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Abstract

Human gait involves a repetitive cycle of movements, and the phase of gait represents the 

location in this cycle. Gait phase is measured across many areas of study (e.g., for analyzing 

gait and controlling powered lower-limb prosthetic and orthotic devices). Current gait phase 

detection methods measure discrete gait events (e.g., heel strike, flat foot, toe off, etc.) by placing 

multiple sensors on the subject’s lower-limbs. Using multiple sensors can create difficulty in 

experimental setup and real-time data processing. In addition, detecting only discrete events 

during the gait cycle limits the amount of information available during locomotion. In this paper 

we propose a real-time and continuous measurement of gait phase parameterized by a mechanical 

variable (i.e., phase variable) from a single sensor measuring the human thigh motion. Human 

subject experiments demonstrate the ability of the phase variable to accurately parameterize gait 

progression for different walking/running speeds (1 to 9 miles/hour). Our results show that this 

real-time method can also estimate gait speed from the same sensor.

I. INTRODUCTION

Human gait analysis involves studying joint kinematics and kinetics during locomotion. 

Analyzing the joint kinematics has widely been used to prescribe treatments for patients 

during physical therapy or rehabilitation [1]–[3] as well as to design controllers for powered 

prostheses [4]–[6] and orthoses [7]–[9]. Gait study data is typically captured from large, 

expensive equipment including a motion capture system and force plates [2]. Recent gait 

analysis methods have shifted from using large conventional equipment to using small 

sensors placed on the human body limbs and joints, known as wearable sensors [10]–[12]. 

Wearable sensors have shown promise for assessing human movement, where gait analysis 

can be performed in both research and clinical applications.

Human gait involves a repetitive cycle of movements, and the phase of gait represents 

the location in this cycle. Gait phases are typically viewed as discrete events through the 

gait cycle (i.e., heel strike, midstance, etc.), where each phase are classified as percentage 

intervals of the gait cycle (0% to 100%). Gait phase detection using wearable sensors 

provides a low cost solution without requiring large lab space, and allows clinicians to 

perform tests outside the research environment to monitor subjects for long periods of 
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time. Generally, wearable sensors consist of accelerometers, gyroscopes, magnetometers, 

and force sensors to create a collective system for determining phases in gait. However, 

using multiple sensors can become a challenge as each sensor can require its own calibration 

and adjustments, which can entail additional setup time before and during experiments. 

Thus, the challenge in using wearable sensors for gait analysis lies in developing a real-time, 

algorithm-based system that is robust and portable for a clinical environment.

Several algorithms to detect gait phases have been developed using wearable sensors. Some 

of these algorithms use gait classifiers to detect several discrete events occurring over a 

gait cycle (e.g., heel strike, toe off, etc.) [3]. Rule-based algorithm methods for defining 

gait classifiers have been implemented using a wearable three-axis inertial measurement 

unit (IMU) sensor attached to both shanks [13] or the thigh, shank, and foot [14]. Other 

discrete gait phase detection algorithms try to reduce classification errors by introducing 

more sensors, such as using force sensitive resistors (FSRs) under the shoe insole to measure 

ground contact forces [15]–[17]. Detection issues can arise from using FSRs under the shoe 

insole since shear forces can lead to faulty measurements and damage of the sensors, thus 

requiring frequent replacement.

Classifier methods detect phases discretely, which neglects the continuous behavior of 

human walking within these discrete phases. Human subject experiments using a motion 

capture system (Vicon, Oxford, UK) have demonstrated that the thigh motion can uniquely 

represent the gait cycle continuously [18]. The study demonstrated that the phase angle 

from the thigh phase portrait (angular position vs. velocity) can indicate the subject’s 

progression along the gait cycle even during non-steady walking. The thigh phase angle 

provides a human-inspired phase variable: a time-invariant, kinematic quantity capturing 

the forward (or backward) locomotion during stride. Previous work in [19] identified gait 

phases continuously using multiple FSRs under a custom shoe insole, but do not measure 

gait phases in a unified, continuous measurement for the entire gait cycle. Other work 

has measured gait phase continuously across the gait cycle based on measurements of the 

thigh, knee, and tibia angle [20]. Their multi-sensor approach fused four different gait 

phase detection methods to produce an offline estimate of continuous gait phase (i.e., 

post-processed). Our method differs by only computing the thigh phase angle using a 

single sensor, which can be done continuously through the entire gait cycle in real-time. 

