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SUMMARY

Prevalence of diabetes and obesity in Mexican Pima Indians is low, while prevalence is high in 

Pima Indians in the United States (US); although lifestyle likely accounts for much of the 

difference, the role of genetic factors is not well-explored. To examine this, we genotyped 359 

single nucleotide polymorphisms, including established type 2 diabetes and obesity variants from 

genome-wide association studies (GWAS) and 96 random markers, in 342 Mexican Pimas. A 

multimarker risk score of obesity variants was associated with body mass index (BMI; β = 0.81 

kg/m2 per SD, P = 0.0066). The mean value of the score was lower in Mexican Pimas than in US 

Pimas (P = 4.3×10−11), and differences in allele frequencies at established loci could account for 

~7% of the population difference in BMI; however, the difference in risk scores was consistent 

with evolutionary neutrality given genetic distance. To identify loci potentially under recent 

natural selection, allele frequencies at 283 variants were compared between US and Mexican 

Pimas, accounting for genetic distance. The largest differences were seen at HLA markers (e.g., 
rs9271720, difference = 0.75, P = 8.7×10−9); genetic distances at HLA were greater than at 
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random markers (P = 1.6×10−46). Analyses of GWAS data in 937 US Pimas also showed sharing 

of alleles identical by descent at HLA that exceeds its genomic expectation (P = 7.0×10−10). These 

results suggest that, in addition to the widely-recognized balancing selection at HLA, recent 

directional selection may also occur, resulting in marked allelic differentiation between closely 

related populations.
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INTRODUCTION

Diabetes mellitus and obesity are common metabolic disorders in human populations. These 

disorders are related, as obesity is a strong risk factor for type 2 diabetes, which is by far the 

most common form of diabetes. Both conditions are strongly heritable (Willemsen et al., 

2015, Elks et al., 2012), and their prevalence differs widely among human populations 

(Knowler et al., 1978, Kelly et al., 2008, King et al., 1998, Hanson et al., 1995). There has, 

thus, been a great deal of speculation about how evolutionary factors may have influenced 

these traits. In recent years, genome-wide association studies (GWAS) have identified a 

number of loci at which specific alleles are reproducibly associated with type 2 diabetes or 

obesity in humans (Zeggini et al., 2008, Saxena et al., 2012, Morris et al., 2012, Kooner et 

al., 2011, Tsai et al., 2010, Williams et al., 2014, Thorleifsson et al., 2009, Speliotes et al., 

2010). Prevalence of type 2 diabetes and obesity in the Pima Indians of Arizona, USA, is 

extraordinarily high (Knowler et al., 1978, Hanson et al., 2015, Hanson et al., 1995), while 

their prevalence is much lower in Pima Indians from the village of Maycoba in Sonora, 

Mexico (Schulz et al., 2006, Esparza-Romero et al., 2015). The genetic distance between the 

populations is relatively small (Schulz et al., 2006, Tishkoff and Kidd, 2004), and, although 

the historical divergence time is uncertain, linguistic analysis suggests the populations 

diverged ~750 years ago (Hale, 1958). Lifestyle in the US Pimas is more “modern”, with 

greater access to technology and processed foods, while that in the Mexican Pimas is more 

“traditional”, with greater reliance on manual labor and locally-produced food. It is likely 

that these lifestyle differences account for much of the difference in prevalence of obesity 

and type 2 diabetes, but the contribution of genetic factors to these population differences 

has remained largely unexplored. In the present study, we analyze established and putative 

susceptibility variants for type 2 diabetes and obesity in Mexican Pimas and compare allele 

frequencies with those in US Pimas to determine the extent to which these established loci 

can account for the differences in disease prevalence. We also compare differences in 

frequency at these variants with those at randomly selected variants, as allele frequency 

differences that are greater than the genomic expectation between closely related populations 

can be an indication of recent natural selection (Price et al., 2009, Bhatia et al., 2011). The 

HLA locus is of particular interest for diabetes studies, as HLA variants are associated with 

type 2 diabetes in both Europeans and US Pimas (Saxena et al., 2012, Williams et al., 2011), 

and strongly associated with type 1 diabetes (Hu et al., 2015). As HLA is also a strong 

candidate for natural selection, we investigated this locus in more detail.
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MATERIALS and METHODS

Participants

The study included participants in the Maycoba Project (Urquidez-Romero et al., 2014, 

