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Abstract

Background—Nonsyndromic cleft lip with or without cleft palate is a debilitating condition that 

not only affects the individual, but the entire family. The purpose of this study was to investigate 

the association of BRCA1 and BRCA2 genes with NSCL/P.

Methods—Twelve polymorphisms in/nearby BRCA1 and BRCA2 were genotyped using 

Taqman chemistry. Our data set consisted of 3,473 individuals including 2,191 nonHispanic white 

(NHW) individuals (from 151 multiplex and 348 simplex families) and 1,282 Hispanic individuals 

(from 92 multiplex and 216 simplex families). Data analysis was performed using Family-Based 

Association Test (FBAT), stratified by ethnicity and family history of NSCL/P.

Results—Nominal associations were found for BRCA1 in Hispanics and for BRCA2 in NHW 

and Hispanics (P<0.05). Significant haplotype associations were found for both BRCA1 and 

BRCA2 (P≤0.004).

Conclusions—Our results suggest a modest association between BRCA1 and BRCA2 and 

NSCL/P. Further studies in additional populations and functional studies are needed to elucidate 

the role of these genes in developmental processes and signaling pathways contributing to 

NSCL/P.
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Introduction

Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a common birth defect with 

genetic and environmental factors playing etiologic roles. While numerous gene variants 

have been suggested to confer an increased risk of NSCL/P, it is estimated that only ~20% of 

the underlying etiology of NSCL/P has been identified, leaving additional causal genes to be 

identified (Dixon et al. 2011). This is supported by the fact that most of the NSCL/P cases 

reflect isolated forms, and when familial, the inheritance models are not always clear. 

Additionally, genetic factors of modest effects may have different contributions depending 

on the presence of specific environmental factors, thereby complicating the discovery of true 

etiologic variants. Moreover, in genome-wide association studies of NSCL/P, variants in 

IRF6, and in the chromosome regions 8q24 and 10q25 (VAX1), were suggested as strongly 

associated with NSCL/P, however the association signals were seemed to be more 

population-specific (Dixon et al. 2011).

Studies have demonstrated that the consequences of being born with NSCL/P extend beyond 

functional and esthetic complications. Individuals with NSCL/P were reported to have 

shorter lifespan and increased risk for all major causes of death, particularly cancer, when 

compared with individuals born without clefts (Christensen et al. 2004; Steinwachs et al. 

2000; Vieira 2008). Studies in different populations also suggest that families with recurrent 

NSCL/P have increased susceptibility to cancer (Bille et al. 2005; Menezes et al. 2009; Zhu 

et al. 2002). A large epidemiological study in Denmark showed an increased occurrence of 

breast and brain cancer among adult females born with NSCL/P, and of primary lung cancer 

among adult males with NSCL/P (Bille et al. 2005). While additional studies did not 

confirm a general increase in the risk of breast cancer among female subjects in NSCL/P 

families (Dietz et al. 2012; Martelli et al. 2014), a higher frequency in family history of 

cancer (colon, brain, leukemia, breast, prostate, skin, lung, and liver) was found in NSCL/P 

families when compared to control families (Menezes et al. 2009). Interestingly, 

dysregulation of genes in networks associated with DNA double-strand break repair and cell 

cycle control, including BRCA1 and BRCA2, was observed in dental pulp stem cells of 

NSCL/P patients, meanwhile the expression of BRCA1 and BRCA2 genes was significantly 

downregulated in NSCL/P dental pulp cells compared to controls (Kobayashi et al. 2013). 

These observations led us to investigate whether variations in BRCA1 and/or BRCA2 genes 

were associated with NSCL/P, since the association between NSCL/P and cancer raises 

interesting possibilities to identify risk markers for cancer. In this study, we tested the 

association of BRCA1 and BRCA2 genes with nonsyndromic NSCL/P.