Continuously measuring gait phase by way of a phase variable can be utilized in the control 

of powered knee-ankle prosthesis as demonstrated in [6], [21], [22]. A similar approach 

based on the tibia phase angle was used to control a powered ankle prosthesis through the 

gait cycle [23], but the tibia phase angle may not provide as robust a parameterization of the 

human gait cycle as the thigh phase angle [18].

This paper proposes a real-time method using a single IMU sensor to measure the 

continuous phase variable that was originally proposed in the offline analysis of [18]. Signal 

processing algorithms are defined to estimate a monotonic, increasing phase variable that 

represents the progression from 0% to 100% of the gait cycle. Our results demonstrate 

appropriate changes in the rate of the phase variable and the ability to predict the stance-to-

swing transition across multiple walking and running speeds (1-9 miles/hour). Moreover, the 
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polar radius from the orbit within the thigh phase portrait provides a linear relationship for 

estimating the subject’s walking speed during gait.

II. Real-Time Estimation Methods

A. Continuous Gait Phase Variable

The continuous phase variable is constructed by the phase angle from the thigh phase 

portrait (i.e., phase plane of thigh velocity vs. angle). The raw thigh angle is measured from 

an IMU sensor (LORD MicroStrain, 3DM-GX4-25) mounted to a leg holster that is strapped 

to the thigh along the sagittal plane (see Fig. 1). The IMU sensor has a compact size of 36 

mm × 36.6 mm × 11.1 mm and weighs 16.5 g. The sensor measures its own Euler angles 

sampled at 500 Hz.

The start of the phase angle occurs in the first quadrant of the phase portrait along the 

positive x-axis. The phase angle increases as it orbits a full revolution counter-clockwise in 

the phase portrait, completing the gait stride at the fourth quadrant returning to the x-axis. 

The phase angle is computed using the four-quadrant atan2(y, x) function, which is defined 

as the unnormalized phase variable

φ(t) = atan2(θ̇y(t), θx(t)) . (1)

More detail on the derivation and biomechanical implications of the phase variable can be 

found in [18]. The variables θ̇y(t) and θx(t) are the estimated thigh velocity and thigh angle 

signals, respectively, for constructing the thigh phase portrait. These variables are shifted 

and scaled to enhance the linearity and monotonicity of the phase variable φ(t) during a gait 

cycle (Section II-C).

Filters are designed to provide smooth input signals for real-time calculation of the phase 

variable φ(t). An interpolating polynomial filter (Section II-B) filters the raw thigh angle 

measurement to mitigate unwanted disturbances observed from the IMU. The thigh angle 

and its velocity are shifted and scaled to compute the phase variable (Section II-C), which 

is then passed through a monotonic filter to further mitigate the effect of noise. Finally, 

to detect whether or not a subject is walking, a start and stop detection algorithm is 

implemented (Section II-D). Fig. 2 displays a schematic of the thigh phase portrait based on 

(θx(t), θ̇y(t)) coordinates as the phase variable φ(t) is measured about the circular orbit during 

the gait cycle. The phase variable φ(t) from Eq. 1 will compute the monotonic, increasing 

measurement of a subject as they progress through the gait cycle.

B. Interpolating Filter

The raw thigh angle IMU measurement can contain high frequency noise generated by 

impacts occurring at heel strike. Filters that help estimate joint angular position and 

velocity have proven to be particularly helpful in bipedal robots [24] and nonlinear control 

applications [25]. In the case of measuring the phase variable, the raw thigh angle can be 

estimated and filtered by applying a least squares method to fit an analytical function over 

a rolling data window [26]. This window length can be tuned in order to have minimal 

delay and reduce high frequency noise. Furthermore, the thigh velocity is estimated by 
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taking the analytical derivative of the estimated thigh angle function to provide the signals in 

computing the thigh phase portrait. The benefits will be exploited in Section III-B showing 

results of the raw IMU measurement applying this filter method.

