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Abstract

The past decade has seen a revolution in genomic technologies that enabled a flood of genome-

wide profiling of chromatin marks. Recent literature tried to understand gene regulation by 

predicting gene expression from large-scale chromatin measurements. Two fundamental 

challenges exist for such learning tasks: (1) genome-wide chromatin signals are spatially 

structured, high-dimensional and highly modular; and (2) the core aim is to understand what the 

relevant factors are and how they work together. Previous studies either failed to model complex 

dependencies among input signals or relied on separate feature analysis to explain the decisions. 

This paper presents an attention-based deep learning approach, AttentiveChrome, that uses a 

unified architecture to model and to interpret dependencies among chromatin factors for 

controlling gene regulation. AttentiveChrome uses a hierarchy of multiple Long Short-Term 

Memory (LSTM) modules to encode the input signals and to model how various chromatin marks 

cooperate automatically. AttentiveChrome trains two levels of attention jointly with the target 

prediction, enabling it to attend differentially to relevant marks and to locate important positions 

per mark. We evaluate the model across 56 different cell types (tasks) in humans. Not only is the 

proposed architecture more accurate, but its attention scores provide a better interpretation than 

state-of-the-art feature visualization methods such as saliency maps.1

1 Introduction

Gene regulation is the process of how the cell controls which genes are turned “on” 

(expressed) or “off” (not-expressed) in its genome. The human body contains hundreds of 

different cell types, from liver cells to blood cells to neurons. Although these cells include 

the same set of DNA information, their functions are different2. The regulation of different 

genes controls the destiny and function of each cell. In addition to DNA sequence 

information, many factors, especially those in its environment (i.e., chromatin), can affect 

which genes the cell expresses. This paper proposes an attention-based deep learning 

architecture to learn from data how different chromatin factors influence gene expression in 

a cell. Such understanding of gene regulation can enable new insights into principles of life, 

the study of diseases, and drug development.

1Code shared at www.deepchrome.org.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
2DNA is a long string of paired chemical molecules or nucleotides that fall into four different types and are denoted as A, T, C, and G. 
DNA carries information organized into units such as genes. The set of genetic material of DNA in a cell is called its genome.

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 August 22.

Published in final edited form as:
Adv Neural Inf Process Syst. 2017 December ; 30: 6785–6795.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.deepchrome.org


“Chromatin” denotes DNA and its organizing proteins3. A cell uses specialized proteins to 

organize DNA in a condensed structure. These proteins include histones, which form 

“bead“-like structures that DNA wraps around, in turn organizing and compressing the 

DNA. An important aspect of histone proteins is that they are prone to chemical 

modifications that can change the spatial arrangement of DNA. These spatial re-

arrangements result in certain DNA regions becoming accessible or restricted and therefore 

affecting expressions of genes in the neighborhood region. Researchers have established the 

“Histone Code Hypothesis” that explores the role of histone modifications in controlling 

gene regulation. Unlike genetic mutations, chromatin changes such as histone modifications 

are potentially reversible ([5]). This crucial difference makes the understanding of how 

chromatin factors determine gene regulation even more impactful because this knowledge 

can help developing drugs targeting genetic diseases.

At the whole genome level, researchers are trying to chart the locations and intensities of all 

the chemical modifications, referred to as marks, over the chromatin4. Recent advances in 

next-generation sequencing have allowed biologists to profile a significant amount of gene 

expression and chromatin patterns as signals (or read counts) across many cell types 

covering the full human genome. These datasets have been made available through large-

scale repositories, the latest being the Roadmap Epigenome Project (REMC, publicly 

available) ([18]). REMC recently released 2,804 genome-wide datasets, among which 166 

datasets are gene expression reads (RNA-Seq datasets) and the rest are signal reads of 

various chromatin marks across 100 different “normal” human cells/tissues [18].

The fundamental aim of processing and understanding this repository of “big” data is to 

understand gene regulation. For each cell type, we want to know which chromatin marks are 

the most important and how they work together in controlling gene expression. However, 

previous machine learning studies on this task either failed to model spatial dependencies 

among marks or required additional feature analysis to explain the predictions (Section 4). 