Esparza-Romero et al., 2015), a survey to examine diabetes and obesity in the residents of 

Maycoba, a village in Sonora, Mexico, and the surrounding area; this area includes many 

Pima Indians, as well as Mexicans who are not Pimas. Surveys of individuals who were ≥ 18 

years old were conducted in 1995 and 2010. For the present study, all participants in the 

2010 survey with available DNA were selected for genotyping. This included 176 

individuals whose heritage was full Pima by self-report (Pima-MX), 166 with partial Pima 

heritage (PrtPima-MX, defined as reporting at least one parent with Pima heritage, but not 

full heritage Pima), and 251 with no Indian heritage (NonInd-MX). For comparison with US 

Pimas, we also selected a random sample of 402 participants in a longitudinal study in 

Arizona who were full Pima heritage by self-report (Pima-US) and were ≥ 18 years old with 

available DNA (Knowler et al., 1978). For further comparison, an additional 212 participants 

in this Arizona longitudinal study were included whose heritage was full American Indian, 

but who reported no Pima heritage (AmInd-US); these were largely from other tribes in the 

southwestern US, and they were included to represent a “general” Amerindian population, 

across diverse tribal groups. Body mass index (BMI, kg/m2) was measured and diabetes was 

diagnosed with an oral glucose tolerance test. For additional details see Supplemental 

Methods.

Genotypes

Single nucleotide polymorphisms (SNPs) were genotyped by BeadXpress (Illumina, San 

Diego, CA) according to manufacturer’s instructions. We genotyped 47 “established” type 2 

diabetes and 37 “established” BMI associated variants, identified as having associations at 

genome-wide statistical significance (P < 5.0×10−8) in “early” GWAS (largely before 2013) 

(Zeggini et al., 2008, Morris et al., 2012, Saxena et al., 2012, Kooner et al., 2011, Tsai et al., 

2010, Williams et al., 2014, Thorleifsson et al., 2009, Speliotes et al., 2010). We also 

genotyped 48 “putative” Pima type 2 diabetes and 57 “putative” Pima BMI variants, which 

achieved suggestive significance (though generally not genome-wide significance) in our 

mapping studies in US Pimas (Hanson et al., 2007, Hanson et al., 2014, Muller et al., 2013, 

Bian et al., 2010, Malhotra et al., 2011, Bian et al., 2013, Traurig et al., 2009, Traurig et al., 

2012). SNPs in HLA and TREH were included among variants with “putative” associations 

with type 2 diabetes in US Pimas. However, additional SNPs at these two loci, which have 

previously been studied in detail in US Pimas (Muller et al., 2013, Williams et al., 2011), 

were genotyped so that we could capture information about classical HLA alleles and 

capture haplotypes that predict plasma trehalase activity. We also typed 49 ancestry 

informative markers with large allele frequency differences between American Indians and 

Europeans (Tian et al., 2007). For comparative purposes, we typed 96 markers randomly 

selected from among those successfully genotyped in our GWAS (Malhotra et al., 2011). 

See Table S1 for a list of all markers.
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Genetic Associations with Diabetes and Obesity

The associations between genotypes and type 2 diabetes and BMI were analyzed in the 342 

Mexican Pimas who were either of full or partial Pima heritage. The association between 

diabetes and the number of “risk” alleles at each marker was analyzed using logistic 

regression, while association with BMI was similarly analyzed with linear regression. 

Additional details are given in Supplemental Methods.

Genetic Risk Scores

To test aggregate associations of “established” type 2 diabetes and obesity variants, 

multiallelic genetic risk scores were constructed. The scores were constructed by selecting 

one independent SNP for each locus, and this resulted in 42 SNPs for the diabetes score and 

29 SNPs for the BMI score. The genetic risk score (GRS) over g established variants was 

calculated as:

GRS = ∑i = 1
g βili

Where βi is the effect size at the ith SNP, and li is the number of risk alleles carried by the 

individual at the ith SNP. Effect sizes for type 2 diabetes were taken as the logarithms of the 

odds ratios from large meta-analyses (Hanson et al., 2015), while those for BMI were taken 

as the standardized regression coefficients in the GIANT meta-analysis (Locke et al., 2015). 

A t-test was used to compare mean values of genetic risk scores between populations; an 

empirical bootstrap method was used to account for genetic distances. Additional details are 

given in Supplemental Methods.