Study population

This study was approved by the University of Texas Health Science Center Committee for 

Protection of Human Subjects. Our study population consisted of a total of 3,473 individuals 

including 2,191 nonHispanic white (NHW) individuals (from 151 multiplex and 348 

simplex families) and 1,282 Hispanic individuals (from 92 multiplex and 216 simplex 

families). Families were recruited at the University of Texas Health Science Center 

Craniofacial Clinics. Families were ascertained through probands, and additional relatives 
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were recruited. Multiplex families are families with 2 or more individuals affected with 

NSCL/P. Simplex families (trios) are families in which the only the proband is affected with 

NSCL/P and parents are unaffected. Individuals presenting with syndromic clefts, cleft 

palate only, or unknown cleft types were excluded. Complete demographic and medical 

history, and DNA samples from peripheral blood were available for all individuals in the 

study.

Selection of single nucleotide polymorphisms and genotyping

Twelve single-nucleotide polymorphisms (SNPs) in/nearby BRCA1 and BRCA2 genes 

(Table 1) were selected for genotyping using a tag-SNP approach, considering 

heterozygosity values, gene structure, and the linkage disequilibrium (LD) block 

surrounding each gene, as previously described (Carlson et al. 2004) (Supplementary Figure 

1). This approach allows for selection of a minimum number of SNPs ensuring maximum 

coverage within a LD block. Genotyping was performed using Taqman chemistry (Ranade et 

al. 2001) in a ViiA7 RealTime PCR System (Applied Biosystems, Foster City, CA).

Statistical analyses

Family-based single SNP association tests were performed using Family-Based Association 

Test (FBAT), with the ‘–e’ option for extended families. Analyses were performed for all 

families stratified by ethnicity (NHW or Hispanic) and family history of NSCL/P (multiplex 

and simplex). Pairwise haplotype analyses were performed using the ‘hbat’ function in 

FBAT. Bonferroni correction was used to adjust for multiple testing and P-values ≤0.004, 

considering the number of SNPs tested (0.05/12), were considered statistically significant.

In Silico Prediction of SNP Function

In silico analysis of SNP function was performed using miRdSNP v.11.03 (Bruno et al. 

2012) for BRCA1 rs8176318, and using PATCH v.1.0 (Wingender et al. 2000), and PROMO 

v.3.0 (Messeguer et al. 2002) for BRCA2 rs206115.

Results

No SNPs met the Bonferroni correction, however, nominal associations (p≤0.05) were found 

between NSCL/P and individual SNPs in BRCA1 and BRCA2. While SNPs in BRCA2 
showed nominal associations in NHW and Hispanic datasets, SNPs in BRCA1 were 

associated with NSCL/P in Hispanics only. BRCA1 SNPs rs16941 and rs8176318, a 

missense variant and a 3’ UTR variant, respectively, showed modest association in Hispanics 

(p=0.02 and p=0.04, respectively) (Table 2). For BRCA2, the promoter variant rs206115 was 

also modestly associated with NSCL/P in both NHW and Hispanic multiplex families 

(p=0.01). Additional BRCA2 SNPs (rs144848 and rs9534342) showed borderline 

associations with NSCL/P (p ≤ 0.05) (Table 2).

Haplotype analyses showed a few significant associations in 2-, 3- and 4-SNP haplotype 

windows for both BRCA1 and BRCA2, and suggest that the combination of specific alleles 
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in an additive model may contribute to NSCL/P in those families (p ≤ 0.004) 

(Supplementary Table 1).

Of note, although the individual SNP associations did not reach the strict Bonferroni criteria 

significance threshold, the nominal associations and the specific haplotype associations 

found for BRCA1 and BRCA2 variants in our NSCL/P families warrant discussions of the 

potential biological implications of these variants in NSCL/P phenotypes. For example, 

BRCA1 rs8176318 and BRCA2 rs206115 are located in gene regulatory regions and harbor 

allele-specific microRNA or transcription factor binding sites, respectively, that may have an 

impact on gene expression (data not shown). Moreover, BRCA1 rs8176318 is predicted to 

bind to hsa-miR-205, known to be involved in epithelial to mesenchymal transformation 

(EMT) and tumor invasion. During palatogenesis, EMT is an important event contributing to 

the disappearance of the medial edge epithelia (MEE) and continuous mesenchymal 

confluence required for palatal fusion (Warner et al. 2015). Interestingly, the expression of 

miR-205 was found to be significantly downregulated (6-fold) in isolated MEE from wild 

type murine fetuses on gestational day 13.5 to 14.5 (prior to and during epithelial fusion of 

the palatal processes, respectively) (Warner et al. 2015). While these are intriguing findings, 

additional studies elucidating the biological roles of BRCA1 and BRCA2 during embryonic 

development might provide valuable insights into the underlying etiology of birth defects 

including NSCL/P.