To compute the interpolating filter polynomial functions for both thigh angle and velocity 

from the method in [26], the raw thigh angle measurement ψ(t) is stored in a vector of 

size based on the chosen window length W (in samples). Each row contains a polynomial 

function given in the following matrix equation form:

1 0 ⋯ 0

1 Δt ⋯ (Δt)N

⋮ ⋮ ⋮ ⋮

1 W Δt ⋯ (W Δt)N

a0(t)
a1(t)

⋮
aN(t)

=

ψ(t + (0 − W )Δt)
ψ(t + (1 − W )Δt)

⋮
ψ(t + (W − W )Δt)

,

where Δt is the time step between samples, N is the degree of the polynomial, and 

[a0(t), a1(t), …, aN(t)] ∊ ℝN+1 are the time-varying polynomial coefficients. Constraints 

are included to bias the new computed coefficients by equaling the terminal coefficients 

from the previous solved polynomial. This ensures continuity for consecutively generated 

polynomials with overlapping windows.

Solving for the unknown coefficients ai(t) for i ∊ 0, …, N by way of QR factorization [27] 

yields the interpolating polynomial functions

θ(t) = a0(t) + a1(t)ℎ + … + aN(t)ℎN (2)

θ̇(t) = a1(t) + 2a2(t)ℎ + … + NaN(t)ℎN − 1, (3)

where h = (1 − η)WΔt ∈ (0, WΔt] defines the specified time within the window. The 

parameter η ∈ [0, 1) is a user-defined delay based on the percentage of the window length 

W. Eq. 2 and Eq. 3 are the estimates for thigh angle and velocity, respectively.

C. Adaptive Phase Variable Shift and Scale

The linearity of the phase variable trajectory can be improved by making the orbit in the 

thigh phase portrait more circular. Both θ(t) and θ̇(t) are shifted about the origin of the thigh 

phase portrait, and the angle θ(t) is scaled to match the amplitude of the velocity θ̇(t) to 

provide a constant orbital radius. The min/max values of the filtered angle θ(t) and velocity 

θ̇(t) are stored for computing the shift and scale by evaluating

θmin(t) = min θ(t ) t ∈ tθmax, t
θ̇min(t) = min θ̇(t ) t ∈ tθ̇max, t
θmax(t) = max θ(t ) t ∈ tθmin, t
θ̇max(t) = max θ̇(t ) t ∈ tθ̇min, t ,
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where the min/max time values tθmax, tθ̇max, tθmin, tθ̇min  correspond to the time a local 

extrema occurs for the thigh angle and velocity of the previous gait cycle. The minimum 

values are calculated over a time window starting from the previous gait cycle’s maximum, 

and vice versa. For example, θmax(t) is the maximum thigh angle from all samples stored in 

the time interval of tθmin, t .

The shift and scale parameters from Eq. 1 are then computed by

θx(t) = z(t) ⋅ (θ(t) + γ(t)) (4)

θ̇y(t) = − (θ̇(t) + Γ(t)), (5)

where z(t) is the scale parameter, and γ(t) and Γ(t) are the shift parameters calculated from 

the filtered thigh angle and velocity, respectively, by

z(t) =
θ̇max(t) − θ̇min(t)
θmax(t) − θmin(t) , γ(t) = −

θmax(t) + θmin(t)
2 ,

Γ (t) = − (θ̇max(t) − θ̇min(t))/2 .

The negation in θ̇y(t) ensures that the phase portrait of the thigh angle orbits in a counter-

clockwise direction. This establishes an increasing and monotonic phase variable from 

atan2(y, x). This derivation is based on placing the IMU on the right leg. If the IMU were 

to be placed on the left leg, then negate only θx(t) to produce an increasing and monotonic 

phase variable along the gait cycle.

