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Abstract

Small airway obstruction is a main cause for Chronic Obstructive Pulmonary Disease (COPD). We 

propose a novel method based on machine learning to extract the airway system from a thoracic 

computed tomography (CT) scan. The emphasis of the proposed method is on including the 

smallest airways that are still visible on CT. We used an optimized sampling procedure to extract 

airway and non-airway voxel samples from a large set of scans for which a semi-automatically 

constructed reference standard was available. We created a set of features which represent tubular 

and texture properties that are characteristic for small airway voxels. A random forest classifier 

was used to determine for each voxel if it belongs to the airway class. Our method was validated 

on a set of 20 clinical thoracic CT scans from the COPDGene study. Experiments show that our 

method is effective in extracting the full airway system and in detecting a large number of small 

airways that were missed by the semi-automatically constructed reference standard.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a prevalent obstructive lung disorder 

characterized by long-term limited airflow. COPD is a complex, progressive disease and 

constitutes the third leading cause of death world-wide (Vos et al 2015). The societal burden 

of COPD is enormous.

Imaging, in particular computed tomography (CT), is of vital importance to elucidate the 

mechanisms underlying COPD. It is generally believed that the small airways are the major 

sites of obstruction (McDonough et al 2011, Burgel 2011). Small airways are defined as 

those with a diameter below 2.0mm (Barnes 2004), which is close to the resolution of CT. 
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Since it is difficult to find these small airways in CT scans, researchers have instead 

analyzed expiratory CT scans for the presence of air-trapping as a surrogate marker of small 

airway disease (Gietema et al 2011). In this work we aim to specifically extract small 

airways from inspiratory thoracic CT scans. Although many algorithms have been proposed 

for the segmentation of airways in CT, none has focused specifically on extracting the 

smallest airways visible on CT.

Accurate airway segmentation from CT scans has multiple applications. A primary one is 

measuring global and local morphological properties of the airway tree, e.g., generation 

level, branch diameter, wall thickness, cross-sectional lumen area, and lumen circularity. 

These measurements have been shown to correlate with disease severity and progression. 

Another application is planning for virtual bronchoscopic navigation (Kiraly et al 2011). 

Finally, a precise delineated airway tree can aid segmentation of other structures, such as 

pulmonary lobes and segments (van Rikxoort and van Ginneken 2013), and pulmonary 

arteries and veins (Charbonnier et al 2016).

Radiologists carry out hand-operation to extract airways from CT scans, and measure the 

airway lumen diameter and wall thickness. The disector method (which focuses on a pair of 

serial sections separated by a fixed distance) is preferably adopted when counting the 

number of visible small airways per volume. All these tasks are extremely laborious and 

therefore infeasible in clinical routine. Therefore, many fully automated methods have been 

developed, reviewed by van Rikxoort and van Ginneken (2013) and Pu et al (2012), and 

compared in a collaborative study by Lo et al (2012). The key challenge of airway 

segmentation is to avoid false positive detections, as many algorithms have a tendency to 

“leak” into the lung parenchyma. The airway lumen and lung parenchyma both appear as 

regions with low intensity on CT, separated by high intensity wall tissues. It should thus be 

easy to separate airway lumen voxels from lung parenchyma voxels. However, at every 

bifurcation, the airway walls become thinner, and imaging noise and partial volume effect 

make it much more difficult to discriminate those walls from their surroundings. Therefore, 

extracting the airways by connecting voxels, starting at the trachea and main bronchi and 

progressing downwards, often oversteps the airway walls and spreads into lung tissues. A 

range of solutions have been proposed to tackle this issue (Lo et al 2012). Gray-scale 

morphological reconstruction can be used to selectively enhance tubular airways (Aykac et 
al 2003). A 3D version of this approach was proposed in Irving et al (2014) which may 

improve results but increases computational complexity. Various assisted rules encoded 

anatomical knowledge have been proposed, including exploiting the parallel adjacency of 

airways to arteries (Sonka et al 1996), the cross-sectional lumen area around the centerline 

(Wood et al 1995), local contrast to airway walls (Kitasaka et al 2003) and rules of thumb 

regarding branching angles (Bauer et al 2009). An optimal combination of such rules may 

improve airway extraction. In literatures front propagation is guided under constraints of 

fuzzy connectivity (Sonka et al 1996) or cylindrical regions of interest (Kitasaka et al 2003) 

to detect a connected airway tree. However, these methods tend to generate a fairly high 

amount of false positives (Lo et al 2012). None of these features are able to capture airway 

appearance perfectly.
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Additionally, several researchers have used machine learning and developed supervised 

airway segmentation schemes. Lo et al (2010) sampled the airway and leaked parenchyma 

voxels from a conservative and a leaked segmentation, respectively. A kNN classifier 

categorized voxels by eigenvalue-based tubular features and oriented similarity features 

between airways and vessels. This method extracted a high quality airway tree and low false 

positive rate at the cost of extremely long run-time (55 minutes to segment the airway tree 

from a single CT scan). Meng et al (2016) initialized a relatively leaky segmentation based 

on multi-scale tubular enhancement and local intensity information. An SVM classifier with 

32 Hessian-based features was trained to remove the false positives from the leaked 

segmentation. The remaining candidate patches were linked with the trachea and main 

bronchi using a graph-cut method. Charbonnier et al (2017) proposed an airway leakage 

removal scheme: a set of 2D patches that capture the 3D airway appearance were extracted 

along the centerline and a convolutional network was used to classify the patches and 

remove leaked segmentation branches.

In general, whatever additional strategy adopted, traditional region growing or wave front 

propagation, the need to reduce leakage has the consequence that many very small airways 

are not segmented at all. It is still far from maximizing the potential of machine learning. 