Computational tools should consider two important properties when modeling such data.

• First, signal reads for each mark are spatially structured and high-dimensional. 

For instance, to quantify the influence of a histone modification mark, learning 

methods typically need to use as input features all of the signals covering a DNA 

region of length 10, 000 base pair (bp)5 centered at the transcription start site 

(TSS) of each gene. These signals are sequentially ordered along the genome 

direction. To develop “epigenetic” drugs, it is important to recognize how a 

chromatin mark’s effect on regulation varies over different genomic locations.

• Second, various types of marks exist in human chromatin that can influence gene 

regulation. For example, each of the five standard histone proteins can be 

simultaneously modified at multiple different sites with various kinds of 

chemical modifications, resulting in a large number of different histone 

modification marks. For each mark, we build a feature vector representing its 

3The complex of DNA, histones, and other structural proteins is called chromatin.
4In biology this field is called epigenetics. “Epi” in Greek means over. The epigenome in a cell is the set of chemical modifications 
over the chromatin that alter gene expression.
5A base pair refers to one of the double-stranded DNA sequence characters (ACGT)
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signals surrounding a gene’s TSS position. When modeling genome-wide signal 

reads from multiple marks, learning algorithms should take into account the 

modular nature of such feature inputs, where each mark functions as a module. 

We want to understand how the interactions among these modules influence the 

prediction (gene expression).

In this paper we propose an attention-based deep learning model, AttentiveChrome, that 

learns to predict the expression of a gene from an input of histone modification signals 

covering the gene’s neighboring DNA region. By using a hierarchy of multiple LSTM 

modules, AttentiveChrome can discover interactions among signals of each chromatin mark, 

and simultaneously learn complex dependencies among different marks. Two levels of “soft” 

attention mechanisms are trained, (1) to attend to the most relevant regions of a chromatin 

mark, and (2) to recognize and attend to the important marks. Through predicting and 

attending in one unified architecture, AttentiveChrome allows users to understand how 

chromatin marks control gene regulation in a cell. In summary, this work makes the 

following contributions:

• AttentiveChrome provides more accurate predictions than state-of-the-art 

baselines. Using datasets from REMC, we evaluate AttentiveChrome on 56 

different cell types (tasks).

• We validate and compare interpretation scores using correlation to a new mark 

signal from REMC (not used in modeling). AttentiveChrome’s attention scores 

provide a better interpretation than state-of-the-art methods for visualizing deep 

learning models.

• AttentiveChrome can model highly modular inputs where each module is highly 

structured. AttentiveChrome can explain its decisions by providing “what” and 

“where” the model has focused on. This flexibility and interpretability make this 

model an ideal approach for many real-world applications.

• To the authors’ best knowledge, AttentiveChrome is the first attention-based 

deep learning method for modeling data from molecular biology.

In the following sections, we denote vectors with bold font and matrices using capital letters. 

To simplify notation, we use “HM” as a short form for the term “histone modification”.

2 Background: Long Short-Term Memory (LSTM) Networks

Recurrent neural networks (RNNs) have been widely used in applications such as natural 

language processing due to their abilities to model sequential dependencies. Given an input 

matrix X of size nin × T, an RNN produces a matrix H of size d × T, where nin is the input 

feature size, T is the length of input feature, and d is the RNN embedding size. At each 

timestep t ∈ {1, ⋯, T}, an RNN takes an input column vector xt ∈ ℝnin and the previous 

hidden state vector ht−1 ∈ ℝd and produces the next hidden state ht by applying the 

following recursive operation:
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ht = σ(Wxt + Uht − 1 + b) = LSTM(xt), (1)

where W, U, b are the trainable parameters of the model, and σ is an element-wise 

nonlinearity function. Due to the recursive nature, RNNs can capture the complete set of 

dependencies among all timesteps being modeled, like all spatial positions in a sequential 

sample. To handle the “vanishing gradient” issue of training basic RNNs, Hochreiter et al. 
[13] proposed an RNN variant called the Long Short-term Memory (LSTM) network.