D. Real-Time Start and Stop Detection

If a human subject were to instantly stop walking during a stride, small disturbances from 

the real-time thigh angle measurements can generate false orbits on the phase portrait, 

resulting in unwanted signals for the phase variable φ(t). When stop walking event occurs 

the orbit will drive near the origin. Consequently, the phase variable will reset instead 

of holding the last phase variable value until the subject continues along completing the 

gait stride. Thus, a start and stop walking detection algorithm is implemented to handle 

this event, where the phase portrait coordinates (θx(t), θ̇y(t)) are compared to an elliptical 

boundary centered around the phase portrait origin.

The phase portrait coordinates in Eq. 4 and Eq. 5 can be compared to a predefined ellipse

(θx(t) − X)2

c2 + (θ̇y(t) − Y )2

d2 ≤ 1, (6)

where (X, Y) defines the center of the ellipse, and c and d represent the length of the major 

and minor semi-axes, respectively. These ellipse parameters are obtained from predefined 

minimum and maximum X/Y coordinates {Xmin, Xmax, Ymin, Ymax} with respect to the 
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thigh phase portrait coordinates (θx(t), θ̇y(t)). The center of the ellipse and the semi-axes are 

evaluated as

X = (Xmax + Xmin)/2, Y = (Ymax + Ymin)/2,
c = Xmax − Xmin /2, d = Ymax − Ymin /2 .

Fig. 2 gives a depiction of the ellipse and its parameters within the phase portrait.

If Eq. 6 produces a value less than or equal to one, then it indicates the human has stopped 

walking (stop detected). Algorithm 1 applies this condition in line 2 to ultimately hold the 

output phase variable φf(t) (i.e., φf(t) is the output of the start/stop logic with φ(t) as the 

input) constant until walking resumes. To ensure continuity in φf(t) after detecting walking, 

line 5 clears the stopped flag when the absolute error between φf(t−Δt) and φ(t) is less than 

Δφ, a predefined value of acceptable discontinuity. The monotonic filter in line 9 contains 

two inequalities for an acceptable decrease between the current and previous φf(t) value, to 

allow the phase variable transition from 2π to 0 in the phase portrait at the start of a new gait 

cycle.

Algorithm 1

Start and Stop Detect with Monotonic Filter

Input: φ(t)

Output: φf(t)

1: Initialize φf(t) = φ(t), stopped = false;

2: if stop detected then

3:   stopped = true;

4: else

5:   if |φ(t) − φf(t − Δt)| ≤ Δφ then

6:     stopped = false;

7:   end if

8: end if

9:
if stopped = true or − 3π

2 < φ(t) − φf(t − Δt) < 0 then

10:   φf(t) = φf(t Δt);

11: else

12:   φf(t) = φ(t);

13: end if

Normalizing the output of Algorithm 1 by φnorm(t) = φf(t)/2π, gives a unit scaled version of 

the phase variable corresponding to 0 to 100% of the gait cycle. The parameter φnorm(t) is 

considered the final normalized phase variable output for gait phase detection.

E. Gait Speed Estimate

An additional parameter within the phase portrait provides an estimate for gait cadence: the 

orbit’s polar radius r. From the phase portrait (θx(t), θ̇y(t)) coordinates, the polar radius of 
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the orbit is computed as r = θx(t)2 + θ̇y(t)2. The polar radius has a linear correlation to the 

subject’s gait speed. Section III will provide experimental results for how the phase variable 

and cadence estimate performed across multiple speeds.

III. EXPERIMENTATION AND RESULTS

A. Experimental Protocol and Setup

The experimental protocol for testing was reviewed and approved by the Institutional 

Review Board (IRB) at the University of Texas at Dallas. The experiment consists of a 

human subject walking on a treadmill with the IMU sensor mounted to the thigh along 

the sagittal plane (see Fig. 1). The measured IMU sensor signals were transmitted to a 

dSPACE DS1007 2 GHz processor, where the phase variable algorithms from Section II 

were programmed in MATLAB/Simulink for real-time computing.

The testing involved a human subject initially walking on a treadmill from rest to 1 mph 

(miles/hour). Treadmill speed was increased by 1 mph increments in a continuous sequence 

up to the subject’s selected running speed (9 mph). For each speed, 45 seconds of data were 

recorded. The experiment ended with the subject returning back to a rest position.

