mechanisms underlying the patho-
logical aggregation of fat within the liver are not fully elu-
cidated. This review explores current insights to these four 
pathways and the molecular mechanisms regulating hepatic 
lipid homeostasis in NAFLD, discussing processes that 
may be instrumental in the development and progression of 
hepatic steatosis.

Hepatic lipid uptake

The uptake of circulating fatty acids by the liver is largely 
dependent on fatty acid transporters, while passive diffusion 
contributes less [13]. The transport is predominately medi-
ated by fatty acid transport proteins (FATP), cluster of differ-
entiation 36 (CD36), and caveolins located in the hepatocyte 
plasma membrane [14] (Fig. 3). Of the six mammalian FATP 
isoforms, FATP2 and FATP5 are found primarily in the liver 
[14]. Knockdown of FATP2 in mice decreases uptake of 
fatty acids and ameliorates hepatic steatosis induced by 

a high fat diet [15]. Likewise, knockout or knockdown of 
FATP5 in mice reduces hepatocyte fatty acid uptake, hepatic 
triglyceride content, and reverses steatosis [16, 17] indicat-
ing a role of FATP-mediated lipid uptake as a facilitator 
of hepatic steatosis. FATP2 and 5 gene expression was 
increased in adolescents with NASH (n = 27) compared to 
normal controls (n = 6) [18]. In contrast, a small study found 
no difference in hepatic FATP5 gene expression between 
individuals with (n = 16) and without (n = 8) hepatic steato-
sis [19]. FATP5 promotor polymorphism (rs56225452), rep-
resenting a putative gain-of-function mutation in the FATP5 
promotor, correlated with BMI-dependent hepatic steatosis 
in males with biopsy proven NAFLD (n = 103) [20], suggest-
ing that genetic variation may underlie part of the contribu-
tion of FATP5 in NAFLD. However, additional studies are 
required to extend our present understanding of the role of 
FATP in clinical NAFLD.

The fatty acid translocase protein, CD36, facilitates the 
transport of long-chain fatty acids and is regulated by peroxi-
some proliferator-activated receptor (PPAR) γ, pregnane X 
receptor, and liver X receptor [21]. Mice fed a high fat diet 
develop hepatic steatosis alongside increased mRNA and 
protein expression of CD36 [22, 23]. Adenovirus-mediated 
overexpression of CD36 enhances hepatic fatty acid uptake 
and fat accumulation [22], while liver-specific knockout of 
CD36 decreases hepatic lipid levels in both genetic and diet-
induced steatosis [23]. This suggests a causal role of CD36 
in steatosis supported by abnormally increased CD36 levels 
in NAFLD patients: a small study reported increased CD36 
mRNA levels in obese subjects with high amounts of intra-
cellular fat (66.0 ± 6.8%, n = 5), compared to subjects with 
low liver fat content (6.4 ± 2.7%, n = 5) [24]. In adolescents 
and adults of both genders, diagnosed with NASH or hepatic 
steatosis, CD36 gene and protein expression were increased 
compared to healthy controls; however, CD36 levels did not 
differ between patients with steatosis and NASH [18, 25]. 
In contrast, hepatic levels of CD36 were found to be similar 
in morbidly obese women with hepatic steatosis compared 
to morbidly obese controls with normal livers [26]. How-
ever, the conflicting findings of expression patterns may not 
adequately illustrate a functional consequence of the role 
of CD36. Immunohistochemistry of liver sections showed 
CD36 as located in the hepatocyte plasma membrane in 
patients with steatosis and NASH, compared to a weak 
CD36 expression confined to the cytoplasm of hepatocytes 
in normal livers, suggesting that the translocation of CD36 
protein from cytoplasm to membrane may be a triggering 
event in NAFLD progression [25].

The caveolins comprise a family of three membrane 
proteins contributing to lipid trafficking and formation of 
lipid droplets [14]. Caveolin 1 was increased in the liver 
of mice with NAFLD, and located mainly in the centri-
lobular zone 3, where the steatosis was most severe [27]. 
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Fig. 1   Hepatic lipid acquisition and disposal. Intrahepatic lipid levels 
are governed by the balance between lipid acquisition and disposal 
constituting the four major pathways of hepatic lipid homeosta-
sis. The liver acquires lipids through the uptake of circulating fatty 
acids and via de novo lipogenesis. Conversely, lipids may be dis-
posed of through oxidation (in the mitochondria, peroxisomes and 
cytochromes) and through export as very low density lipoprotein 
(VLDL) particles. Consequently, lipid accumulation is the result of 
lipid acquisition pathways exceeding disposal pathways
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Similarly, zone 3 predominant hepatic steatosis is reported 
in adult NAFLD patients [28]. Whole-body caveolin 1 
knockout (cav1−/−) reduced hepatic steatosis in high fat 
fed mice in response to 24 h of fasting, whereas liver-
specific caveolin 1 knockout did not affect hepatic fat con-
tent [29]. Reduced hepatic steatosis in fasted cav1−/− mice 
was suggested to be secondary to compromised metabolic 
function in the adipose tissue, resulting in reduced hepatic 
DNL (and possibly increased FAO) [29]. In contrast, 
decreased caveolin 1 expression has been reported in the 
livers of high fat fed mice with NAFLD [30]. Furthermore, 
caveolin 1 knockout augmented steatosis both in vitro and 
in vivo by enhancing the expression of genes involved in 
DNL [30], contradicting earlier studies, and suggesting 
a protective effect of caveolin 1 in NAFLD [30]. Differ-
ential observations suggest that the role of caveolin 1 in 
hepatic lipid accumulation may differ depending on how 
the steatosis is induced, e.g., via high fat diet or fasting. 
However, long-term fasting is typically not the primary 

cause of NAFLD, and results from such models should 
consequently be translated with caution.