An LSTM layer has an input-to-state component and a recurrent state-to-state component 

like that in Eq. (1). Additionally, it has gating functions that control when information is 

written to, read from, and forgotten. Though the LSTM formulation results in a complex 

form of Eq. (1) (see Supplementary), when given input vector xt and the state ht−1 from 

previous time step t − 1, an LSTM module also produces a new state ht. The embedding 

vector ht encodes the learned representation summarizing feature dependencies from the 

time step 0 to the time step t. For our task, we call each bin position on the genome 

coordinate a “time step”.

3 AttentiveChrome: A Deep Model for Joint Classification and Visualization

Input and output formulation for the task

We use the same feature inputs and outputs as done previously in DeepChrome ([29]). 

Following Cheng et al. [7], the gene expression prediction is formulated as a binary 

classification task whose output represents if the gene expression of a gene is high(+1) or 

low(−1). As shown in Figure 1, the input feature of a sample (a particular gene) is denoted 

as a matrix X of size M × T. Here M denotes the number of HM marks we consider in the 

input. T is the total number of bin positions we take into account from the neighboring 

region of a gene’s TSS site on the genome. We refer to this region as the ‘gene region’ in the 

rest of the paper. xj denotes the j-th row vector of X whose elements are sequentially 

structured (signals from the j-th HM mark) j ∈ {1, …, M}. xt
j in matrix X represents the 

signal from the t-th bin of the j-th HM mark. t ∈ {1, …, T}. We assume our training set D 
contains Ntr labeled pairs. We denote the n-th pair as (X(n), y(n)), X(n) is a matrix of size M × 

T and y(n) ∈ {−1, +1}, where n ∈ {1, …, Ntr}.

An end-to-end deep architecture for predicting and attending jointly

AttentiveChrome learns to predict the expression of a gene from an input of HM signals 

covering its gene region. First, the signals of each HM mark are fed into a separate LSTM 

network to encode the spatial dependencies among its bin signals, and then another LSTM is 

used to model how multiple factors work together for predicting gene expression. Two levels 

of "soft" attention mechanisms are trained and dynamically predicted for each gene: (1) to 

attend to the most relevant positions of an HM mark, and (2) then to recognize and attend to 

the relevant marks. In summary, AttentiveChrome consists of five main modules (see 

Supplementary Figure S:2): (1) Bin-level LSTM encoder for each HM mark; (2) Bin-level 

Attention on each HM mark; (3) HM-level LSTM encoder encoding all HM marks; (4) HM-
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level Attention over all the HM marks; (5) the final classification module. We describe the 

details of each component as follows:

Bin-Level Encoder Using LSTMs

For a gene of interest, the j-th row vector, xj, from X includes a total of T elements that are 

sequentially ordered along the genome coordinate. Considering the sequential nature of such 

signal reads, we treat each element (essentially a bin position) as a ‘time step’ and use a 

bidirectional LSTM to model the complete dependencies among elements in xj. A 

bidirectional LSTM contains two LSTMs, one in each direction (see Supplementary Figure 

S:2 (c)). It includes a forward LSTM
j
 that models xj from x1

j  to xT
j  and a backward LSTM

j
 that 

models from xT
j  to x1

j . For each position t, the two LSTMs output ht
j and ht

j, each of size d. 

ht
j = LSTM

j
(xt

j) and ht
j = LSTM

j
(xt

j). The final embedding vector at the t-th position is the 

concatenation ht
j = [ht

j, ht
j].

By coupling these LSTM-based HM encoders with the final classification, they can learn to 

embed each HM mark by extracting the dependencies among bins that are essential for the 

prediction task.

Bin-Level Attention, α-attention

Although the LSTM can encode dependencies among the bins, it is difficult to determine 

which bins are most important for prediction from the LSTM. To automatically and 

adaptively highlight the most relevant bins for each sample, we use "soft" attention to learn 

the importance weights of bins. This means when representing j-th HM mark, 

AttentiveChrome follows a basic concept that not all bins contribute equally to the encoding 

of the entire j-th HM mark. The attention mechanism can help locate and recognize those 

bins that are important for the current gene sample of interest from j-th HM mark and can 

aggregate those important bins to form an embedding vector. This extraction is implemented 

through learning a weight vector αj of size T for the j-th HM mark. For t ∈ {1, …, T}, αt
j

represents the importance of the t-th bin in the j-th HM. It is computed as: 

αt
j =

exp(Wbht
j)

∑i = 1
T exp(Wbhi

j)
.