B. Real-Time Thigh Angle and Velocity Results

The raw thigh angle ψ(t) measured by the IMU sensor was processed using the interpolating 

filter from Section II-B (Fig. 3). The raw thigh angle ψ(t) produced sharp cusps near the 

local maxima values, which are fully removed using the interpolated filtered thigh angle 

θ(t). The interpolated filtered thigh velocity θ̇(t) removes the large impulses created from 

ground impacts as velocity crosses 0.0 rad/s. As a comparison, a second order (5 Hz cutoff) 

Butterworth low-pass filter is shown in Fig. 3. It can be seen the Butterworth filter fails to 

smooth out the impacts, which would result in a non-monotonic phase variable. Hence, the 

interpolated filter is the preferred filter method for this application. The amount of delay 

created by the interpolating filter is considered acceptable since it is less than the delayed 

reaction time from the reflex pathways of gait locomotion [28]. Applying the shift-and-scale 

method from Section II-C, the orbit in the thigh phase portrait becomes circular, which 

yields a monotonically increasing phase variable through Eq. 1.

C. Continuous Gait Phase Variable Across Varying Speeds

Fig. 5 shows the results of continuous, monotonic phase variables (φnorm(t)) over time across 

gait speeds. The shaded region represents the standard deviation, which displays a tight 

tolerance against the mean showing consistency in the data over consecutive strides. As 

expected, the slower to normal walking speeds (1-3 mph) took longer time durations to 

complete gait strides compared to the faster speeds. The slower speed phase variables are not 

perfectly linear, which is expected as the subject’s phase transitions are not uniformly paced 

throughout the gait cycle. The phase variable reflects the fact that each leg spends more time 

in stance than swing during slow to normal walking.

For the faster speeds (4-9 mph), the phase variable becomes increasingly linear as the stance 

and swing transition period becomes symmetrical over the gait cycle [2], [29]. Markers 
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display the timing of toe-off (defined by the minimum thigh angle during stride), which 

coincides with the beginning of the swing period [3]. The slope increases from initiation of 

swing period (i.e., toe-off) and beyond, which indicates the subject’s transition from stance-

to-swing period [2], [3]. The lower and upper lines between 0.42 and 0.47, respectively, 

bound the phase variable values that were observed at the stance-to-swing transition across 

the different speeds. The phase variable consistently predicts stance-to-swing transition 

within these tight bounds despite wide changes in the timing of the transition across different 

speeds (indicated by the x-axis of Fig. 5).

D. Gait Speed Estimator

Fig. 6 displays the phase portrait for various gait speeds. The polar radius r is distinct for 

each speed along the orbit. Fig. 7 displays the linear relationship of treadmill walking speed 

versus the polar radius (with a coefficient of determination R2 = 0.994). The least squares 

regression fit produces a function v(r) = 2.45r − 1.13 for estimating walking speed from 

polar radius. The variance of the estimate is reduced when using the mean polar radius 

from a single quadrant of the phase portrait (Fig. 7), where the fourth quadrant (phase angle 

between 3π/2 and 2π) was chosen.

IV. CONCLUSIONS

This paper proposed a real-time method for continuous gait phase detection using a single 

wearable IMU sensor on the thigh. The relationship between the thigh angle and velocity 

was used to construct a phase variable that parameterizes the human gait cycle. Several 

algorithms were implemented that include start and stop detection and filtering methods to 

ensure that the phase variable is well-behaved and monotonic during a stride. Using a single 

sensor reduces the onboard computation and equipment needed to determine gait phase. 

Furthermore, this method produces an estimate of gait speed as a byproduct of the phase 

variable computation.

The experimental results produce a continuous measurement of gait phase that is reliable 

across multiple speeds. To the best of the authors knowledge, the maximum speed reached 

during experiments is slightly larger than the fastest speed previously reported for gait phase 

detection [30]. However, their method measures discrete events with multiple sensors placed 

along the lower limbs, whereas our approach computes the gait phases in a continuous 

manner from a single sensor. Our approach overcomes the limitations of discrete phase 

detection, estimating the continuous progression through the gait cycle. Future work will 

investigate the performance of the phase detection method for other ambulation modes, such 

as walking up slopes and stairs.