NSCL/P is a complex disorder in which genes and environmental factors may have 

individual and interactive roles (Dixon et al. 2011). Disruptions of early developmental 

processes such as cell migration, proliferation, transdifferentiation and apoptosis due to 

variations in developmental genes have been shown to be closely related to the occurrence of 

NSCL/P (Greene and Pisano 2010) and cancer as well (Vieira 2008). Furthermore, variations 

in genes with critical roles in DNA damage repair, including BRCA1, have also been 

assessed and implicated in increased susceptibility to NSCLP and reinforced the hypothesis 

of etiological overlap between this common birth defect and cancer (Kobayashi et al. 2013; 

Mostowska et al. 2014). It is intriguing, however, that the available GWAS on NSCL/P 

(Birnbaum et al. 2009; Grant et al. 2009; Mangold et al. 2010) have not identified variants in 

BRCA1 or BRCA2 meanwhile numerous association studies in independent populations 

have reported the association of cancer-related genes with NSCL/P (Han et al. 2014; Letra et 

al. 2012; Letra et al. 2009; Menezes et al. 2009; Suzuki et al. 2009; Vieira 2008). 

Discrepancies among the results of previous studies may reflect genetic/allelic heterogeneity 

as well as differences in study design (family-based or case-control), sample sizes, and 

selection of SNPs to be studied (or specific genotyping arrays used in GWAS). A major 

GWAS finding is that the majority of risk variants for complex traits map to noncoding 

regions. For NSCLP, GWAS have identified around 40 risk loci, the majority of which are 

located in noncoding regions (Beaty et al. 2010; Birnbaum et al. 2009; Grant et al. 2009; 

Ludwig et al. 2012; Mangold et al. 2010; Yu et al. 2017), and for which the functional 

effects of on NSCLP phenotypes remain to be elucidated.

Recently, studies using whole exome sequencing of NSCLP families have also identified 

rare mutations in developmental and cancer-related genes as likely contributing to the cleft 

phenotypes (Fu et al. 2017; Liu et al. 2015). A frameshift variant caused by a 2bp insertion 
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mutation (c.819_820dupCC; p.Gln274fs) in TP63, was found in a father-proband duo with 

NSCLP. Further, mRNA studies demonstrated that the mutant allele underwent nonsense-

mediated-mRNA decay (NMD) as only the wild-type allele observed in mRNA obtained 

from the patient’s lymphocytes and lymphoblasts (Basha et al. 2018). TP63 encodes a 

transcription factor and a master regulator of epithelial lineage commitment during 

embryonic development, and was previously implicated in syndromic and NSCLP (Leslie et 

al. 2017; Scapoli et al. 2008). Interestingly, exome sequencing has also identified variations 

in TP63 in patients and tumor tissues of oral squamous cell carcinoma (Al-Hebshi et al. 

2016; Stransky et al. 2011). Additional large-scale next-generation sequencing studies have 

the ability to reveal fundamental mechanisms underlying developmental and tumorigenic 

events and potential overlaps in disease pathways. These studies also have the potential to 

elucidate the full spectrum of genetic variation contributing to NSCLP. Corroborating 

previous findings, our study highlights the need to conduct a thorough medical and family 

history questionnaire, to identify families showing both NSCLP and cancer appearing 

together, and for which a same genetic variant may be contributing to the phenotype.

In summary, our results suggest a modest role for BRCA1 and BRCA2 in NSCL/P 

susceptibility. While the findings of our study may represent private mutations within private 

families, they continue to support the notion that genes involved at early stages of embryonic 

development may also have roles in cancer development later in life. Additional studies in 

other populations and functional studies are necessary to elucidate the role of BRCA1 and 

BRCA2 genes in the developmental processes and signaling pathways contributing to 

NSCL/P. Nonetheless it is possible that these genes may act through more than one signaling 

pathway to elicit numerous cellular responses that are cell- and tissue-dependent to 

contribute to birth defects and cancer later in life.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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