Comparisons across Major Continental Populations

To place comparisons in the context of those among other populations constituting major 

continental groups, we obtained genotypic data for the same markers genotyped in Mexican 

Pimas for several populations from the HapMap Project (The International HapMap 

Consortium. 2005). These populations included Europeans from the Centre d’Etude du 

Polymorphism Humain families in Utah (CEU), East Asians from Han Chinese in Beijing 

(CHB), Africans from the Yoruba in Ibadan, Nigeria (YRI), and individuals of Mexican 

ancestry from Los Angeles (MEX). Genotypic data were obtained from the International 

HapMap Project (http://hapmap.ncbi.nlm.nih.gov/) or, if not available from HapMap, from 

the 1000 Genomes Project (http://www.1000genomes.org/).

Genetic Attributable Fraction

To estimate the extent to which differences in allele frequencies at established obesity or 

type 2 diabetes variants may explain the population difference in mean BMI, or diabetes 

prevalence, the genetic attributable fraction (GAF) was calculated (Hanson et al., 2015). We 

define the GAF as the proportion of the difference in mean BMI (or in diabetes prevalence) 

between a high-risk “target” population (US Pimas) and a lower risk “reference” population 

(Mexican Pimas) that can be explained by differences in allele frequencies across 

established loci. Full details are given in Supplemental Methods.
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Analyses of Allele Frequency Differences

As identification of variants for which the difference in allele frequency between closely 

related populations exceeds that expected under evolutionary neutrality can provide a 

powerful test for selection (Price et al., 2009, Bhatia et al., 2011), we analyzed allele 

frequency differences between full-heritage Mexican and US Pimas (Pima-MX and Pima-

US) for each of the 283 SNPs with minor allele frequency > 0.05 (excluding admixture 

markers). We arbitrarily selected one allele at each SNP and calculated, by allele counting, 

its frequency in Mexican Pimas (fMX), frequency in US Pimas (fUS) and frequency in both 

populations combined (fT); we also calculated the absolute value of the allele frequency 

difference between populations (|δ|). The test for statistical significance of the allele 

frequency difference for each SNP was taken as:

χ2 =
( f MX − f US)2/[ f T(1 − f T)]

1
g ∑i = 1

g ( f MXi − f USi)
2/[ f Ti(1 − f Ti)]

Where the summation is over the g randomly selected markers (Price et al., 2009). This 

quantity follows a χ2 distribution on 1 degree of freedom that is subject to a genomic control 

procedure which accounts for the genetic distance between populations, as well was for 

stratification due to admixture or the presence of related individuals (Price et al., 2009). The 

false discovery rate (FDR) procedure was used to assess statistical significance, with control 

for multiple statistical tests (Benjamini and Hochberg, 1995). The genomic control 

procedure performs optimally when the genetic distance between populations is relatively 

close (e.g., FST<0.01), and with larger genetic distances, variation in allele frequency 

differences can be larger than expected under genomic control. To account for this, we also 

calculated the P-value empirically by simulation for the SNPs with large |δ| values. Full 

details are given in Supplemental Methods.

To further examine the observed allele frequency differences in a genomic context, we 

obtained GWAS data from the Human Genome Diversity Project (HGDP) (Li et al., 2008)). 

This constitutes data on 660,918 SNPs typed on the Illumina 650Y array on 1043 

individuals from 51 populations around the world. We selected 27 populations with ≥ 15 

genotyped individuals, and calculated FST across 2637 markers selected randomly from 2 

Mb segments assigned across all autosomes (resulting in ~1 Mb between markers). Allele 

frequency differences were calculated across all autosomal SNPs with an average minor 

allele frequency >0.05 for each pair of populations for which FST was 0.0296–0.0425 (FST ± 

one standard error between Mexican and US Pimas); this resulted in 21,830,844 

comparisons across 40 pairs of populations. The proportion of comparisons with |δ| ≥ the 

observed value between Mexican and US Pimas was taken as a measure of the genomic 

expectation for populations at comparable genetic distance.