Following uptake, hydrophobic fatty acids do not diffuse 
freely in the cytosol and must instead be shuttled between 
different organelles by specific fatty acid binding proteins 
(FABP) of which FABP1, also known as liver FABP, is the 
predominant isoform in the liver [13]. FABP1 facilitates 
the transportation, storage, and utilization of fatty acids 
and their acyl-CoA derivatives and may exert a protective 
effect against lipotoxicity by binding otherwise cytotoxic 
free fatty acids and facilitating their oxidation or incorpora-
tion into triglycerides [31]. FABP1 also affects the expres-
sion of PPARα and PPARγ by mediating the transport of 
PPAR ligands to the nucleus of hepatocytes, and intracel-
lular FABP1 concentrations are correlated with PPARα 
and PPARγ activities [32]. Hepatic triglycerides and lipid 
disposal pathways (fatty acid export and oxidation) are 
decreased following FABP1 ablation in fasted mice, sug-
gesting that reduced levels of liver triglycerides are linked to 
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Fig. 2   Overview of hepatic lipid metabolism. (1) Uptake of circulat-
ing lipids are facilitated by specific fatty acid transporters located in 
the hepatocyte plasma membrane and is regulated by PPARγ. FABP1 
facilitates the transport of hydrophobic fatty acids to the different cel-
lular compartments within the cytoplasm. (2) De novo lipogenesis 
converts acetyl-CoA (originating from excess carbohydrates) to new 
fatty acids, which subsequently can be esterified and stored as tri-
glycerides. Regulation of de novo lipogenesis is complex, but broadly 
controlled by two key transcription factors: SREBP1c and ChREBP. 
(3) Fatty acid oxidation is controlled by PPARα and reduces intra-
hepatic fat levels by utilizing lipids as an energy source. While the 

process primarily occurs in the mitochondria, lipid overload and/or 
compromised mitochondrial function forces a higher degree of fatty 
acid oxidation to take place in the peroxisomes and cytochromes, 
thereby, generating ROS. (4) The liver can export lipids by packaging 
them into water-soluble VLDL-particles, which may then be utilized 
or stored in other tissues. ChREBP carbohydrate regulatory element 
binding protein, CPT carnitine palmitoyltransferase, FABP fatty acid 
binding protein, PPAR peroxisome proliferator-activated receptor, 
ROS reactive oxygen species, SREBP1c sterol regulatory element 
binding protein 1c, VLDL very low density lipoprotein
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a reduced hepatic lipid uptake, at least in the fasted state in 
which lipid flux to the liver is increased [33, 34]. In patients 
with NAFLD, hepatic FABP1, FABP4, and FABP5 mRNA 
levels were increased compared to non-NAFLD controls 
and FABP4 and 5 correlated with the percentage of liver 
fat [19, 35]. Thus, enhanced intracellular trafficking of fatty 
acids in the lipid laden liver of NAFLD patients may be 
shunting harmful fatty acids to storage, thereby promoting 

steatosis. FABP levels may vary according to disease sever-
ity as FABP1 protein levels were overexpressed in obese 
patients with steatosis (n = 10) compared to obese controls 
(n = 10), but decreased in NASH patients with mild fibro-
sis (n = 10) and declining further in NASH with advanced 
fibrosis (n = 10) [36]. Thus, increased FABP1 in the earlier 
stages of NAFLD may enhance lipid flux as a compensatory 
mechanism to limit lipotoxicity. As the disease progresses, 
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Fig. 3   Effects on hepatic lipid metabolism in NAFLD. While the role 
of hepatic caveolins is still unclear, CD36, FATP2 and -5 mediates 
increased uptake of circulating lipids in NAFLD. Initially, FABP1 
is increased, but levels may decline with disease progression, poten-
tially limiting the mobility of fatty acids and sustaining steatosis. 
Enhanced SREBP1c-mediated de novo lipogenesis is a key feature of 
NAFLD contributing significantly to the accumulation of lipids. At 
the same time, ChREBP which could be hepatoprotective, appears to 
be downregulated in NAFLD. Although data relating to the regula-
tion of fatty acid oxidation are conflicting, mitochondrial dysfunction 
is an important feature of NAFLD resulting in increased generation 
of ROS and utilization of cytochrome- and peroxisome-mediated 
oxidation. This further promotes oxidative stress, in turn inducing 
damage to the mitochondrial membranes, compromising cellular res-
piration and metabolism, and impairing liver function by direct and 
indirect cellular damage. Lastly, lipid export increases with hepatic 