αt
j is a scalar and is computed by considering all bins’ embedding vectors {h1

j , ⋯, hT
j }. The 

context parameter Wb is randomly initialized and jointly learned with the other model 

parameters during training. Our intuition is that through Wb the model will automatically 

learn the context of the task (e.g., type of a cell) as well as the positional relevance to the 

context simultaneously. Once we have the importance weight of each bin position, we can 

represent the entire j-th HM mark as a weighted sum of all its bin embeddings: 

m j = ∑t = 1
T αt

j × ht
j. Essentially the attention weights αt

j tell us the relative importance of the 

t-th bin in the representation mj for the current input X (both ht
j and αt

j depend on X).
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HM-Level Encoder Using Another LSTM

We aim to capture the dependencies among HMs as some HMs are known to work together 

to repress or activate gene expression [6]. Therefore, next we model the joint dependencies 

among multiple HM marks (essentially, learn to represent a set). Even though there exists no 

clear order among HMs, we assume an imagined sequence as {HM1, HM2, HM3, …, 

HMM}6. We implement another bi-directional LSTM encoder, this time on the imagined 

sequence of HMs using the representations mj of the j-th HMs as LSTM inputs 

(Supplementary Figure S:2 (e)). Setting the embedding size as d′, this set-based encoder, we 

denote as LSTMs, encodes the j-th HM as: s j = [LSTMs(m
j), LSTMs(m

j)]. Differently from 

mj, sj encodes the dependencies between the j-th HM and other HM marks.

HM-Level Attention, β-attention

Now we want to focus on the important HM markers for classifying a gene’s expression as 

high or low. We do this by learning a second level of attention among HMs. Similar to 

learning αt
j, we learn another set of weights βj for j ∈ {1, ⋯, M} representing the importance 

of HMj. βi is calculated as: β j =
exp(Wss j)

∑i = 1
M exp(Wssi)

. The HM-level context parameter Ws learns 

the context of the task and learns how HMs are relevant to that context. Ws is randomly 

initialized and jointly trained. We encode the entire "gene region" into a hidden 

representation v as a weighted sum of embeddings from all HM marks: v = ∑ j = 1
M β js j. We 

can interpret the learned attention weight βi as the relative importance of HMi when 

blending all HM marks to represent the entire gene region for the current gene sample X.

Training AttentiveChrome End-to-End

The vector v summarizes the information of all HMs for a gene sample. We feed it to a 

simple classification module f (Supplementary Figure S:2(f)) that computes the probability 

of the current gene being expressed high or low: f(v) = softmax(Wcv + bc). Wc and bc are 

learnable parameters. Since the entire model, including the attention mechanisms, is 

differentiable, learning end-to-end is trivial by using backpropagation [21]. All parameters 

are learned together to minimize a negative log-likelihood loss function that captures the 

difference between true labels y and predicted scores from f(․).

4 Connecting to Previous Studies

In recent years, there has been an explosion of deep learning models that have led to 

groundbreaking performance in many fields such as computer vision [17], natural language 

processing [30], and computational biology [1, 27, 38, 16, 19, 29].

6We tried several different architectures to model the dependencies among HMs, and found no clear ordering.
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Attention-based deep models

The idea of attention in deep learning arises from the properties of the human visual system. 

When perceiving a scene, the human vision gives more importance to some areas over others 

[9]. This adaptation of “attention” allows deep learning models to focus selectively on only 

the important features. Deep neural networks augmented with attention mechanisms have 

obtained great success on multiple research topics such as machine translation [4], object 

recognition [2, 26], image caption generation [33], question answering [30], text document 

classification [34], video description generation [35], visual question answering -[32], or 

solving discrete optimization [31]. Attention brings in two benefits: (1) By selectively 

focusing on parts of the input during prediction the attention mechanisms can reduce the 

amount of computation and the number of parameters associated with deep learning model 

[2, 26]. (2) Attention-based modeling allows for learning salient features dynamically as 

needed [34], which can help improve accuracy.