Genetic Distances

To summarize allele frequencies differences across multiple markers, the co-ancestry 

coefficient (FST) was calculated as a measure of genetic distance between populations. FST 

represents the proportion of variance in allele frequency in the combined population 
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explained by membership in the subpopulations, and it was calculated by the method of 

Hudson (Hudson et al., 1992), as this method provides valid evolutionary inferences when 

sample sizes differ between populations (Bhatia et al., 2013). We compared FST calculated 

across diabetes, obesity or HLA markers with that calculated across the randomly selected 

markers. For statistical significance tests, the standard error of the difference between FST 

across the markers of interest and FST across random markers was calculated by a bootstrap 

procedure. Individuals from each population were resampled, with replacement, in each 

iteration to construct the studied sample size; to account for variation in marker selection, a 

new set of random markers was also selected by resampling the same number of random 

markers in each iteration. A value of FST which is significantly higher than that at random 

markers is consistent with differential directional selection, while an FST significantly lower 

than that at random markers is consistent with balancing selection, or with concurrent 

directional selection across populations (Suzuki, 2010).

Excess Sharing of Alleles Identical by Descent

Directional selection results in excess sharing of alleles IBD, particularly among distantly 

related individuals. Thus, identification of regions where the mean proportion of alleles 

shared IBD among pairs of individuals significantly exceeds its genomic average can 

provide a powerful test for selection (Albrechtsen et al., 2010, Han and Abney, 2013). We, 

therefore, analyzed locus-wise IBD sharing among 937 full-heritage US Pimas who had 

participated in a GWAS and thereby had suitable data for estimation of IBD (Malhotra et al., 

2011). Genotypic data for 398,430 autosomal SNPs, generated on the Affymetrix Genome-

wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA) were analyzed. For each pair of 

individuals (n=437,691, excluding first degree relatives), the proportion of alleles shared 

IBD was estimated with BEAGLE as described previously (Browning and Browning, 2010, 

Hsueh et al., 2017). We compared the mean IBD observed at each genomic location with its 

genome-wide average. Details are given in Supplemental Methods. To further investigate 

natural selection at particular SNPs, extended haplotype homozygosity (EHH) scores were 

calculated in these US Pimas (n=506 after exclusion of first degree relatives) using 

SELSCAN (Sabeti et al., 2002, Szpiech and Hernandez, 2014). Details are given in 

Supplemental Methods.

RESULTS and DISCUSSION

Diabetes and Obesity Variants in Mexican Pima Indians

We analyzed associations with diabetes and BMI in Mexican Pima Indians, including 176 

full-heritage Pimas and 166 partial-heritage Pimas (see Table S2 for characteristics of 

participants). Results for nominally statistically significant (P<0.05) associations are shown 

in Table 1, and results for all markers in Tables S3 and S4. The established type 2 diabetes 

variant at CDKAL1 was significantly associated with diabetes in Mexican Pimas in a 

direction consistent with the established association, while obesity-susceptibility variants in 

NEGR1, BDNF and FAIM2 were similarly associated with BMI. This suggests that these 

diabetes and obesity variants may be particularly important in Mexican Pimas. However, the 

effect sizes of all the variants tested were modest in the original GWAS in which they were 

identified, and the current sample size of Mexican Pimas is small, so power to detect 
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statistically significant associations with individual markers is low. We, thus, proceeded to 

analyze multiallelic genetic risk scores for type 2 diabetes and BMI.

Analysis of Genetic Risk Scores for Diabetes and BMI

We constructed multiallelic genetic risk scores, weighted by the published effect size for 

each locus, across all established type 2 diabetes and obesity variants, and we analyzed these 

for association with diabetes and BMI in Mexican Pimas. The diabetes genetic risk score 

was associated with higher diabetes prevalence (odds ratio [OR]=1.46 per SD, 95% 

confidence interval [CI], 0.94–2.26), but this association was not statistically significant 

(P=0.11, Figure 1A). On the other hand, a higher BMI genetic risk score was significantly 

associated with BMI with an effect of 0.81 kg/m2 per SD (95% CI 0.27–1.34, P=0.0066, 

Figure 1B). These analyses suggest that established obesity alleles in aggregate influence 

BMI even in the context of a “traditional” lifestyle in a population with a mean BMI of 27.2 

kg/m2.