triglyceride levels. However, in the setting of NASH, levels of MTTP 
and apoB100 may be decreased, hereby, limiting VLDL export and 
instead facilitating lipid accumulation. The net result is an escalating 
vicious circle, driven by chronic dyslipidemia and hepatic lipid over-
load, leading to detrimental consequences for liver metabolism and 
function and ultimately promoting irreversible liver damage. Green 
arrow: increased expression. Red arrow: decreased expression. Purple 
arrow: expression different between steatosis and NASH. ACC​ acetyl-
CoA carboxylase, ApoB100 apolipoprotein B100, CD36 cluster of 
differentiation 36, ChREBP carbohydrate regulatory element binding 
protein, ELOVL elongation of very long chain fatty acid, FABP fatty 
acid binding protein, FASN fatty acid synthase, FATP fatty acid trans-
port protein, MTTP microsomal triglyceride transfer protein, PPAR 
peroxisome proliferator-activated receptor, ROS reactive oxygen spe-
cies, SCD1 stearoyl-CoA desaturase 1, SREBP1c sterol regulatory 
element binding protein 1c, VLDL very low density lipoprotein
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diminishing levels of FABP1 potentially leads to increased 
levels of lipids, with ensuing lipotoxicity promoting disease 
progression by damaging essential organelles and cells in 
the liver (Fig. 3).

De novo lipogenesis

In short, DNL enables the liver to synthesize new fatty 
acids from acetyl-CoA. Initially, acetyl-CoA is converted 
to malonyl-CoA by acetyl-CoA carboxylase (ACC) and 
malonyl-CoA is then converted to palmitate by fatty acid 
synthase (FASN). New fatty acid may then undergo a range 
of desaturation, elongation, and esterification steps before 
ultimately being stored as triglycerides or exported as VLDL 
particles (Fig. 3). Thus, increased DNL can cause hepatic 
steatosis and/or hypertriglyceridemia, but may also induce 
steatohepatitis, as saturated fatty acids, such as palmitate, 
can cause inflammation and apoptosis [37]. Studies using 
stable isotope tracers suggest that an important characteristic 
of NAFLD patients is abnormally elevated DNL regardless 
of fasting. Accordingly, a small study reported increased 
DNL in NAFLD patients (n = 5) compared to controls (n = 6) 
[38]. These findings are supported by enhanced DNL in 
overweight/obese subjects with high liver fat (18.3 ± 3.6%, 
n = 13) compared to those with lower liver fat (3.1 ± 2.7%, 
n = 11) while being matched for adiposity and circulating 
lipids [39]. In addition, DNL was independently associated 
with intrahepatic triglyceride levels [39], and inadequate 
suppression of DNL during fasting could be a key feature 
in NAFLD patients [38, 39]. The importance of DNL in 
NAFLD is further supported by studies, showing that in 
obese patients with NAFLD, approximately 26% of hepatic 
triglycerides were derived from DNL and that these patients 
were unable to regulate DNL when transitioning from fast-
ing to fed state [40]. While limited, the available clinical data 
collectively indicate that failure to regulate DNL is a central 
feature of liver lipid accumulation in NAFLD patients.

The transcriptional regulation of DNL is mainly orches-
trated by two key transcription factors: sterol regulatory 
element-binding protein 1c (SREBP1c), which is activated 
by insulin and liver X receptor α, and carbohydrate regula-
tory element-binding protein (ChREBP), which is activated 
by carbohydrates [41–43] (Fig. 2). SREBP1c expression is 
enhanced in patients with NAFLD, and in agreement with 
its lipogenic role, hepatic triglyceride levels are higher in 
transgenic mice overexpressing SREBP1c [44, 45], while 
SREBP1c knockout mice display decreased expression of 
lipogenic enzymes [46]. SREBP1c ablation also promotes a 
compensatory upregulation of SREBP2, leading to increased 
hepatic cholesterol synthesis and cholesterol accumulation, 
linking DNL to cholesterol metabolism [46]. While the phe-
notypic insulin resistance in NAFLD would be expected to 