Some only existing efforts were made to convince machine learning’s ability to find airways 

and to avoid over-segmentation. The diversity of small airways’ morphology and CT 

characteristics leaves a complete blank in the automation of their extraction. We therefore 

proposed a fully automated machine-learning based airway segmentation framework focused 

specifically on extracting more small airways from CT images, which has never been 

reported, even when we cannot find the connection of those airways to the main airway tree. 

In this study, we had to face with the fact that a perfect reference standard was unavailable. 

A dedicated sampling method was presented to address this problem without any further 

manual involvement apart from obtaining the incomplete reference data. Another main 

contribution was that the image texture features were combined with traditional tubular 

features in the airway segmentation. Our framework was developed and evaluated using data 

from COPDGene, the largest genetic COPD study that includes imaging. The proposed 

framework could increase the detection measurements in full airway system and especially 

in small airways against the reference data under a relatively low false positive rate.

The paper is organized as follows. Section 2 describes the data and methods. Section 3 

details the experiments and provides quantitative results. Section 4 contains the discussion 

and, finally, Section 5 draws conclusions.

2. Methods

In this section we explain our method in detail. We start by describing the data we used. We 

then explain the initial detection of the trachea and main bronchi, elaborate on the airway 

voxel candidate selection, and describe the features, classifier and post-processing steps we 

employed.
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2.1. Data

Our project was conducted and evaluated on a randomly selected data set of 100 high 

resolution thoracic CT scans taken at full inspiration provided by the COPDGene Study 

(Regan et al 2010). Each scan was reconstructed to 512 * 512 slices (ranging from 360 to 

659 axial slices). In-plane voxel size varied from 0.50 to 0.96mm and slice thickness was 

0.625mm. Each scan was processed by the COPDGene imaging core (Thirona, The 

Netherlands) to identify the lung masks and extract a connected airway tree marked with 

branch labels. A description of the lung mask extraction and airway segmentation methods 

can be found in van Rikxoort et al (2009) and van Ginneken et al (2008). Then an annotation 

process was performed semi-automatically. Trained human analysts manually corrected and 

extended computer generated lung segmentation and airway trees. Leakages were removed 

and the missed segmental and sub-segmental branches belonging to a pre-defined set were 

added following strict protocols. This final airway segmentation served as reference standard 

in this study. We used these segmentation to obtain airway and non-airway voxels for 

training, as explained below. We note that the semi-automatically produced segmentation 

still misses smaller airways. We therefore investigate in Section 3 if our method can find 

additional airways.

2.2. Trachea and main bronchi removal

The trachea and main bronchi were not detected with our machine-learning based 

framework, because these branches are relatively easy to find with standard techniques. It is 

necessary to extract them as a starting point to obtain a 3D-connected tree structure. For this 

purpose, we implemented a simple region growing scheme that started with the detection of 

a tracheal seed point similar to Tan et al (2014). The initial region growing threshold was 

defined as the average intensity Iavg of the voxel in a 26-neighborhood of the seed point plus 

an additional 350HU. The 26-neighborhood voxels were repeatedly clustered as new seed 

points until a bifurcation was found, indicating the segmentation of the trachea was 

complete. Next, the mean tracheal intensity μtra and standard deviation σtra were calculated 

and a new region growing threshold for main bronchi segmentation was set to μtra + 2σtra. 

The main bronchi segmentation algorithm terminated when the second generation 

bifurcations were encountered.

2.3. Training sample selection

In order to capture the image characteristics of airway and non-airway voxels in the training 

phase, a representative set of positive and negative samples have to be selected. This 

subsection describes our sampling method in detail.

2.3.1. Airway sample selection—In order to specifically sample small airways in a 

given airway tree A, we first estimated the diameter of each branch labeled with B1, B2, … , 
Bn in A. A was skeletonized using a topology thinning method (Bian et al 2014) to form a 

26-connected, one-voxel wide and central-located structure (centerline). The diameter DBi of 

individual branches Bi was estimated based on the centerline voxels c1, c2, … , ck belonging 

to it. The centerline cj was increasingly dilated by a spherical element (one voxel at a time) 

until the dilation surface collided with background voxels. The sphere diameter dcj was then 
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set to be cj’s diameter with respect to image resolution. The branch diameter was computed 

as the average of all its centerline voxels’ diameters:

DBi
= 1

k ∑
j

k

dc j,
C j ∈ Bi .

Although the main focus of this study is on small airways, we found it was not optimal to 

extract positive candidates from small branches exclusively. The main reason for this is that 

in some cases the reference did not contain a sufficient amount of small branch voxels. 

Hence, we extended the sampling to the whole reference tree. However, uniform sampling 

would lead to an imbalanced training set in which larger airway voxels would dominate the 

final positive candidate set.

Therefore, a diameter-focused airway sampling process was implemented by initially 

categorizing airway branches into small airways (DBi ≤ 2.0mm), medium airways (2.0mm < 
DBi ≤ 5.0mm) and large airways (DBi 5.0mm). The voxels belonging to each branch type 

were further sub-divided into four subsets according to their branch measurements and 

locations:

(1) Voxels from small airways;

(2) Voxels from central lumen area of medium airways;

(3) Voxels from periphery lumen area of medium airways;

(4) Voxels from large airways.

Subset 1 entirely consisted of small airway samples. The samples formed Subset 2 and 3 are 

all extracted from medium airways. The central lumen area in Subset 2 was defined as the 

branch centerline voxels and their 26-connected neighborhoods. The periphery lumen area in 

Subset 3 formed the remaining medium airway voxels. The primary consideration of 

distinguishing Subset 2 from Subset 3 was to simulate small branches in the central part of 

medium branches. Subset 4 was added to ensure that the proposed method was capable of 

extracting larger airway voxels as well, which was needed to obtain a connected airway tree. 