To evaluate the extent of divergence between populations in genetic risk for type 2 diabetes 

and BMI, we compared the mean value of the genetic risk score across populations. Mean 

genetic risk scores for type 2 diabetes were comparable between Mexican and US Pimas 

(Figure 1C, Online Supplement Table S5), while the highest values were observed in 

Africans. The mean obesity genetic risk score was significantly lower in Mexican Pimas 

than in US Pimas (P=4.3×10−11 by t-test); the highest values for the BMI genetic risk score 

were observed in Europeans (Figure 1D). To limit the potential influence of unidentified 

European admixture, we repeated the analysis with exclusion of those with >10% European 

ancestry according to genetic estimates, and the differences between Mexican and US Pimas 

remained highly significant (P=9.2×10−9).

To evaluate the extent to which differences in allele frequencies at established susceptibility 

variants between populations could explain differences in diabetes or obesity risk, we 

estimated the genetic attributable fraction (GAF), or the proportion of the difference in 

population prevalence for type 2 diabetes between US and Mexican Pimas, attributable to 

differences in allele frequencies (Hanson et al., 2015). The age-sex adjusted prevalence of 

diabetes in Mexican Pimas was 9.4%, while that in US Pimas was 52.9% (OR=10.8, 

P=3.0×10−13); the GAF for the difference between US and Mexican Pimas was 0.2% 

(P=0.94), and this suggests that allele frequencies across these established type 2 diabetes 

susceptibility variants do not account for a significant portion of the population difference in 

diabetes prevalence. The age-sex adjusted mean BMI was 26.9 kg/m2 in Mexican Pimas and 

35.2 kg/m2 in US Pimas (P=2.5×10−24); the GAF for the difference in mean BMI is 7.3% 

(P=1.1×10−6), and this suggests that differences between US Pimas and Mexican Pimas in 

frequencies of established obesity variants can account for a modest but significant portion, 

about 7% (0.6 kg/m2), of the difference in mean BMI between populations. Thus, 

differences in obesity between the populations may not be wholly attributable to the well-

documented lifestyle differences (Schulz et al., 2006). For these analyses, we weighted 

alleles according to effect sizes observed in European populations, but the optimal weights 

for Amerindian populations are not known. These analyses are also based on diabetes and 

BMI variants identified in the first wave of GWAS. Additional variants have been identified 
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for both traits (Mahajan et al., 2014, Locke et al., 2015), and it is likely that many more 

remain unidentified; it is uncertain if the same GAF results would be obtained with inclusion 

of additional variants. However, these first wave variants have the strongest effect sizes in 

Europeans, and these effect sizes are often comparable across diverse populations (Hanson 

et al., 2015, Carlson et al., 2013), thus, these variants have large potential individual 

contributions to population differences in risk.

The variance estimate used in the standard t-test for differences in means between 

populations does not take genetic distance into account; therefore, while a significant result 

reflects differences in the mean values of the risk scores, such differences may arise on the 

basis of the genetic distance between populations, and thus, may be consistent with the 

effects of neutral variation across markers rather than selection. To account for this, we 

constructed an empirical expectation for the differences in genetic risk scores using a 

bootstrap procedure. When P-values were thus calculated empirically, none of the 

differences between populations for either the diabetes or BMI risk scores achieved 

statistical significance after correction for the number of pairwise tests (P<0.0014, given 36 

pairwise tests for each score). This indicates that the extent of the genetic differences in 

diabetes or obesity risk among populations for these markers is consistent with evolutionary 

neutrality, given the genetic distances. The strongest difference was observed in diabetes risk 

between East Asian and African populations (empirical P=0.0069). Previous studies using a 

smaller set of diabetes variants and a larger number of populations reported a similar, but 

significant, gradient in type 2 diabetes genetic risk from African to Asian (and Amerindian) 

populations, and suggested that this reflects the effects of differential selection (Klimentidis 

et al., 2011, Corona et al., 2013). On the other hand, analyses of homozygosity and the 

extent of linkage disequilibrium across established type 2 diabetes loci have not generally 

suggested selection at these loci (Ayub et al., 2014).