Different attention mechanisms have been proposed in the literature, including ‘soft’ 

attention [4], ‘hard’ attention [33, 24], or ‘location-aware’ [8]. Soft attention [4] calculates a 

‘soft’ weighting scheme over all the component feature vectors of input. These weights are 

then used to compute a weighted combination of the candidate feature vectors. The 

magnitude of an attention weight correlates highly with the degree of significance of the 

corresponding component feature vector to the prediction. Inspired by [34], 

AttentiveChrome uses two levels of soft attention for predicting gene expression from HM 

marks.

Visualizing and understanding deep models

Although deep learning models have proven to be very accurate, they have widely been 

viewed as “black boxes”. Researchers have attempted to develop separate visualization 

techniques that explain a deep classifier’s decisions. Most prior studies have focused on 

understanding convolutional neural networks (CNN) for image classifications, including 

techniques such as “deconvolution” [36], “saliency maps” [3, 28] and “class optimization” 

based visualisation [28]. The “deconvolution’ approach [36] maps hidden layer 

representations back to the input space for a specific example, showing those features of an 

image that are important for classification. “Saliency maps" [28] use a first-order Taylor 

expansion to linearly approximate the deep network and seek most relevant input features. 

The “class optimization” based visualization [28] tries to find the best example (through 

optimization) that maximizes the probability of the class of interest. Recent studies [15, 22] 

explored the interpretability of recurrent neural networks (RNN) for text-based tasks. 

Moreover, since attention in models allows for automatically extracting salient features, 

attention-coupled neural networks impart a degree of interpretability. By visualizing what 

the model attends to in [34], attention can help gauge the predictive importance of a feature 

and hence interpret the output of a deep neural network.

Deep learning in bioinformatics

Deep learning is steadily gaining popularity in the bioinformatics community. This trend is 

credited to its ability to extract meaningful representations from large datasets. For instance, 

multiple recent studies have successfully used deep learning for modeling protein sequences 
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[23, 37] and DNA sequences [1, 20], predicting gene expressions [29], as well as 

understanding the effects of non-coding variants [38, 27].

Previous machine learning models for predicting gene expression from histone 
modification marks

Multiple machine learning methods have been proposed to predict gene expression from 

histone modification data (surveyed by Dong et al. [11]) including linear regression [14], 

support vector machines [7], random forests [10], rule-based learning [12] and CNNs [29]. 

These studies designed different feature selection strategies to accommodate a large amount 

of histone modification signals as input. The strategies vary from using signal averaging 

across all relevant positions, to a ‘best position’ strategy that selected the input signals at the 

position with the highest correlation to the target gene expression and automatically learning 

combinatorial interactions among histone modification marks using CNN (called 

DeepChrome [29]). DeepChrome outperformed all previous methods (see Supplementary) 

on this task and used a class optimization-based technique for visualizing the learned model. 

However, this class-level visualization lacks the necessary granularity to understand the 

signals from multiple chromatin marks at the individual gene level.

Table 1 compares previous learning studies on the same task with AttentiveChrome across 

seven desirable model properties. The columns indicate properties (1) whether the study has 

a unified end-to-end architecture or not, (2) if it captures non-linearity among features, (3) 

how has the bin information been incorporated, (4) if representation of features is modeled 

on local and (5) global scales, (6) whether gene expression prediction is provided, (7) if 

combinatorial interactions among histone modifications are modeled, and finally (8) if the 

model is interpretable. AttentiveChrome is the only model that exhibits all seven properties. 

Additionally, Section 5 compares the attention weights from AttentiveChrome with the 

visualization from "saliency map" and "class optimization." Using the correlation to one 

additional HM mark from REMC, we show that AttentiveChrome provides better 

interpretation and validation.