It should be noted that the trachea and main bronchi are not included in Subset 4. We 

randomly selected an equal amount of voxels from each subset for training.

2.3.2. Non-airway sample selection—If we would randomly select negative voxels 

from all voxels in the lung masks not labeled as airway, we ran into the risk of selecting 

some voxels from small airways that were missed in the semi-automatically created 

reference. We therefore opted to use an airway-like removal sampling, which employed 

image processing procedure to enhance the possibly unlabeled airways in the training data, 

so as to avoid sampling those as non-airways. The lung fields were processed using a 

modified subtraction algorithm proposed in Lassen et al (2013). For a given voxel v with 

intensity value Iv in the lungs, the maximum intensities Imax were identified along 8-

neighborhood directions with a range of k voxels (marked in green as 1(a)). k was a 
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dimensional scale whose range covered one small airway diameter threshold, aiming to 

capture small airway completely within one direction. The subtracted scale of v was 

obtained from this equation: Isub = Avg(Imax1 − 8) − Iv − Var(Imax1 − 8) . The average 

maximum minus intensity item was the contrast between v and its spatial surroundings; 

subtracting the variance ensured that Isub would only get a high response when v was 

uniformly surrounded by high-intensity voxels. The underlying idea was that genuine airway 

lumen voxels had a low attenuation and were uniformly surrounded by higher density wall 

tissue. Other airway-like structures, such as small clusters of emphysema and imaging noise 

had a more heterogeneous surrounding and received lower subtraction results. The lung 

parenchyma and other dense voxels were essentially unchanged, or might even be intensified 

by this preprocessing. With the procedure outlined above, only planes that cut almost 

orthogonally through the bronchi showed high responses. Therefore we took the average of 

three largest responses from the 9 plane filter responses (see Figure 1(b)) Isub1−9 as the 

subtraction scale (see Figure 1(d)). Negative samples were randomly extracted in the lung 

fields apart from the highly-subtracted region.

2.4. Features

Two categories of image features were utilized to express the airway’s tubular shape. The 

first category represented local intensity structure and was derived from Gaussian scale 

space (Frangi et al 1998). We used the three eigenvalues λ1, λ2, λ3 of the Hessian matrix 

computed from the second-order derivatives of the image intensity after a Gaussian 

convolution. These features have been widely used in prior work to distinguish blob-like, 

plate-like and tube-like structures. The eigenvalues were sorted according to their absolute 

values as |λ1| ≤ |λ2| ≤ |λ3| (Lo and de Bruijne 2008). To obtain additional rotationally 

invariant three eigenvalues combinations (Laplacian, Gaussian curvature, eigen magnitude) 

were also included in the feature set.

The second category of features was based on image texture. We extracted 2D local binary 

pattern (LBP) values as a visual descriptor (He and Wang 1990). Since the dimensions of 

small airways are below 2.0mm, it su ced to use a small neighborhood. For each candidate 

voxel centered in a square window, we compared the voxel to each of its 8 neighbors in a 

clockwise direction. This resulted in a binary value with 8 digits which was 0 when a 

candidate was lighter than its neighbor and 1 conversely. The value was further transferred to 

become rotationally invariant by a digit shifting operation to find its minimum conversion. 

We preferred these LBP values as features, rather than the full LBP vectors, because even a 

normal cell size in the classical LBP vector was larger than the diameters of small airways. 

To capture the airway appearance orthogonal to different spatial directions, the 2D LBP 

windows included the nine cut planes shown in Figure 1(b).

To cope with branches with variable diameters, the Hessian features were computed at 

multiple scales, and the LBP values were determined for different window sizes. Table 1 

lists all features extracted at one scale.
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2.5. Classifier

Random forest (RF) has been widely recognized as an accurate ensemble learning method, 

and is known to perform well for classification, regression and other tasks (Friedman et al 
2001). It has attracted the pulmonology research community’s attention in lung nodule 

analysis and organ segmentation (Lee et al 2010, Mansoor et al 2014).A random forest 

consists of a collection of independently trained decision tree classifiers T1, T2,···, TN. Input 

a previously unseen voxel v, processing via each subtree Ti starts at its root and pushes the 

voxel feature vector through the corresponding sequenced nodes. The prediction procedure 

terminates when a leaf node is reached. The forest returns for v a probability K/N, in which 

K is the number of subtrees voting for v representing an airway and N is the total number of 

trees. All voxels within the lung masks were processed and this generated a probability map 

(shown in Figure 2), which was used to construct a final airway segmentation.

2.6. Post-processing

We applied a threshold Tprob to the probability map to label the voxels as airway. This 

resulted in a number of connected components, including small patches not connected to the 

trachea and main bronchi. We could only choose a limited number of them, due to the time-

consuming and labor-intensive manual evaluation required. Therefore, a volume threshold, 

which was set as 30 voxels, was used to eliminate very small connected components from all 

extracted structures.

3. Experiments and Results

We designed two experiments to show the performance of our method to segment airways 

and small airways. The first experiment compared our results with the reference data to 

determine how many airway branches and small branches we could find correctly within the 

reference segmentation. The second experiment focused on additionally detected airways, 

i.e., those not contained in the semi-automatically constructed reference set. We expect these 

additional airways to be mainly small airways. For the quantitative measurements provided, 

we followed the approach of the MICCAI Challenge “Extraction of Airways from CT 2009” 

(EXACT’09) (Lo et al 2012). Three key measurements from the challenge were 

implemented for our evaluation: detected branch count percentage, detected tree length 

percentage and false positive volume percentage.

The trachea and main bronchi were excluded from the quantitative evaluation because they 

were not segmented by the machine-learning based method. Those branches were only used 

to make a connected tree structure for 3D visualization.