counteract insulin-mediated SREBP1c activation, a state 
of selective insulin resistance ensures that insulin retains 
its ability to promote DNL through SREBP1c while being 
unable to suppress gluconeogenesis [41]. This helps may 
explain the observed elevated rates of hepatic DNL under 
insulin resistant conditions. In addition, SREBP1c indirectly 
contributes to the development of hepatic insulin resistance, 
since enhanced lipogenesis and subsequent accumulation of 
harmful lipid species, such as diacylglycerides, may inter-
fere with insulin signaling (as discussed below). ChREBP 
mediates carbohydrate, but not fat-induced DNL as high 
fat diets do not activate ChREBP and may even decrease 
ChREBP activity [43, 47]. In mice, knockout of ChREBP 
has been shown to reduce hepatic fatty acid synthesis by 
65% compared to wild-type controls, but also to promote 
insulin resistance, delayed glucose clearance, and severe 
intolerance to simple carbohydrates, such as sucrose and 
fructose (resulting in death in the majority of animals) due 
to an inability to shunt fructose into glycolytic pathways 
[48]. This emphasizes the essential role of ChREBP in both 
lipid and glucose metabolisms and suggests that ChREBP 
is required for a normal lipogenic response following the 
ingestion of carbohydrates [48]. In ob/ob mice, silencing 
ChREBP reduces hepatic triglyceride content specifically 
through inhibition of glucose-induced lipogenesis [49]. 
Likewise, ChREBP knockout protected against fructose-
induced steatosis in mice, but substantially increased his-
tological liver damage as a result of enhanced cholesterol 
synthesis and subsequent cytotoxicity [50]. By limiting 
levels of cytotoxic-free cholesterol and the subsequent liver 
injury, ChREBP may confer a hepatoprotective effect [50]. 
Increased ChREBP levels in NAFLD could then constitute a 
potential defense mechanism shielding the liver from further 
injury and progression towards NASH. Supporting this con-
cept, lipogenesis has been reported to be dissociated from 
NASH progression, i.e., elevated DNL may induce steatosis, 
but may be protective in relation to disease progression [51]. 
High ChREBP expression was found in biopsies from NASH 
patients, but levels declined in patients with severe insulin 
resistance, indicating that ChREBP may segregate hepatic 
steatosis from insulin resistance [52]. In high fat fed mice, 
adenovirus-mediated ChREBP overexpression resulted 
in hepatic steatosis and increased DNL. However, insulin 
sensitivity and glucose tolerance were maintained, likely 
owing to an increased conversion of saturated fatty acids 
(known to cause insulin resistance) to monounsaturated 
fatty acids mediated by stearoyl-CoA desaturase-1 (SCD1) 
[52]. ChREBP was down-regulated in patients with NAFLD 
(n = 22) compared to healthy controls (n = 10), and instead, 
SREBP1c was reported to be one of the predominant regu-
lators of DNL in NAFLD, upregulating genes coding for 
ACC1 and FAS [53].
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In response to elevated SREBP1c, the expression of 
downstream targets ACC and FASN was increased in 
both patients and animal models with NAFLD [18, 44, 45, 
53–57]. Liver-specific knockout of ACC1 decreased hepatic 
lipid accumulation in mice and DNL in hepatocytes [58]. 
However, knockout mice were not protected from hepatic 
steatosis induced by a high fat diet, potentially due to 
decreased fatty acid oxidation caused by a compensatory 
increase of ACC2, which in turn inhibited mitochondrial 
β-oxidation [58]. Accordingly, inhibition of both ACC1 and 
ACC2 was required to improve hepatic steatosis in mice 
[59], implying that both isoforms are important in NAFLD. 
Paradoxically, liver-specific FASN knockout promoted 
hepatic steatosis in mice on a zero-fat diet [60], in which 
steatosis developed alongside defective PPARα signaling 
and with a phenotype that could be corrected by dietary 
fat or a PPARα agonist [60]. The study identified ‘new’ 
lipids, formed either through DNL or originating from the 
diet, as potential PPARα ligands contributing to the regu-
lation of hepatic lipid homeostasis [60]. As mentioned, 
conversion of saturated fatty acids to mono-unsaturated 
fatty acids by SCD1 may be protective in NAFLD [52]. In 
agreement, incubation of hepatocytes with saturated fatty 
acids decreased cell viability, while incubation with mono-
unsaturated fatty acids enhanced lipid accumulation without 
affecting cellular viability [61]. Despite preventing steato-
sis, SCD1 knockout exacerbated hepatic fibrosis and cellular 
apoptosis in mice with NASH induced by a methionine and 
choline deficient diet [61]. The end-result of SCD1 inhi-
bition may, therefore, be an aggravation of NASH due to 
intracellular accumulation of cytotoxic saturated fatty acids 
[51, 62], placing the partitioning of saturated fatty acids to 
mono-unsaturated fatty acids as a protective factor in delay-
ing NAFLD progression. In view of the considerable cross-
talk between the molecular pathways in hepatic lipid homeo-
stasis, inhibition of DNL is not a trivial task, even though it 
may constitute an attractive therapeutic target.

Ectopic lipid deposition directly promotes insulin 
resistance, which is a common feature of patients with 
NAFLD-associated diseases [63, 64]. Insulin sensitivity in 
liver, muscles, and adipose tissue was reduced in subjects 
with high amounts of hepatic lipids (25.3 ± 3.5%, n = 10) 
compared to individuals with normal levels of hepatic 
lipids (3.6 ± 0.5%, n = 10) matched for visceral adipose 
tissue volume [65]. Furthermore, hepatic insulin sensitiv-
ity was only compromised in obese individuals (n = 20) 
when NAFLD was present [66]. As not all patients with 
fatty livers develop NASH, some individuals must pos-
sess protective mechanisms to shield them from lipotoxic-
ity, e.g., lipid desaturation and inhibition of lipid-induced 
inflammation [67]. In the promotion of insulin resistance, 
diacylglycerides have emerged as potential mediators. Dia-
cylglycerides are precursors of triglycerides, and hepatic 