5 Experiments and Results

Dataset

Following DeepChrome [29], we downloaded gene expression levels and signal data of five 

core HM marks for 56 different cell types archived by the REMC database [18]. Each 

dataset contains information about both the location and the signal intensity for a mark 

measured across the whole genome. The selected five core HM marks have been uniformly 

profiled across all 56 cell types in the REMC study [18]. These five HM marks include (we 

rename these HMs in our analysis for readability): H3K27me3 as HreprA, H3K36me3 as 

Hstruct, H3K4me1 as Henhc, H3K4me3 as Hprom, and H3K9me3 as HreprB. HMs HreprA and 

HreprB are known to repress the gene expression, Hprom activates gene expression, Hstruct is 

found over the gene body, and Henhc sometimes helps in activating gene expression.
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Details of the Dataset

We divided the 10, 000 base pair DNA region (+/ − 5000 bp) around the transcription start 

site (TSS) of each gene into bins, with each bin containing 100 continuous bp). For each 

gene in a specific celltype, the feature generation process generated a 5 × 100 matrix, X, 

where columns represent T(= 100) different bins and rows represent M(= 5) HMs. For each 

cell type, the gene expression has been quantified for all annotated genes in the human 

genome and has been normalized. As previously mentioned, we formulated the task of gene 

expression prediction as a binary classification task. Following [7], we used the median gene 

expression across all genes for a particular cell type as the threshold to discretize expression 

values. For each cell type, we divided our set of 19,802 gene samples into three separate, but 

equal-size folds for training (6601 genes), validation (6601 genes), and testing (6600 genes) 

respectively.

Model Variations and Two Baselines

In Section 3, we introduced three main components of AttentiveChrome to handle the task 

of predicting gene expression from HM marks: LSTMs, attention mechanisms, and 

hierarchical attention. To investigate the performance of these components, our experiments 

compare multiple AttentiveChrome model variations plus two standard baselines.

• DeepChrome [29]: The temporal (1-D) CNN model used by Singh et al. [29] for 

the same classification task. This study did not consider the modular property of 

HM marks.

• LSTM: We directly apply an LSTM on the input matrix X without adding any 

attention. This setup does not consider the modular property of each HM mark, 

that is, we treat the signals of all HMs at t-th bin position as the t-th input to 

LSTM.

• LSTM-Attn: We add one attention layer on the baseline LSTM model over input 

X. This setup does not consider the modular property of HM marks.

• CNN-Attn: We apply one attention layer over the CNN model from DeepChrome 

[29], after removing the max-pooling layer to allow bin-level attention for each 

bin. This setup does not consider the modular property of HM marks.

• LSTM-α, β: As introduced in Section 3, this model uses one LSTM per HM 

mark and add one α-attention per mark. Then it uses another level of LSTM and 

β-attention to combine HMs.

• CNN-α, β: This considers the modular property among HM marks. We apply 

one CNN per HM mark and add one α-attention per mark. Then it uses another 

level of CNN and β-attention to combine HMs.

• LSTM-α: This considers the modular property of HM marks. We apply one 

LSTM per HM mark and add one α-attention per mark. Then, the embedding of 

HM marks is concatenated as one long vector and then fed to a 2-layer fully 

connected MLP.
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We use datasets across 56 cell types, comparing the above methods over each of the 56 

different tasks.

Model Hyperparameters

For AttentiveChrome variations, we set the bin-level LSTM embedding size d to 32 and the 

HM-level LSTM embedding size as 16. Since we implement a bi-directional LSTM, this 

results in each embedding vector ht as size 64 and embedding vector mj as size 32. 

Therefore, we set the context vectors, Wb and Ws, to size 64 and 32 respectively.7

Performance Evaluation

Table 2 compares different variations of AttentiveChrome using summarized AUC scores 

across all 56 cell types on the test set. We find that overall the LSTM-attention based models 

perform better than CNN-based and LSTM baselines. CNN-attention model gives worst 

performance. To add the bin-level attention layer to the CNN model, we removed the max-

pooling layer. We hypothesize that the absence of max-pooling is the cause behind its low 

performance. LSTM-α has better empirical performance than the LSTM-α, β model. We 

recommend the use of the proposed AttentiveChrome LSTM-α, β (from here on referred to 

as AttentiveChrome) for hypothesis generation because it provides a good trade-off between 

AUC and interpretability. Also, while the performance improvement over DeepChrome [29] 

is not large, AttentiveChrome is better as it allows interpretability to the "black box" neural 

networks.