Allele Frequency Differences between Mexican and US Pimas

While the analyses of directional allelic differentiation suggest that differences between 

Mexican and US Pimas across type 2 diabetes and BMI variants are generally consistent 

with neutrality, individual loci may have been subject to selection. To assess allelic 

differentiation at individual variants, we compared allele frequencies between Mexican and 

US Pimas, using a “genomic control” procedure based on the 96 randomly selected markers 

to account for genetic distance. With adjustment for the number of markers analyzed (n = 

283) by the FDR procedure, five variants had significant (FDR < 0.05) differences between 

Mexican and US Pimas (Table 2A); results for all variants are shown in Table S6. Four of the 

significantly differentiated variants (rs9271720, rs9272219, rs9268858, rs502771) were in 

the HLA-DR/DQ region, while one (rs117619140) was in TREH. While the FDR procedure 

evaluates experiment-wise statistical significance, some of the HLA variants achieved 

genome-wide significance [P<5×10−7, based on the number of effectively independent 

variants estimated from GWAS data in US Pimas (Malhotra et al., 2011)]. Although the 

genomic control procedure is generally expected to account for admixture and other 

demographic factors, allele frequency differences can still be subject to residual 

confounding. To assess robustness of the genomic control procedure, we also calculated P-

values empirically from data simulated under a model of neutral genetic “drift”. These 5 
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markers showed empirical P-values comparable to those obtained with genomic control. In 

our primary analyses we classified individuals according to self-reported ethnicity, but 

similar results were obtained when analyses were restricted to those whose genetic ancestry 

estimate was >90% Amerindian (Table S7). This suggests the results are unlikely to be 

confounded by European admixture, but the present data do not allow estimation of 

admixture from other Amerindian groups. While our results suggest that the degree of allelic 

differentiation observed at these loci is highly unlikely under a simple model of genetic 

“drift”, a demographic explanation cannot be entirely excluded.

Based on previous HLA typing conducted in US Pimas (Williams et al., 2009) the four HLA 
SNPs with significant frequency differences between Mexican and US Pimas tag all of the 

observed common classic “low-resolution” HLA-DRB1 alleles. Frequency differences 

between Mexican and US Pimas for these low-resolution alleles, inferred from haplotypes, 

are shown in Table 2B. The frequency differences across the individual SNPs largely reflect 

differences at HLA-DRB1*14. This allele is relatively common in Amerindian populations, 

but uncommon in other populations, and, as described previously, has an extraordinarily 

high frequency (0.83) in US Pimas (Williams et al., 2009); we find its frequency is much 

lower (0.14) in Mexican Pimas, among whom the most common allele is HLA-DRB1*04.

Many studies have suggested that recent natural selection has occurred at HLA in human 

populations (Black and Hedrick, 1997, Hedrick, 1998, Meyer and Thomson, 2001, Solberg 

et al., 2008, Meyer et al., 2018). Variants in HLA have been associated with numerous 

autoimmune diseases, including type 1 diabetes; there are associations with type 2 diabetes 

as well in both Europeans and in US Pimas (Saxena et al., 2012, Williams et al., 2011). The 

variant associated with type 2 diabetes, however, did not differ in frequency between the 

Mexican and US Pimas (rs9268852, |δ|=0.05, P=0.41).

In contrast to HLA, to our knowledge previous studies in humans have not implicated 

natural selection at TREH, which encodes for trehalase, an enzyme that digests trehalose, a 

sugar present in some foods including desert plants and mushrooms. Variants in TREH are 

strongly associated with plasma trehalase activity and modestly associated with type 2 

diabetes in US Pimas (Muller et al., 2013). The type 2 diabetes-associated variant did not 

differ significantly between US and Mexican Pimas (rs558907, P=0.71), but rs117619140 

did differ significantly between populations. The A allele, which is more frequent in 

Mexican than in US Pimas, is associated with much higher plasma trehalase activity (Muller 

et al., 2013). Differential selection on trehalase activity is a potential explanation for the 

allele frequency differences we observe between US and Mexican Pimas.

Comparisons with HDGP Data

Dense genotypic genome-wide data are not available for the Mexican Pimas. Therefore, to 

obtain a global genomic context for these allele frequency differences, we compared them 

with differences observed between populations at comparable genetic distances in GWAS 

data from the HDGP. The distribution of |δ|, calculated across 21,830,844 SNP-wise 

comparisons for 40 pairs of populations is shown in Figure 2. On a genome-wide basis, it is 

very unusual to observe allele frequency differences of the magnitude we observed between 

US and Mexican Pimas at the HLA-DR/DQ markers between other populations at 
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comparable genetic distances. For rs9271720, for which |δ|=0.75 between Mexican and US 

Pimas, the proportion of SNPs at which differences of this magnitude were observed 

between HGDP populations was 5.9×10−7. On the other hand, allele frequency differences 

as great or greater than those observed between Mexican and US Pimas at the TREH SNP 

rs117619140 (|δ|=0.40) were more common, occurring at a proportion of 0.003. Thus, in a 

genomic context, the evidence for differential natural selection between Mexican and US 

Pimas at HLA is particularly strong. The evidence at TREH is weaker, and further studies 

are required to establish selection at TREH with greater confidence.