accumulation of diacylglycerides has been associated 
with hepatic insulin resistance through the induction of 
protein kinase Cε [68]. Transgenic mice overexpressing 
diglyceride acyltransferase 2—catalyzing the conversion 
of diglycerides to triglycerides—increased hepatic triglyc-
eride content fivefold without affecting insulin sensitivity 
[69]. Likewise, antisense oligonucleotides against protein 
kinase Cε protected rats from diet-induced hepatic insu-
lin resistance [70]. Conversely, inhibition of diglyceride 
acyltransferase 2 with antisense oligonucleotides in db/db 
mice fed a methionine and choline-deficient diet-reduced 
hepatic steatosis, but augmented hepatic inflammation, 
fibrosis, and apoptosis [71]. Based on magnetic resonance 
spectroscopy, livers of obese subjects were classified with 
no steatosis (< 5.56%, n = 52), mild steatosis (5.56–15%, 
n = 41), or severe steatosis (> 15%, n = 40), revealing that 
the presence of NAFLD, but not the amount of hepatic 
triglycerides, was associated with hepatic insulin resist-
ance [72]. When investigating liver biopsies from a subset 
of the subjects (n = 27), only cytoplasmic diacylglyceride 
levels, and not total or membrane-associated diacylglyc-
erides, predicted hepatic insulin resistance [72]. Enhanced 
membrane translocation of protein kinase Cϵ (i.e., activa-
tion) provides a potential mechanism for diacylglyceride-
induced insulin resistance, suggesting hepatic diacylg-
lyceride to be a relevant predictor of insulin resistance 
in NAFLD [72, 73]. In patients with steatosis (n = 9) or 
NASH (n = 9), hepatic diacylglyceride levels were equally 
increased compared to controls (n = 9) [74]. In addition, 
diglyceride acyltransferases 1 and 2 were not differentially 
expressed between patients with steatosis (n = 51) and 
NASH (n = 53) [75]. It appears that once steatosis is estab-
lished, further NAFLD/NASH progression does not pro-
mote additional alterations in diacylglyceride-linked lipid 
metabolism, rendering diacylglycerides to exert an adverse 
effect already during the early stages of NAFLD develop-
ment. The ongoing accumulation of hepatic triglyceride 
may represent a compensatory measure implemented to 
convey some degree of protection against more harmful 
lipid species. Though possibly an appealing thought, stea-
tosis should not be interpreted as being beneficial, since 
chronic hepatic steatosis is associated with several seri-
ous conditions, including dyslipidemia and hypertension, 
imposing considerable negative effects on the quality of 
life as well as increasing mortality in afflicted patients 
[76].

Collectively, lipid accumulation in NAFLD is supported 
by enhanced lipogenesis, denoting DNL as a potential thera-
peutic target. However, blocking specific enzymes related to 
DNL may, in some cases, exacerbate NASH and the accom-
panying metabolic deterioration by promoting accumulation 
of cytotoxic lipid species, indicating the importance of the 
composition of the fatty acid pool in the liver (Fig. 3).
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Oxidation of fatty acids

Oxidation of fatty acids is controlled by PPARα and occurs 
mainly in the mitochondria, providing a source of energy 
to generate ATP especially when circulating glucose con-
centrations are low [14, 77–81]. In mammalian cells, the 
mitochondria, peroxisomes, and cytochromes mediate 
FAO [78, 82]. Entry of fatty acids into the mitochondria 
relies on carnitine palmitoyltransferase 1 (CPT1) situated 
in the outer mitochondrial membrane [80], but as the mito-
chondria lack the ability to oxidize very long chain fatty 
acids [79], these are preferably metabolized via peroxi-
somal β-oxidation. In case of lipid overload—such as in 
NAFLD—ω-oxidation in the cytochromes also contrib-
utes [78]. However, these processes generate consider-
able amounts of reactive oxygen species (ROS), oxidative 
stress, and toxic dicarboxylic acids, potentially promoting 
inflammation and disease progression [78] (Fig. 3).

Activation of PPARα induces the transcription of a 
range of genes related to FAO in the mitochondria, per-
oxisomes, and cytochromes, thereby reducing hepatic 
lipid levels [77, 80, 81, 83]. Knockout of PPARα in ob/
ob mice results in hepatic steatosis, supporting a role of 
PPARα in the regulation of hepatic lipid metabolism [84]. 
A 24 h fasting period of WT or ob/ob mice, upregulated 
PPARα and PPARα-target genes related to mitochondrial 
(medium- and long-chain acyl-CoA dehydrogenases), per-
oxisomal (acyl-CoA oxidase (ACOX) 1 and enoyl-CoA 
hydratase), and cytochrome-mediated (CYP4A1 and 
CYP4A3) FAO [85]. This response was less pronounced 
in PPARα knockout animals and coincided with hepatic 
steatosis, again emphasizing the critical role of PPARα in 
promoting FAO and preventing hepatic lipid accumula-
tion [85]. In humans, hepatic PPARα levels did not differ 
between patients with steatosis (n = 16) and healthy con-
trols (n = 8) [19]. However, PPARα was downregulated 
in patients with NASH compared to patients with stea-
tosis and healthy controls [75, 86], and the expression of 
PPARα decreased with increasing NAFLD activity score 
and fibrosis stage [86]. In addition, a longitudinal analy-
sis after a 1-year follow-up associated increased PPARα 
with histological improvements in NASH [86]. Decreased 
PPARα in NASH also enhanced the DNA-binding capacity 
of c-Jun N-terminal kinase 1 (JNK1) and nuclear factor 
kappa-light-chain enhancer of activated B cells (NF-κB) 
leading to increased hepatic inflammation [87]. Thus, 
PPARα expression may be related to several aspects of 
NASH progression, modulating not only lipid homeosta-
sis, but inflammation as well.