Using Attention Scores for Interpretation

Unlike images and text, the results for biology are hard to interpret by just looking at them. 

Therefore, we use additional evidence from REMC as well as introducing a new strategy to 

qualitatively and quantitatively evaluate the bin-level attention weights or α-map LSTM-α 
model and AttentiveChrome. To specifically validate that the model is focusing its attention 

at the right bins, we use the read counts of a new HM signal - H3K27ac from REMC 

database. We represent this HM as Hactive because this HM marks the region that is active 

when the gene is “ON". H3K27ac is an important indication of activity in the DNA regions 

and is a good source to validate the results. We did not include H3K27ac Mark as input 

because it has not been profiled for all 56 cell types we used for prediction. However, the 

genome-wide reads of this HM mark are available for three important cell types in the blood 

lineage: H1-hESC (stem cell), GM12878 (blood cell), and K562 (leukemia cell). We, 

therefore, chose to compare and validate interpretation in these three cell types. This HM 

signal has not been used at any stage of the model training or testing. We use it solely to 

analyze the visualization results.

We use the average read counts of Hactive across all 100 bins and for all the active genes 

(gene=ON) in the three selected cell types to compare different visualization methods. We 

compare the attention α-maps of the best performing LSTM-α and AttentiveChrome models 

with the other two popular visualization techniques: (1) the Class-based optimization 

method and (2) the Saliency map applied on the baseline DeepChrome-CNN model. We take 

7We can view Wb as 1 × 64 matrix.

Singh et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the importance weights calculated by all visualization methods for our active input mark, 

Hprom, across 100 bins and then calculate their Pearson correlation to Hactive counts across 

the same 100 bins. Hactive counts indicate the actual active regions. Table 3 reports the 

correlation coefficients between Hprom weights and read coverage of Hactive. We observe that 

attention weights from our models consistently achieve the highest correlation with the 

actual active regions near the gene, indicating that this method can capture the important 

signals for predicting gene activity. Interestingly, we observe that the saliency map on the 

DeepChrome achieves a higher correlation with Hactive than the Class-based optimization 

method for two cell types: H1-hESC (stem cell) and K562 (leukemia cell).

Next, we obtain the attention weights learned by AttentionChrome, representing the 

important bins and HMs for each prediction of a particular gene as ON or OFF. For a 

specific gene sample, we can visualize and inspect the bin-level and HM-level attention 

vectors αt
j and βj generated by AttentionChrome. In Figure 2(a), we plot the average bin-

level attention weights for each HM for cell type GM12878 (blood cell) by averaging α-

maps of all predicted “ON" genes (top) and “OFF" genes (bottom). We see that on average 

for “ON" genes, the attention profiles near the TSS region are well defined for Hprom, Henhc, 

and Hstruct. On the contrary, the weights are low and close to uniform for HreprA and HreprB. 

This average trend reverses for “OFF" genes in which HreprA and HreprB seem to gain more 

importance over Hprom, Henhc, and Hstruct. These observations make sense biologically as 

Hprom, Henhc, and Hstruct are known to encourage gene activation while HreprA and HreprB are 

known to repress the genes8. On average, while Hprom is concentrated near the TSS region, 

other HMs like Hstruct show a broader distribution away from the TSS. In summary, the 

importance of each HM and its position varies across different genes. E.g., Henhc can affect a 

gene from a distant position.

In Figure 2(b), we plot the average read coverage of Hactive (top) for the same 100 bins, that 

we used for input signals, across all the active genes (gene=ON) for GM12878 cell type. We 

also plot the bin-level attention weights αt
j for AttentiveChrome (bottom) averaged over all 

genes predicted as ON for GM12878. Visually, we can tell that the average Hprom profile is 

similar to Hactive. This observation makes sense because Hprom is related to active regions 

for “ON" genes. Thus, validating our results from Table 3.