Analyses of Genetic Distances

To further assess allelic differentiation across multiple genetic markers, we analyzed FST 

across BMI, diabetes and HLA markers. Results of these analyses are shown in Figure 3 and 

Table S8. None of the differences between FST values calculated across the BMI markers 

and FST values across random markers achieved statistical significance after correction for 

the number of pairwise comparisons (P<0.0014), while for the type 2 diabetes markers, the 

only significant difference was seen between the US Indians who were not Pimas and 

Africans (YRI). The Mexican and US Pimas, however, were much more highly divergent at 

the HLA markers than at the random markers (FST=0.229 versus FST=0.036, P=1.6×10−46). 

The distance between US Pimas at the HLA markers was also significantly greater than that 

at random markers for several other populations, and the distance between Mexican Pimas 

and US Indians who were not Pimas at HLA markers was also greater than at random 

markers (FST=0.086 versus 0.034, P=7.3×10−6). Differences in genetic distances that are 

greater than expected are often reflective of differential directional selection between 

populations and the tests for allele frequency differences between closely related populations 

presented above are also designed to detect differential directional selection (Price et al., 

2009, Suzuki, 2010, Bhatia et al., 2011). Directional selection occurs when one allele is 

favored (or disfavored) such that allelic diversity is lost at a faster rate than under neutrality. 

The prevailing theory among many population geneticists, however, is that HLA has been 

subject to balancing selection, as this can account for the high degree of heterozygosity, the 

large number of common alleles observed, and the similarity of many allele frequencies 

across populations (Black and Hedrick, 1997, Hedrick, 1998, Meyer and Thomson, 2001, 

Solberg et al., 2008, Meyer et al., 2018). Balancing selection is a type of natural selection in 

which allelic diversity is maintained for a longer time than expected under neutral genetic 

“drift” (e.g., if there is a heterozygote advantage). For several global populations, we 

observed that FST values were significantly smaller at the HLA markers than at random 

markers (e.g, CEU and CHB, YRI and CEU); this is consistent with long-term balancing 

selection at HLA. In this context, the large differences we observe between Mexican and US 

Pimas, seem particularly striking.

Analyses of Identity-by-Descent in US Pimas

Identification of regions at which the proportion of alleles shared identical by descent (IBD) 

between pairs of individuals in a population greatly exceeds IBD at other regions of the 

genome can also provide a powerful test for directional selection (Albrechtsen et al., 2010, 

Han and Abney, 2013). Like tests of allelic differentiation, but in contrast to many other 

methods, analysis of IBD can detect selection when it occurs on standing variation, rather 
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than on a new mutation or previously rare variant (Albrechtsen et al., 2010); however, since 

comparison is made with genomic IBD sharing within a population, this method is more 

robust to demographic factors that differ across populations than tests of allele frequency 

differences. Since GWAS data suitable for calculation of IBD based on phased haplotypes 

were available in a separate sample constituting 937 full-heritage US Pimas (Malhotra et al., 

2011), we analyzed these GWAS data to determine if IBD at the HLA region was increased 

relative to the rest of the genome. As shown in Figure 4, the highest mean IBD across the 

genome was observed on chromosome 6p in the HLA region (30.18 Mb); the mean IBD at 

this region was 0.055, whereas the genomic average was 0.027 (standardized Z=6.06, 

P=7.0×10−10). With correction for the number of independent regions tested, the HLA 
region was the only one showing a statistically significant increase in IBD (P<1.5×10−5).

To further explore the possibility for natural selection at individual markers, we analyzed 

EHH scores. We found that linkage disequilibrium with the derived allele at rs502771 (C, 

frequency=0.83 in US Pimas), which is highly concordant with HLA-DRB1*14, occurs over 

a longer range than with the ancestral allele (Figure 4D). This combination of high allele 

frequency and extended long-range haplotypes [higher EHH scores across greater distances 

(with a difference between scores for derived and ancestral alleles of 0.75 at distances >100 

kb)] is consistent with recent directional selection around HLA-DRB1*14. This is an 

unusual pattern in US Pimas- of 1168 chromosome 6 SNPs outside the HLA region with 

comparable derived allele frequency (0.80–0.86) only 1.4% have EHH score differences ≥ 

0.75 extending > 100 kb. Given this pattern of EHH scores, the excess of IBD sharing and 

the allele frequency differences between US and Mexican Pimas that are much greater than 

expected given the genetic distance, recent directional selection at HLA seems the most 

likely explanation for these findings.