The expected consequence of hepatic lipid accumu-
lation would be increased FAO. However, studies of 
FAO in patients with steatosis or NASH are conflicting, 

reporting enhanced [88–92], unchanged [93], or decreased 
FAO [94]. The broad range of hepatic states covered by 
the term NAFLD makes it difficult to compare studies 
directly, and oxidation of fatty acids may differ based on 
the severity of the disease. Furthermore, FAO capacities 
may vary inter-individually rendering some subjects more 
susceptible to NAFLD. Indeed, rats selectively bred for 
low intrinsic aerobic capacity display decreased mitochon-
drial FAO and were predisposed to diet-induced hepatic 
steatosis [95]. Expression of genes related to mitochon-
drial and peroxisomal β-oxidation was higher in patients 
with more severe steatosis (n = 11) compared to patients 
with less severe steatosis (n = 21) or non-steatotic con-
trols (n = 16) [96]. β-Oxidation, measured indirectly as 
plasma β-hydroxybutyrate levels, was higher in patients 
with NASH (n = 6) compared to steatosis (n = 6) or normal 
controls (n = 6) [90]. Increased FAO may be an adaptive 
response in patients with NAFLD attempting to reduce 
the lipid overload and lipotoxicity, but also produces ROS 
and excessive FAO may overwhelm the capacity of the 
anti-oxidant defense system and induce oxidative stress. 
Accordingly, hepatic oxidative stress and changes in mito-
chondrial ultrastructure were increased alongside FAO in 
patients with NASH [90]. Glutathione, glutathione per-
oxidase, and superoxide dismutase were decreased in liver 
biopsies from NAFLD patients and in mitochondria from 
animal models of NAFLD [82, 87], closing the loop on 
a vicious cycle in which the diminishing capacity of the 
antioxidant defense system is continuously being depleted 
by rising ROS levels. In NASH patients (n = 10), oxida-
tive DNA damage was significantly increased compared 
to healthy controls (n = 16) despite similar rates of FAO 
following an intravenous infusion of lipids, suggesting 
increased susceptibility to oxidative stress in these patients 
[89].

Lipid oxidation and oxidative damage to mitochondrial 
DNA further diminish mitochondrial function, establish-
ing a self-perpetuating vicious cycle to exacerbate mito-
chondrial dysfunction and oxidative stress [80]. Decreased 
activity of the mitochondrial respiratory chain was reported 
in overweight/obese patients with NASH compared to 
controls [97, 98], and alterations in mitochondrial ultra-
structure have been observed prior to NAFLD develop-
ment in the Otsuka Long–Evans Tokushima Fatty rat [99] 
as well as in patients with steatosis preceding progression 
to NASH [100]. The decrease in mitochondrial function 
may result in the utilization of alternative FAO pathways. 
Mice heterozygous for mitochondrial trifunctional protein 
have compromised mitochondrial β-oxidation and develop 
hepatic steatosis alongside a compensatory upregulation of 
CYP2E1-facilitated FAO and oxidative stress [101, 102]. In 
NASH patients, hepatic CYP2E1 activity was increased and 
expression specifically localized to steatotic areas compared 
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to patients with steatosis and healthy controls [103–105]. 
CYP2E1 activity correlated with disease severity suggesting 
an involvement of CYP2E1 in FAO particularly during later 
disease stages, i.e., NASH [104]. In contrast, other studies 
have reported no difference in CYP2E1 expression between 
patients with NASH (n = 30) and those with only steatosis 
(n = 10) [106]. Thus, enhanced CYP2E1 did not differentiate 
bland steatosis from NASH, but could still play a role in dis-
ease progression. In agreement with enhanced cytochrome-
mediated FAO, increased CYP4A11—another key fatty acid 
metabolizing enzyme located in the cytochromes—has been 
reported in patients with NAFLD [45, 107]. Increased FAO 
in cytochromes may then be an important event in steatosis 
and NASH, with the excessive amount of ROS produced by 
the CYP enzymes exacerbating hepatic oxidative stress and 
consequently worsening liver damage.

The last of the three organelles important to fatty acid 
metabolism and hepatic lipid homeostasis is the peroxi-
somes. Targeting this system, either by hepatocyte-specific 
knockout of peroxisomes or by deficiency in ACOX (which 
catalyzes the initial step in peroxisomal FAO), results in 
hepatic lipid accumulation and fibrosis, oxidative stress, 
and inflammation, emphasizing the role of peroximal FAO 
in NAFLD and NASH [108]. A massive upregulation of 
PPARα was observed during ageing in ACOX deficient 
mice, suggesting ACOX substrates as endogenous activa-
tors of PPARα [109]. ACOX and branch-chained acyl-CoA 
oxidase (another peroxisomal enzyme involved in FAO) 
mRNA levels were higher in patients with NAFLD com-
pared to controls, indicating that peroxisomal FAO upregu-
lation may be a compensatory response aiming to resolve 
the progressing steatosis in NAFLD [45, 107]. However, 
similar to ω-oxidation in the cytochromes, the peroxisomes 
generate ROS as they oxidize fatty acids, and likewise, the 
peroxisomes may induce oxidative stress and promote dis-
ease progression [83].

In summary, the current data on FAO in NAFLD are 
conflicting, but even in studies suggesting enhanced FAO, 
augmented oxidation of fatty acids appear inadequate in 
clearing the liver of lipids. FAO in dysfunctional mitochon-
dria—a characteristic of NAFLD—produces excessive ROS 
and may also favor the utilization of the peroxisomes and 
cytochromes for FAO. This ultimately facilitates disease 
progression by inducing oxidative stress and inflammation.