For each experiment, our results were evaluated in two ways: First, since the reference data 

is a tree structure, we constructed a completely connected airway tree based on our 

segmentation; rooted from the trachea seed point in Subsection 2.2, airway voxels were 

successively joined under a 26-connected rule. Second, we performed an evaluation not 

restricted to the tree structure – as researchers implemented before (Lo et al 2012) – but also 

extended to those components disconnected from the main tree. Measurements are shown 

for all branches (both larger and small branches) and for only small branches separately.
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3.1. Parameters and implementation

80 scans were randomly selected from our dataset as training set, and the remaining 20 as 

test set. Airway and non-airway samples were extracted as described in Subsection 2.3. A 

total of 80, 000 positive samples were randomly selected from the airway reference data 

(1000 samples per scan) and a similar procedure was followed for the negative samples. For 

the positive sample selection (Subsection 2.3.1), each airway group contributed 25% of the 

samples. For the negative sample selection (Subsection 2.3.2), the subtraction radius was set 

to be the same as the small airway diameter threshold of 2.0mm, so that the border voxels of 

small airways could be attenuated significantly, just like the lumen center ones; the 

subtraction scale threshold to distinguish potential airways and lung parenchyma was set to 

be −30 HU.

For feature extraction (Subsection 2.4), the CT images were convolved by three scales 

similar to the small branch radius: σ = 0.5, 1.0 and 1.5mm. For the LBP features we used 

three different window sizes: 3 * 3, 5 * 5, and 7 * 7 voxels. The 5 * 5 window was 

resampled window from 3 * 3 and 7 * 7 was resampled from 5 * 5. In total, this resulted in 7 

* 3 + 9 * 3 = 48 features.

In our classifier design, we implemented a forest consisted of 100 subtrees. For each tree, 

48 ≈ 7 features were randomly selected from the feature vector for node training. A voxel 

was classified as airway if its probability Tprob was larger than 0.5.

The proposed method was implemented on a standard PC with an Intel Core i5–2400 CPU 

and 12GB memory. All code was written in C++. In the training procedure, the positive and 

negative sampling procedure took 20 seconds per CT scan, around 30 minutes in total. Most 

time, 2.5 hours, was spent on forest construction and training. In the test procedure, feature 

extraction took less than 5 minutes; the execution time for one scan was between 2 and 3 

minutes.

The reference segmentation measurements of the 20 test scans are listed in Table 2. The tree 

length measure was calculated in mm and volume in mm3.

3.2. Detection performance relative to the reference standard

We first assessed the performance of our method relative to the reference standard. In Table 

3, the percentage of detected branch branch count and percentage of detected tree length are 

reported. To compute these measurements, all the detected voxels which were not included 

in the reference data were discarded. Centerlines of our results and of the reference 

segmentation were extracted using topology-thinning (Bian et al 2014). There were 

sometimes one-voxel biases between the two segmentations at the border regions due to 

different airway decision rules by computer and the reference. In order to guarantee a 

coherent analysis, our centerline voxels were projected to its 26-neighborhood reference 

centerline locations if they were not found at the corresponding reference coordinates. A 

detected branch B was defined as correct if it met the following two conditions: 1) the 

detected branch overlapped more than 80% volume of the corresponding reference branch; 

2) every centerline voxel from B could be projected correctly within 26-neighborhood range 

to the corresponding reference centerline.

Bian et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our method contained a few key elements, i.e., the type of positive and negative sampling 

scheme, and the set of extracted features. In order to evaluate the influence of these 

elements, 6 combination workflows of the key components were investigated, listed in Table 

4. Note that uniform sampling of positive and negative classes means to select samples 

randomly from the airway and lung fields. The average results of the measurements of the 6 

workflows are presented in Table 5.

3.3. Additionally segmented airways

Occasionally, our method detected additional airway voxels very close to the reference. To 

be able to ignore this effect, we dilated the reference data with a 3 * 3 * 3 cube element and 

only the voxels outside the dilated reference were regarded as potentially newly discovered 

airways. The centerline structures of our small-component removal results and reference 

data were generated as described in Subsection 3.2. The topology structure was extracted to 

obtain tree or patch roots (voxels with only one neighboring voxels on centerlines) and 

branching points (voxels with three or more neighborhood on centerlines). Skeletonized 

branch BS was marked with an independent label between root, bifurcation or terminal 

voxels (shown in Figure 3(a)). BS was dilated by a set of binary sphere structures to include 

its lumen voxels continually until the morphology fronts collided with background or other 

labels, forming a reconstructed airway system for subsequent inspection. Figure 3(b) 

presents the final reconstructed airway system.

All additionally discovered branches were presented to a human observer who was 

experienced with CT imaging, airway extraction and thoracic anatomy. The purpose of this 

observer study was to investigate which additionally discovered branches and which 

branches in the reference that were not detected by our method corresponded to actual 

airways, and which were leakages. The observer carefully inspected the post-processed test 

scans overlaid with rendered branches in a dedicated viewer. The platform visualized our 

segmentations in both 2D and 3D views. For 2D views, the scan was displayed 

synchronously on axial, sagittal and coronal sections. The observer could zoom, scroll and 

jump to labels through three orthogonal views to determine whether a branch B was an 

actual airway or not. The observer was required to classify each branch B as either correct or 

wrong. The observer received a training session about how to use the scoring platform and to 

become familiar with correct and wrong examples. It took 2 hours in total to complete the 

training session. On average, the observer needed 15 minutes to inspect all potentially 

additionally detected branches for a single case.