Implications

The present study demonstrates significant differences in the frequencies of established 

obesity variants between Mexican and US Pimas. Although our analyses suggest that these 

differences are consistent with neutral genetic “drift”, or demographic factors, they 

nonetheless illustrate the importance of measuring genetic risk even when there are large 

environmental differences between groups. We also demonstrate marked allele frequency 

differences at HLA between Mexican and US Pimas, which are consistent with recent 

differential directional selection. Although balancing selection has been widely observed at 

HLA, recently, some studies have suggested that directional selection has occurred as well 

(Bhatia et al., 2011, Kawashima et al., 2012). The magnitude of allele frequency differences 

observed in earlier studies (|δ|≈0.3) is smaller than that observed between Mexican and US 

Pimas. Thus, the present study provides further evidence that directional selection has also 

shaped the genetic landscape at HLA, alongside balancing selection. This directional 

selection may result in marked allelic differentiation between closely related population, and 

is perhaps illustrative of the powerful and diverse influence of natural selection at HLA. One 

caveat is that, although “overdominance” (i.e., a heterozygote advantage) has often been 

considered the most likely mechanism by which balancing selection at HLA occurs, 

“frequency-based” models, (i.e., whether an allele is favored depends on its frequency, such 

as when it is favored when rare, but disfavored once it becomes very common) provide an 
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equally good fit to the data (Meyer and Thomson, 2001, Takahata and Nei, 1990). Since 

“frequency-based” balancing selection operates as directional selection over the short-term, 

it can be difficult to distinguish between these possibilities. In addition, the highly 

differentiated HLA variants are not those previously associated with diabetes, and it is not 

clear whether natural selection at HLA has resulted in differences in risk for diabetes, 

obesity or other diseases between populations. Given the phenotypic differences and the 

extensive genetic differences between Mexican and US Pimas at HLA, further genetic and 

phenotypic studies, potentially including sequencing, are warranted to investigate the role of 

natural selection at HLA in metabolic and immunologic traits in these populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A: Association between type 2 diabetes genetic risk score and diabetes prevalence in 

Mexican Pima Indians. Prevalence of diabetes, adjusted for age, sex and European 

admixture, is shown by quartile of the genetic risk score. B: Association between obesity 

genetic risk score and BMI in Mexican Pima Indians. Mean BMI, adjusted for age, sex and 

European admixture, is shown by quartile of the genetic risk score. C: Mean values of the 

type 2 diabetes genetic risk score by population. D: Mean values of the obesity genetic risk 

score by population.
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Figure 2. 
Cumulative distribution function (CDF) of allele frequency differences between Human 

Genome Diversity Project populations with FST 0.0296–0.0425. The negative base 10 

logarithm of 1-CDF is shown; higher values indicate more unusual allele frequency 

differences. Arrows indicate allele frequency differences between Mexican and US Pimas 

observed for the SNP of interest.
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Figure 3. 
Dendrograms summarizing genetic distances between populations for random markers, type 

2 diabetes variants, obesity variants and HLA variants. FST values were taken as genetic 

distances and dendrograms were generated with PHYLIP.
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Figure 4. 
Genome-wide analysis of IBD sharing in 937 US Pimas. A: Mean value of the proportion of 

alleles shared IBD by chromosomal location in all 437,691 pairs of individuals. B: Allele 

sharing score (Zi), standardized for the expected sharing within pairs and for the genomic 

expectation across all loci. C. P-value for the null hypothesis that the proportion of alleles 

shared IBD is within its genomic expectation against the alternative that it exceeds its 

expectation at each genomic location. Results are plotted by physical location (build 37) on 

each chromosome. D. Extended haplotype homozygosity (EHH) scores for alleles at 

rs502771. EHH scores represent the probability that two haplotypes carrying a given allele 

(derived or ancestral) at rs502771, selected randomly from the population, are homozygous 

at a given location and at all intervening SNPs (and thus inherited IBD).
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