Lipid export

In addition to FAO, export of triglycerides is the only way 
to reduce hepatic lipid content [68]. Due to their hydropho-
bic nature, fatty acids can only be exported from the liver 
after being packed into water-soluble VLDL particles along-
side cholesterol, phospholipids, and apolipoproteins [110]. 

VLDL particles are formed in the endoplasmic reticulum, 
where apolipoprotein B100 (apoB100) is lipidated in a 
process catalyzed by the enzyme microsomal triglyceride 
transfer protein (MTTP). The nascent VLDL particle is then 
transferred to the Golgi apparatus, and during this process, 
the particle is further lipidated until a mature VLDL particle 
is formed [111]. While one molecule of apoB100 is associ-
ated with each VLDL particle, and is required for VLDL 
export, the triglyceride content of the VLDL particle can 
vary considerably [9, 110]. Consequently, apoB100 and 
MTTP are key components in hepatic VLDL secretion and 
in maintaining hepatic lipid homeostasis. As such, hepatic 
steatosis, secondary to compromised triglyceride export, 
is common in patients with genetic defects in the apoB or 
MTTP gene (hypobetalipoproteinemia and abetaproteine-
mia, respectively) [112, 113]. Although moderate exposure 
to fatty acids increased apoB100 secretion, prolonged expo-
sure leads to ER stress and posttranslational degradation of 
apoB100, and consequently decreased apoB100 secretion, 
both in vivo and in vitro hereby linking ER stress to NAFLD 
progression through apoB100 inhibition [114, 115] (Fig. 3). 
MTTP gene transcription is positively regulated by PPARα 
and increased MTTP expression is paralleled by a change in 
apoB100 secretion, but a paradoxical decrease in circulating 
triglycerides in mice [116]. This could be due to a PPARα-
mediated inhibition of apoCIII, promoting the clearance of 
apoB100-associated lipoproteins [116]. Notably, whereas 
PPARα agonism increases plasma HDL in humans, this is 
not the case in most applied rat and mouse models, as they 
lack the PPAR response element in the promotor region of 
ApoA1 (the major apolipoprotein of HDL); in fact, HDL 
may even be decreased in response to PPARα these species 
[117]. Thus, PPARα not only exerts its catabolic effect via 
FAO, but also through the regulation of lipoprotein metabo-
lism. Conversely, both apoB100 and MTTP are negatively 
regulated by insulin, which reduces hepatic lipid export by 
inducing apoB100 degradation and suppressing MTTP syn-
thesis [111]. High insulin levels in the post-prandial state 
decrease hepatic VLDL production, favoring chylomicron-
mediated delivery of dietary lipids to the periphery [111], 
but the selective hepatic insulin resistance in patients with 
NAFLD allows insulin to stimulate DNL without inhibiting 
VLDL production [118]. VLDL secretion was increased in 
patients with NAFLD [65, 110, 119] and liver triglyceride 
content was directly associated with VLDL-TG secretion 
rates [65, 66, 110, 119]. However, while VLDL-TG export 
increased with intrahepatic lipid content, secretion pla-
teaued when hepatic fat content exceeded 10%, surpassing 
the compensatory capacity to prevent increasing hepatic 
lipid accumulation [110]. Despite higher VLDL-TG secre-
tion in patients with hepatic steatosis compared to healthy 
individuals, VLDL-apoB100 secretion was unchanged, 
suggesting that NAFLD patients do not secrete additional, 
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but instead larger and more triglyceride-rich, VLDL par-
ticles [110]. However, very large VLDL particles cannot 
be secreted if their diameter exceeds that of the sinusoidal 
endothelial pores, and this limitation may ultimately result 
in lipid retention and NAFLD [120]. Failure to increase the 
number of secreted VLDL particles could indicate subopti-
mal apoB100 levels as a precipitating factor in NAFLD, and 
while mRNA levels of apoB100 and MTTP was found to be 
higher in patients with NAFLD compared to controls [35, 
121], apoB100 synthesis rates were lower in patients with 
NASH (n = 7) compared to lean (n = 7) or BMI-matched 
obese (n = 7) controls without NASH [122]. Likewise, 
hepatic mRNA levels of apoB100 and MTTP and serum 
VLDL-TG were higher in patients with steatosis (n = 51) 
compared to patients with NASH (n = 53), marking dete-
rioration of VLDL assembly and export as important in the 
progression from steatosis to NASH [75]. NAFLD patients 
with more advanced steatosis (> 30%) had decreased MTTP 
levels compared to healthy controls, suggesting that lipid 
export may also become compromised directly by the accu-
mulation of substantial amounts of intracellular lipids [35]. 
Consequently, vector-mediated overexpression of MTTP in 
the Fatty Liver Shionogi mice decreased liver triglycerides 
and improved NASH [123]. Given the effect of PPARα on 
lipoprotein metabolism, it could be speculated that declining 
PPARα levels with NAFLD progression [75, 86] contrib-
ute to lower MTTP levels and apoB100 secretion rates. In 
contrast, similar expression levels of MTTP and apoB100 
between patients with steatosis, NASH, and healthy controls 
have also been reported, denoting the considerable disease 
heterogeneity associated with NAFLD [124].