The results of this observer study experiment are provided in Table 6. We report the 

percentage of additionally detected airway and small airway length and volume, with respect 

to the reference measurements. Furthermore, in order to quantify the amount of erroneously 

segmented voxels, FPVP, the false positive volume percentage performance measure was 

introduced from Lo et al (2012). Let VC and VW represent the volumes of correct and wrong 

branches determined by the observer, FPVP was defined as:

Bian et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FPVP =
VW

Vc + VW
* 100%

Six representative airway segmentations are presented in a 3D rendering in Figure 4. Figure 

4(a) (Case07) and 4(b) (Case09) were the cases with the most/least small airways according 

to the reference data, respectively. Figure 4(c) (Case02) and 4(d) (Case04) achieved the 

highest/lowest measurements in terms of detection relative to the reference standard, 

respectively. Figure 4(e) (Case17) and 4(f) (Case06) were the cases with the most/least 

additionally detected small airway measurements, respectively. It should be noticed that in 

Case02 in Figure 4(c) no false positive detection occurred; On the contrary, Figure 4(e) 

obtained the highest false positive volume.

4. Discussion

Our experiments show that the proposed machine learning method is able to find a 

substantial amount of additional small airways, when compared to a reference standard 

created by manual adaptation of the results of a state-of-the-art airway segmentation. 

Additionally, we show that an optimized voxel sampling procedure can improve 

segmentation performance and that the incorporation of our dedicated feature set 

substantially improves the segmentation. These constitute our main results.

If we consider all extracted components by our proposed fully automated method, we detect 

nearly all airways in the semi-automatically constructed reference standard. As listed in 

Table 3, 99.7% of the branches are detected in the reference data and 99.7% for the tree 

length; for small airways the measures are 98.5% and 98.3%, respectively.

But our method is capable to explore more bronchial structures in the lung fields. Table 6 

shows that our method can segment 13.3% more volume, and when we only consider the 

small airways this number even increases to 49.4%. The improvements are generated under 

a low false positive rate of 2.6%, and 4.2% for small airways. Moreover, even if we only 

consider the connected tree system, performance is competitive. It finds 4.7% more volume 

and 21.1% more small branch volume, and in this scenario the false positive rate drops to 

1.4% and 4.4%. Furthermore, the proposed method extends the tree length by 30.0% and the 

total length of small branches by 37.2%.

The method can identify airways in the periphery lungs (see Figure 5(a)). When an area of 

increased intensity occurs in the middle of the airways, the reference standard method 

regards that as the segmentation frontier encountering non-airway tissue (see Figure 5(b) and 

Figure 5(c)). Or when a terminal branch locally expands its width, the traditional method 

considers this a leak and fails to further segment the airways. The proposed method, driven 

by machine learning, processes the entire CT scan voxel by voxel and thus detects additional 

airways (see Figure 5(d)).

Our method, on the other hand, misses some parts of the reference data. This can be 

explained by considering two specific situations. Firstly, although the reference data sets 
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were manually checked, some tiny leakages might have been accepted erroneously. This is 

illustrated in Figure 5(e) and Figure 5(f). The other situation pertains to false negatives. 

These mostly happen when a branch has just bifurcated into new terminal branches (see 

Figure 5(g) and Figure 5(h)).

In this work we report results for 6 different workflows. A limitation of this study is that the 

inspections at branch level by a human expert were only performed for Workflow 6, the 

proposed method. This was done since this visual inspection was extremely time consuming.

4.1. Effectiveness of Sampling

Table 5 indicates that our method achieves a significant improvement through the use of a 

well-designed candidate sampling. In the absence of a complete airway reference, a fully 

random candidate sampling turns out to be less reliable. Admittedly, the fully random 

sampling workflow (Workflow 2) is able to extend the tree length and find some extra 

branches. However, the disadvantages are: (1) it reveals poor performance in small branch 

detection with only 84.7% small branches and 82.3% small airway length detected on 

average; (2) it segments more false positives as well. Both airway-focused and lung-focused 

sampling have a positive influence on the final results, as Workflow 3 and 4 obtain better 

performance than Workflow 2. However, these approaches still fall short of the performance 

of the proposed method.

Lo et al (2010) adopted a sampling method in which airway candidates were extracted 

evenly with respect to their distance from trachea and main bronchi.

Inspired by this approach, we devised our strategy that samples more extensively from small 

branches and that is shown to improve results. Furthermore, literatures (Lo et al 2012, 

Lassen et al 2013) present several other airway sharpening filters such as multi-scale 

morphological reconstruction, Laplacian of Gaussian filter, and lumen subtraction. Although 

these approaches are not good enough in practice to completely distinguish airways and lung 

parenchyma, they can be used to improve the sampling of lung parenchyma voxels, as we 

did in Subsection 2.3.2. As a result, 98.5% of all small branches and 98.3% of small airway 

length were identified correctly.

4.2. Effectiveness of Features

Previous work on machine learning based airway detection features was based on local 

image descriptors derived from eigenvalues of Hessian matrix, see (Meng et al 2016) and 

(Lo and de Bruijne 2008). This approach has thus been shown to be effective, and in our 

study 94.7% of small branches and 92.8% of small airway length are identified (Workflow 

5). Figure 6 shows an example of how the proposed method (Workflow 6) outperforms the 

method using only tubular features (Workflow 5).

The individual feature importance was also analyzed based on normalized Gini 

measurements. Among the 48 features, Gaussian blurred intensity at 1.0mm scale achieved 

the maximum feature importance (0.0558), indicating that no feature had significant 

influence in segmenting voxels. In general, tubular features’ importance (averaged 0.0335) 

was larger than the texture ones (averaged 0.0110). For tubular features, the Hessian-derived 
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features generated at 1.0mm blurred scale(0.0443 in average) was slightly better than those 

at 0.5mm (0.0368 in average), and those at 1.5mm was 0.0192. The Gaussian blurred 

intensity and Hessian matrix eigenvalues weigh more in the classifier compared with 

Laplacian, Gaussian curvature, and Eigen magnitude. For texture features, the LBP values 

generated at 5*5 window size (0.0157 in average) performed better than those at 3*3 

window size (0.0107 in average), and then at 7*7 window size (0.0063 in average).