Finally in Figure 2(c) we demonstrate the advantage of AttentiveChrome over LSTM-α 
model by printing out the βj weights for genes with differential expressions across the three 

cell types. That is, we select genes with varying ON(+1)/OFF(−1) states across the three 

chosen cell types using a heatmap. Figure 2(c) visualizes the βj weights for a certain 

differentially regulated gene, PAX5. PAX5 is critical for the gene regulation when stem cells 

convert to blood cells ([25]). This gene is OFF in the H1-hESC cell stage (left column) but 

turns ON when the cell develops into GM12878 cell (middle column). The βj weight of 

repressor mark HreprA is high when gene=OFF in H1-hESC (left column). This same weight 

decreases when gene=ON in GM12878 (middle column). In contrast, the βj weight of the 

8The small dips at the TSS in both subfigures of Figure 2(a) are caused by missing signals at the TSS due to the inherent nature of the 
sequencing experiments.
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promoter mark Hprom increases from H1-hESC (left column) to GM12878 (middle column). 

These trends have been observed in [25] showing that PAX5 relates to the conversion of 

chromatin states: from a repressive state (Hprom(H3K4me3):−, HreprA(H3K27me3):+) to an 

active state (Hprom(H3K4me3):+, HreprA(H3K27me3):−). This example shows that our βj 

weights visualize how different HMs work together to influence a gene’s state (ON/OFF). 

We would like to emphasize that the attention weights on both bin-level (α-map) and HM-

level (β-map) are gene (i.e. sample) specific.

The proposed AttentiveChrome model provides an opportunity for a plethora of downstream 

analyses that can help us understand the epigenomic mechanisms better. Besides, relevant 

datasets are big and noisy. A predictive model that automatically selects and visualizes 

essential features can significantly reduce the potential manual costs.

6 Conclusion

We have presented AttentiveChrome, an attention-based deep-learning approach that handles 

prediction and understanding in one architecture. The advantages of this work include:

• AttentiveChrome provides more accurate predictions than state-of-the-art 

baselines (Table 2).

• The attention scores of AttentiveChrome provide a better interpretation than 

saliency map and class optimization (Table 3). This allows us to view what the 

model ‘sees’ when making its prediction.

• AttentiveChrome can model highly modular feature inputs in which each is 

sequentially structured.

• To the authors’ best knowledge, AttentiveChrome is the first implementation of 

deep attention mechanism for understanding data about gene regulation. We can 

gain insights and understand the predictions by locating ‘what’ and ‘where’ 

AttentiveChrome has focused (Figure 2). Many real-world applications are 

seeking such knowledge from data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the proposed AttentiveChrome framework. It includes 5 important parts: (1) 

Bin-level LSTM encoder for each HM mark; (2) Bin-level α-Attention across all bin 

positions of each HM mark; (3) HM-level LSTM encoder encoding all HM marks; (4) HM-

level β-Attention among all HM marks; (5) the final classification.
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Figure 2. 

(Best viewed in color) (a) Bin-level attention weights ( αt
j) from AttentiveChrome averaged 

for all genes when predicting gene=ON and gene=OFF in GM12878 cell type. (b) Top: 

Cumulative Hactive signal across all active genes. Bottom: Plot of the bin-level attention 

weights ( αt
j). These weights are averaged for gene=ON predictions. Hprom weights are 

concentrated near the TSS and corresponds well with the Hactive indicating actual activity 

near the gene. This indicates that AttentiveChrome is focusing on the correct bin positions 

for this case (c) Heatmaps visualizing the HM-level weights (βj), with j ∈ {1, …, 5} for an 

important differentially regulated gene (PAX5) across three blood lineage cell types: H1-

hESC (stem cell), GM12878 (blood cell), and K562 (leukemia cell). The trend of HM-level 

βj weights for PAX5 have been verified through biological literature.
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Table 3

Pearson Correlation values between weights assigned for Hprom (active HM) by different visualization 

techniques and Hactive read coverage (indicating actual activity near "ON" genes) for predicted "ON" genes 

across three major cell types.

Viz. Methods H1-hESC GM12878 K562

α Map (LSTM-α) 0.8523 0.8827 0.9147

α Map (LSTM-α, β) 0.8995 0.8456 0.9027

Class-based Optimization (CNN) 0.0562 0.1741 0.1116

Saliency Map (CNN) 0.1822 −0.1421 0.2238
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