Despite the variation between studies, lipid export in 
NAFLD seems to be biphasic, initially increasing followed 
by a plateau or even decrease. The diminished export results 
in hepatic lipid overload and subsequent intracellular lipid 
accumulation, leading to steatosis, lipotoxicity, and liver 
damage, and promoting disease progression and fibrosis.

Pre‑clinical models and current clinical 
management

There is currently no approved pharmacological treatment 
for NAFLD. A major limiting factor in the development of 
new treatments is the lack of predictive pre-clinical models 
that accurately reflect human disease with regard to liver 
histology, pathophysiology, and metabolic abnormalities. 
The available animal models can be characterized as dietary, 
genetic or as a combination of these two. However, as muta-
tions are rarely the cause of human NAFLD, this section will 
highlight some of the most commonly applied dietary mod-
els. These models attempt to replicate the unhealthy Western 
dietary pattern associated with NAFLD in humans, which 

are often high in fat, sugar, and cholesterol. However, to 
ensure translatability, it is important to maintain physiologi-
cally relevant levels of dietary macro- and micronutrients.

The methionine and choline-deficient diet (commonly 
applied in mice and rats) and choline-deficient L-amino-
defined diet rapidly induce NASH, but fail to reproduce the 
pathophysiological response corresponding to clinical obser-
vations [125, 126]. Atherogenic diets can induce NASH 
and fibrosis, but the exceedingly high levels of cholesterol 
(1–2%) and the inclusion of cholic acid differ from the clini-
cal situation and may even improve glucose tolerance and 
insulin sensitivity [127–129]. The addition of a high-fat 
component returns these to, at least, normal glucose/insulin 
levels [127]. Noticeably, a major limitation of the current 
models utilizing Western diets, not employing micronutri-
ent deficiency or abnormally high amounts of cholesterol, is 
the absence of progressive, advanced hepatic fibrosis [129]. 
Using a human-like Western diet, the diet-induced animal 
model of non-alcoholic fatty liver disease (DIAMOND) 
mouse was developed as a promising pre-clinical model 
resembling human liver histology, pathophysiology, meta-
bolic signatures, and advanced fibrosis as well as hepato-
cellular carcinoma after 52 weeks [130]. Unlike mice and 
rats, guinea pigs naturally resemble the human lipoprotein 
profile and develop human-like NASH histopathology, dys-
lipidemia, and hepatic oxidative stress when fed a Western 
diet [131–133]. Advanced hepatic fibrosis develops after 
20–24 weeks [132], allowing interventions to be evaluated 
on advanced disease stages within a relatively short time 
frame. Nevertheless, while animals represent a tool to study 
NAFLD and NASH, it is unlikely that any single animal 
model will reflect all aspects of human NASH and research-
ers must critically select the model(s) best suited for the 
subject of investigation.

Diet and lifestyle interventions are mainstay in the treat-
ment of NAFLD, and weight-loss ≥ 7% confers histological 
improvements of NASH [134]. However, lifestyle interven-
tions are notoriously difficult to maintain [135], suggest-
ing that some patients may benefit from pharmacological 
therapy. When validated in randomized clinical trials, only a 
few drugs have shown efficacy on NASH liver histology and/
or fibrosis. These include vitamin E, pioglitazone (PPARγ 
agonist), obeticholic acid (farensoid X receptor agonist), 
cenicriviroc (CCR2/CCR5 antagonist), selonsertib (apop-
tosis signal-regulating kinase 1 inhibitor), and liraglutide 
(glucagon-like peptide 1 analogue) [136–141]. However, 
adverse effects may limit the treatment potential, e.g., gli-
tazones are associated with phenotypical weight gain [136] 
and obeticholic acid induced pruritus and elevated LDL-C 
[137], the latter a potential concern in patients already at risk 
for cardiovascular disease. Cenicriviroc—despite not meet-
ing its primary endpoint of NAFLD activity score improve-
ment—[138] and obeticholic acid [137] were both able to 
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improve hepatic fibrosis, and were currently undergoing 
phase III investigation. In addition, promising results have 
been reported for several phase II clinical trials and addi-
tional trials are currently ongoing, reflecting the growing 
research effort in developing novel treatments for NASH. 
Given the heterogenic nature of NAFLD, targeting meta-
bolic, anti-inflammatory, or anti-fibrotic disease pathways 
simultaneously may exert an additive or synergistic effect 
and combination therapy may prove to be a an important 
tool in the future development of pharmacological treatment 
options.

Conclusion

In NAFLD, hepatic lipid acquisition—mediated by increased 
fatty acid uptake and DNL—is enhanced despite the pres-
ence of steatosis. Lipid disposal may be increased, but is 
ultimately incapable of counteracting the growing intrahe-
patic fat deposition. While lipid export is enhanced in early 
disease stages, it decreases or plateaus with disease sever-
ity as hepatocyte metabolism becomes increasingly com-
promised. Efforts to reduce lipid levels can even promote 
disease progression, as FAO may induce oxidative stress, 
exhausting antioxidant competences and promoting damage 
to cellular organelles and DNA. The molecular mechanisms 
governing hepatic lipid homeostasis and the counter regu-
latory mechanisms related to a chronic lipid overload and 
NAFLD are both complex and tightly interconnected. Thus, 
any intervention targeting one or more pathway is likely to 
have consequences on multiple cellular signaling pathways. 
This, as well as inter-individual differences, should be taken 
into careful consideration when developing future treatment 
options for NAFLD.
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