There may still be room for further improvement. Lo et al (2010) introduced the vessel 

orientation similarity feature, derived from anatomical knowledge. It would however be 

time-consuming to segment pulmonary vessels and calculate intersection angles between 

airway and parallel vessel eigenvectors. Hence, we attempted to employ texture features in 

this work. We show this has a positive influence on the results: performance measurements 

increased to 98.5% and 98.3%, respectively.

Admittedly, the presented results su er from some false positives: 1.4% in the connected tree 

and 2.6% in terms of total components. For small airways the FPVP increased to 4.4% and 

4.2%, respectively. The average connective tree FPVP (1.2%) of the 20 cases is almost the 

same as the average measurement (1.22%) across 15 EXACT’09 challenge participants.

4.3. Possible further improvements

Our method does not guarantee a completely connected airway tree. Several refinement 

procedures could be applied in future work. For instance, a morphological operator can fill 

the holes encircled by generated airway voxels in large branches. Meng (Meng et al 2016) 

proposed a graph-cut connecting method to link the dispatched structures with the airway 

trunk. Our main focus was to obtain as many small airways as possible. We argue that the 

fact that all components do not form a connected tree is in most cases not a limitation: global 

descriptors and imaging biomarkers can usually also be computed from a not necessarily 

connected set of airway branches or voxels.

We carefully inspected all erroneously segmented voxels and noticed several consistent 

mistakes. Most of those findings take place at the airway lumen-like areas. A set of 4 typical 

examples are presented in Figure 5(i) – Figure 5(l). Because of the use of ionizing radiation, 

the dose used in CT imaging is always as low as possible. CT scans therefore often suffer 

from imaging noise. Some highly noisy parts form a variety of random structures, which 

happens frequently in the periphery of the lungs (see Figure 5(i)). Moreover, motion 

artifacts, caused by respiration, heartbeat, and patient movement, commonly occur in 

thoracic CT. The artifacts cause artificially attenuated regions around dense tissues that have 

moved and these darker regions may mimic airways. This occurs throughout the lungs but 

mainly in the left lower lobe due to the impact of heartbeats (see Figure 5(j)). Furthermore, 

several false positive regions were noticed close to bright pulmonary vessel borders. Here, 

the vessel may be mistaken for an airway wall. Those regions form “shadow trenches” 

parallel to vessels (see Figure 5(k)). Finally, we noticed some false positives at relatively 

low-intensity areas surrounded by large airway walls and vessels (see Figure 5(l)).
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Additional samples in these false positive regions may decrease the output of the classifier 

on these quasi-airway structures. Non-airway candidates could be specifically extracted from 

these regions, as well as from the false positives confirmed by the human observer.

Finally, we note that our method was capable to segment airways regardless of 

morphological deformation such as branch narrow and expansion. This makes it feasible to 

apply the method to a large amount of lung CT scans to investigate small airway diseases, 

e.g., asthma and bronchiectasis, and to research the relationship between small airway 

disorders and COPD.

5. Conclusion

This paper presents a fully automated small airway segmentation method from thoracic CT 

scans. The core of the method is a random forest voxel classification scheme, using an 

optimal set of features. A dedicated airway voxel sampling method is shown to be important 

to obtain good performance and specifically detect small airways with high accuracy. The 

method was shown to substantially increase the number of detected small airways at a low 

false positive rate, compared to a reference obtained with a semi-automatic method that 

involves manual post-processing. This method could be the basis for imaging biomarkers 

focused on small airway disease.
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Figure 1. 
A specific display of the subtraction procedure: (a) From the center voxel (highlighted by a 

bold green dashed square) the maximum intensities (highlighted by green dash squares) 

were calculated for all of the 8-neighborhood directions (green arrows); each arrow covered 

a range of 2.0mm spatially which was the small airway scale. (b) Nine filter cutting planes 

(marked by straight and dashed black lines in 3D space). (c) An original CT slice. (d) 

Subtraction scale image of (c); the airway lumen attenuates significantly, whereas the high 

density tissue intensified and lung parenchyma kept almost unchanged compared with (c).
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Figure 2. 
A resulted probability map shown in Maximum Intensity Projection Mode. The background 

outside lungs was in black. Individual lung or airway voxels’ probability was with respect to 

its gray-scale. Higher gray-scale indicated larger probability.
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Figure 3. 
An example of the labeling of airway system. The greened region indicates the overlap 

between our segmentation and the reference standard. The other colorful regions indicate the 

additionally detected branches with independent labels. (a) is the rendered centerline 

structure of a selected airway segmentation; (b) is the rendered reconstruction airway of (a).

Bian et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
3D rendering of selected airway segmentations. The light blue part indicates the trachea and 

main bronchi; light green is used for overlap between our segmentation and the reference 

standard; purple indicates missed airway voxels; green indicates false positive voxels in the 

reference data which are identified by the proposed method; blue indicates additionally 

detected airway branches; red indicates false positives among the additionally segmented 

voxels.
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Figure 5. 
2D CT image patches and the overlaps with rendered airway segmentations. The first and 

third row list the original CT image patches, and the second and fourth row list the 

corresponding 2D rendering results. The light blue part is the trachea and main bronchi; the 

light green part indicates the overlap between our segmentation and the reference standard; 

the purple part corresponds to the missing airway voxels; the green part are false positive 

voxels in the reference stadard which are identified by the proposed method; the blue parts 

are the additionally detected airway branches; the red parts are false positives among the 

newly segmented airways.
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Figure 6. 
A specific display of the di erence between combined feature segmentation and tubular 

feature-based segmentation. (a, c) Original CT slice. (b, d) Rendered segmentation; green 

part: overlay segmented by Workflow 5 and 6; blue part: segmented only by Workflow 6 (the 

proposed method).
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Table 1.