This continuous phase detection method could be used to control wearable robots in 

synchrony with human users. A variation of this phase variable approach has been 

implemented for controlling a powered knee-ankle prosthesis in a unified manner throughout 

the entire gait cycle for multiple subjects [31]. The phase variable also has the potential to be 

used for unified control of powered orthotic devices, such as exoskeletons [9].
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Fig. 1. 
Photo of human subject walking on a treadmill while wearing an IMU sensor on the thigh 

with a sagittal plane orientation. Thigh angle measurement follows the righthand rule.
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Fig. 2. 
A depiction of the phase variable φ(t) measured from the circular orbit (thick green line) 

with a polar radius r (dashed black line) within the thigh phase portrait (θx(t), θ̇y(t)) 
coordinates. The ellipse (red line) displays the predefined minimum and maximum X/Y 

coordinates (black dots) as well as its length of semi-axes c and d. A schematic for how start 

and stop detection method from Section II-D is used for a sequence of events. If a subject 

were to stop walking, the signal travels off the circular orbit (1. Stop path, dotted green line) 

to inside the ellipse (2. Stop point, red dot) near the origin. When the subject decides to 

continue walking then the orbital path continues (3. Continue path, dash-dot blue line) to the 

last recorded phase variable value to complete the stride along the circular orbit.
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Fig. 3. 
Top: the thigh angle (Raw) measured by the IMU (dotted blue line) compared against 

two filtered options: 1) a second order Butterworth (Butter) low-pass filter with a cutoff 

frequency of 5 Hz (dashed red line) and the Interpolating (Interp) filter method (solid green 

line). Bottom: the thigh velocity (numerically differentiated thigh angle) and the two filtered 

options. Signal disturbances from ground impact are observed in the thigh velocity (e.g., 

t ≈ 1.3 and 2.6 seconds). The Interpolating filter provides a more smooth signal than the 

Butterworth filter. Data is from 3 mph treadmill speed test.
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Fig. 4. 
The raw thigh orbit (Raw) compared to the interpolated filtered, shifted/scaled thigh orbit 

(Interp + Shift/Scale) in the phase plane for 20 continuous strides at 3 mph. Applying the 

shift and scale algorithm produces a circular orbit shape, in contrast to the raw non-circular 

orbit.
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Fig. 5. 
The normalized phase variable φnorm(t) vs. time across various treadmill speeds (1-9 mph) 

for 20 consecutive gait strides. Each phase variable curve represents the mean for that 

particular speed with ±1 standard deviation (shaded gray region, difficult to observe due to 

small variance). Toe-off is marked (red star) at the moment when the minimum thigh angle 

occurred. Horizontal red dashed lines give the lower and upper bounds of these events across 

the various speeds, demonstrating the ability of the phase variable to predict these events 

despite differences in timing. The slower speeds (1-3 mph) have a nonlinear phase trajectory 

due to a longer time duration in stance compared to swing, whereas faster speeds (≥ 4 mph) 

produce a linear phase trajectory due to a more even stance/swing split [2].
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Fig. 6. 
The phase portrait of θ̇y(t) vs. θx(t) across various treadmill speeds (1-9 mph) each having 

20 consecutive gait strides. The polar radius r can be correlated to the subject’s gait speed. 

Speeds ≤ 4mph produced a circular orbit from 0 to 2π (i.e., 0% to 100% gait cycle). At 

5 mph, the subject transitioned from fast walking to running, where more forceful ground 

impacts can be observed in the IMU measurements due to the flight phase. This produced a 

non-circular form after impact with intersection of other orbits at different speeds, as shown 

in the first quadrant for 5-6 mph.
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Fig. 7. 
Treadmill speed vs. mean polar radius r (Data) with regression line v(r) (Fit). Note the error 

bars (horizontal blue lines) are ±1 standard deviation from the mean (red dots).
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