Image features used for airway classification.

Feature ID Description Format

f1 Gaussian blurred intensity I*G

f2, f3, f4 Hessian eigenvalues λ1, λ2, λ3

f5 Laplacian λ1 + λ2 + λ3

f5 Gaussian curvature λ1λ2λ3

f7 Eigen magnitude λ1
2 + λ2

2 + λ3
2

f8, … , f16 LBP values in 9 planes
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Table 2.

Reference airway measurements of the 20 test scans used for evaluating the proposed method.

Branch count Tree length(mm) Volume (mm3)

Case All branches Small branches All branches Small branches All branches Small branches

1 150 49 2339.3 501.9 9119.8 573.2

2 110 24 1724.1 234.9 10893.6 294.8

3 122 23 1944.8 246.0 12366.7 327.7

4 98 8 1690.4 50.0 10272.4 72.4

5 219 31 3673.1 221.3 16960.8 292.3

6 119 21 2062.3 286.0 8649.9 384.7

7 368 113 5328.8 1031.1 22509.7 1326.7

8 209 42 3324.3 397.5 31066.7 590.4

9 110 9 2044.1 82.6 10108.9 147.2

10 168 42 2591.7 430.3 13596.3 524.7

11 139 43 1892.0 475.7 8204.7 583.9

12 356 69 5394.8 586.4 24438.4 767.2

13 263 64 4850.3 643.6 23814.5 826.3

14 196 64 2942.9 818.0 12827.3 1036.4

15 162 39 2412.0 349.4 13507.2 413.1

16 176 33 2904.4 339.7 14022.3 502.4

17 138 12 2006.6 87.5 13490.5 141.5

18 279 58 4431.6 569.5 18406.6 779.3

19 112 28 1579.2 289.4 11934.1 366.5

20 188 37 2773.5 296.9 14434.8 376.0

Total 3682 809 57909.9 7937.3 300625.0 10326.5
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Table 3.

Branch and length detected percentage results of the proposed method.

Completely-connected airway tree All segmented airway components

Case All branches Small branches All branches Small branches

Branch count Branch length Branch
count

Branch length Branch count Branch length Branch count Branch length

1 97.3 92.9 91.8 75.7 99.3 98.8 98.0 94.8

2 100.0 99.9 100.0 99.0 100.0 99.9 100.0 99.5

3 100.0 99.5 100.0 97.3 100.0 99.7 100.0 97.7

4 99.0 98.9 87.5 86.8 100.0 99.4 100.0 88.5

5 99.5 99.9 96.8 97.8 100.0 99.9 100.0 98.7

6 99.2 95.5 100.0 77.9 99.2 99.3 100.0 97.2

7 99.5 98.5 98.2 95.7 99.7 99.9 99.1 99.7

8 100.0 91.1 100.0 91.5 100.0 99.9 100.0 99.4

9 99.1 95.5 88.9 85.0 100.0 99.8 100.0 94.9

10 99.4 98.9 97.6 95.4 100.0 99.7 100.0 98.3

11 97.8 98.0 93.0 91.9 100.0 99.3 100.0 97.2

12 97.8 97.8 89.9 91.3 98.9 99.6 94.2 98.8

13 98.9 97.0 95.3 84.0 100.0 99.8 100.0 98.7

14 99.0 97.4 96.9 92.8 100.0 99.6 100.0 98.8

15 99.4 99.0 100.0 94.9 99.4 99.9 100.0 99.2

16 98.3 95.8 84.9 79.6 100.0 99.4 93.9 97.8

17 99.3 99.8 91.7 98.3 99.3 100.0 91.7 99.2

18 98.9 97.5 96.6 89.3 99.3 99.9 96.6 99.0

19 100.0 98.4 100.0 95.1 100.0 99.8 100.0 99.5

20 95.7 96.3 81.1 92.3 99.5 99.4 97.3 97.5

Avg 98.9 97.4 94.5 90.6 99.7 99.6 98.5 97.7

±Std ±1.1 ±2.3 ±5.7 ±7.0 ±0.4 ±0.3 ±2.5 ±2.6

Total 98.8 97.3 95.1 90.5 99.7 99.7 98.5 98.3
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Table 4.

6 compared combinations of airway segmentation workflow.

Workflow Positive sampling Negative sampling Feature set

1 Uniform Uniform Tubular only

2 Uniform Uniform Tubular + texture

3 Diameter-focused Uniform Tubular + texture

4 Uniform Airway-like removal Tubular + texture

5 Diameter-focused Airway-like removal Tubular only

6 Diameter-focused Airway-like removal Tubular + texture
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Table 5.

Comparison results of different workflows against the reference over the 20 test cases (measured in branch and 

tree length detected percentage of total detected components).

Completely-connected airway tree All segmented airway components

Workflow All branches Small branches All branches Small branches

Branch count Branch length Branch count Branch length Branch count Branch length Branch count Branch length

1 87.3 86.6 70.5 69.6 89.8 88.3 79.0 78.2

2 89.5 88.7 73.2 73.1 92.4 90.7 84.7 82.3

3 92.2 91.4 79.3 78.0 94.9 93.0 94.0 91.5

4 92.0 91.1 77.3 75.0 94.4 91.9 90.0 86.3

5 93.7 92.3 89.2 88.1 95.2 94.5 94.7 92.8

6 98.8 97.3 95.1 90.5 99.7 99.7 98.5 98.3

Phys Med Biol. Author manuscript; available in PMC 2019 August 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bian et al. Page 27

Ta
b

le
 6

.

A
dd

iti
on

al
ly

 s
eg

m
en

te
d 

ai
rw

ay
 le

ng
th

 a
nd

 v
ol

um
e 

pe
rc

en
ta

ge
 f

or
 th

e 
pr

op
os

ed
 m

et
ho

d.

C
om

pl
et

el
y-

co
nn

ec
te

d 
ai

rw
ay

 t
re

e
A

ll 
se

gm
en

te
d 

ai
rw

ay
 c

om
po

ne
nt

s

C
as

e
A

ll 
br

an
ch

es
Sm

al
l b

ra
nc

he
s

A
ll 

br
an

ch
es

Sm
al

l b
ra

nc
he

s

E
xt

ra
co

rr
ec

t
le

ng
th

E
xt

ra
co

rr
ec

t
vo

lu
m

e

F
al

se
po

si
ti

ve
vo

lu
m

e

E
xt

ra
co

rr
ec

t
le

ng
th

E
xt

ra
co

rr
ec

t
vo

lu
m

e

F
al

se
po

si
ti

ve
vo

lu
m

e

E
xt

ra
co

rr
ec

t
le

ng
th

E
xt

ra
co

rr
ec

t
vo

lu
m

e

F
al

se
po

si
ti

ve
vo

lu
m

e

E
xt

ra
co

rr
ec

t
le

ng
th

E
xt

ra
co

rr
ec

t
vo

lu
m

e

F
al

se
po

si
ti

ve
vo

lu
m

e

1
2.

6
1.

2
0.

4
9.

7
15

.8
2.

9
7.

5
3.

6
0.

9
18

.4
31

.7
2.

6

2
14

.3
5.

0
0.

0
33

.9
50

.4
0.

0
37

.8
13

.2
0.

0
47

.9
67

.5
0.

0

3
23

.5
8.

2
0.

5
56

.1
81

.7
1.

0
54

.3
18

.2
1.

5
87

.0
10

8.
2

4.
1

4
11

.4
5.

2
0.

1
35

.8
56

.0
4.

9
36

.2
14

.7
0.

4
99

.3
13

1.
9

3.
0

5
6.

9
3.

3
0.

1
38

.7
49

.9
2.

5
24

.9
11

.7
0.

8
94

.2
12

9.
0

3.
1

6
3.

3
2.

4
0.

1
1.

9
1.

5
1.

5
19

.4
11

.0
0.

2
18

.4
23

.3
1.

8

7
8.

6
2.

6
1.

7
15

.5
20

.0
1.

5
24

.6
10

.9
2.

6
39

.1
54

.0
2.

8

8
23

.6
5.

8
1.

1
36

.5
37

.4
9.

7
56

.3
16

.4
1.

9
58

.4
70

.6
10

.7

9
39

.4
26

.9
0.

4
19

.6
27

.6
2.

9
77

.8
53

.3
0.

5
24

.2
33

.5
2.

4

10
7.

9
3.

0
0.

3
13

.7
17

.9
0.

0
23

.6
10

.5
0.

3
25

.8
38

.4
0.

0

11
4.

0
1.

5
0.

2
10

.8
11

.9
0.

9
16

.1
7.

6
0.

5
29

.5
38

.0
0.

7

12
12

.4
4.

7
3.

3
20

.7
23

.0
10

.4
23

.1
11

.3
4.

0
26

.7
37

.8
7.

7

13
5.

5
2.

6
0.

1
11

.1
14

.6
0.

6
16

.1
7.

2
1.

1
33

.3
44

.7
0.

6

14
7.

3
2.

9
0.

8
5.

0
7.

0
0.

0
20

.6
8.

3
3.

7
17

.5
24

.7
2.

8

15
6.

4
2.

3
0.

4
13

.7
24

.7
0.

0
23

.0
9.

0
1.

6
35

.3
67

.2
0.

0

16
12

.6
3.

3
3.

7
26

.9
22

.1
12

.1
29

.7
12

.7
3.

7
35

.3
36

.0
8.

9

17
46

.4
14

.0
6.

1
11

4.
4

74
.9

25
.6

83
.2

31
.3

6.
2

17
7.

1
17

8.
6

16
.5

18
7.

9
2.

7
3.

3
11

.9
6.

8
14

.3
24

.0
12

.9
4.

2
29

.9
40

.2
7.

4

19
1.

6
0.

2
0.

4
4.

7
2.

5
2.

0
15

.7
2.

4
2.

8
27

.6
29

.2
7.

4

20
5.

8
1.

9
1.

0
7.

9
9.

5
4.

7
16

.1
6.

7
1.

1
29

.7
39

.8
3.

4

A
vg

12
.6

5.
0

1.
2

24
.4

27
.8

4.
9

31
.5

13
.6

1.
9

47
.7

61
.2

4.
3

±
St

d
±

12
.1

±
6.

0
±

1.
6

±
25

.5
±

23
.4

±
6.

5
±

20
.7

±
11

.1
±

1.
7

±
39

.3
±

42
.7

±
4.

3

To
ta

l
11

.9
4.

7
1.

4
17

.5
21

.1
4.

4
30

.0
13

.3
2.

6
37

.2
49

.4
4.

2

Phys Med Biol. Author manuscript; available in PMC 2019 August 06.


	Abstract
	Introduction
	Methods
	Data
	Trachea and main bronchi removal
	Training sample selection
	Airway sample selection
	Non-airway sample selection

	Features
	Classifier
	Post-processing

	Experiments and Results
	Parameters and implementation
	Detection performance relative to the reference standard
	Additionally segmented airways

	Discussion
	Effectiveness of Sampling
	Effectiveness of Features
	Possible further improvements

	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.

