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Abstract

Clinical trial outcomes for Alzheimer’s disease are typically analyzed by using the mixed model 

for repeated measures (MMRM) or similar models that compare an efficacy scale change from 

baseline between treatment arms with or without participants’ disease stage as a covariate. The 

MMRM focuses on a single-point fixed follow-up duration regardless of the exposure for each 

participant. In contrast to these typical models, we have developed a novel semiparametric 

cognitive disease progression model (DPM) for autosomal dominant Alzheimer’s disease based on 

the Dominantly Inherited Alzheimer Network (DIAN) observational study. This model includes 3 

novel features, in which the DPM (1) aligns and compares participants by disease stage, (2) uses a 

proportional treatment effect similar to the concept of the Cox proportional hazard ratio, and (3) 

incorporates extended follow-up data from participants with different follow-up durations using all 

data until last participant visit. We present the DPM model developed by using the DIAN 

observational study data and demonstrate through simulation that the cognitive DPM used in 

hypothetical intervention clinical trials produces substantial gains in power compared with the 

MMRM.
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1 | INTRODUCTION

The Alzheimer’s disease (AD) field has progressively moved to studying potential disease-

modifying therapies in earlier stages of disease, including in asymptomatic stages before 

dementia onset. The failure to develop effective disease-modifying treatments in the later 

dementia stages of disease1,2 has supported the notion that prevention is likely to be more 

effective. However, AD prevention trials require long periods of follow-up because of the 

slowly progressive nature of cognitive decline over many years, creating a major challenge 

in the implementation of prevention trials. For example, participant attrition and long 

enrollment durations combined with long treatment periods make implementation of large 

complex prevention trials impractical and less efficient. Several strategies are being pursued 

to mitigate these challenges, including the development of surrogate biomarkers,3 more 

sensitive measures of cognitive disease progression,4 and platform trials to test several 

targets in parallel.5 In addition, the advancement of statistical methods provides an 

opportunity to greatly increase the power, speed, and efficiency of AD prevention trials.

Several strategies may be incorporated to increase power, including increasing overall 

sample sizes,6,7 adjusting the sample size based on results from interim analysis,8 using a 

targeted trial that enrolls only a very specific population,9 or using enrollment enrichment 

strategies to reduce heterogeneity of trial participants.10 Although these trial designs may 

improve the ability to detect effective treatments, they have drawbacks including increased 

time, expense, and limited generalizability. Because trial outcomes are typically determined 

with the mixed model for repeated measures (MMRM) using time since baseline as a 

categorical variable or even cross-sectional models that focus on comparing the absolute 

cognitive change from baseline to a fixed post baseline time point,6,7,11,12 typical clinical 

trials collect clinical assessments for a fixed duration for each participant. And the 

participants who were enrolled early and had completed the fixed follow-up duration were 

no longer active, while the late enrollees were still fulfilling the follow-up. Thus, the early 

enrollees with potentially the longest and most valuable exposure if continuously followed 

do not contribute to a stronger analysis. This lost opportunity is even more significant in 

prevention trials with extended enrollment times. Additionally, participants typically enter 

trials at different stages of disease; thus, statistical models that ignore disease stage and look 

at change from trial baseline introduce additional heterogeneity due to variability of disease 

stage. Overall, these shortcomings have resulted in trial designs that require large sample 

sizes and long exposure to achieve acceptable statistical power.2,6,7 We demonstrate that a 

disease progression model (DPM) built from the Dominantly Inherited Alzheimer Network 

(DIAN) observational cohort avoids each of these shortcomings to greatly increase power.

Autosomal-dominant AD (ADAD) is a rare genetic disorder caused by a mutation in 1 of 3 

genes: amyloid precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2). 

Mutation carriers are destined to develop dementia of the Alzheimer’s type, generally at an 

early age, typically with the age of onset between 30 and 50 years.13 Age of onset for 

asymptomatic mutation carriers can be estimated from other carriers of the same mutation. 

The estimated years from symptom onset (EYO) for an individual is their current age minus 

their estimated age of onset.14 Within the DIAN observational study, we have shown that 

EYO is a reliable predictor of disease stage.14,15 Additionally, it also provides a remarkably 
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consistent rate of cognitive disease progression across participants. We have developed a 

cognitive disease progression model (DPM) based on the DIAN observational study that 

models the rate of cognitive progression as a function of EYO. The consistency of the rate of 

decline as a function of EYO is striking. We demonstrate how this cognitive DPM is used in 

a hypothetical phase III interventional trial and compare the power of the cognitive DPM 

with the more conventional MMRM model typically used in AD clinical trials.

2 | MATERIALS AND METHODS

2.1 | DIAN observational study

The DIAN observational study is an international, multisite, longitudinal study of 

individuals from families with an established history of ADAD. Participants must have 

confirmation of a causal ADAD mutation in their family, with a 50% chance of inheriting 

the mutation. From the disease modeling aspects of this paper, we analyze only confirmed 

mutation carriers. The details of participants’ demographics and the clinical, cognitive, 

imaging, and biochemical measures have been reported in previous publications.14 The data 

used in the DPM development include DIAN quality-controlled data from July 2008 to 

January 2015 consisting of 225 mutation carriers.

2.2 | Estimated years from symptom onset (EYO)

Each participant in the study has an estimated age of onset. The assignment of an age of 

onset for each participant is based on the mean age of onset for that person’s specific 

matching mutation established through systematic review and meta-analysis.15 Each clinical 

assessment occurs at a time differential from the participant’s estimated age of onset—we 

refer to the timing as the EYO. Specifically, the EYO is calculated as the age of the 

participant at the time of the clinical assessment minus this participant’s estimated age of 

onset. For example, at an assessment, if a participant’s age is 45.3 years, and the estimated 

age of onset for this participant is 50.2, then EYO for that assessment is −4.9, meaning that 

this participant is about 4.9 years to his/her symptom onset.

2.3 | Cognitive composite

The cognitive composite used in these analyses combines measures of episodic memory, 

executive functioning, processing speed, and mental status and was chosen to sensitively 

measure the cognitive decline, which occurs before the first symptom onset in preclinical 

AD. Three separate approaches using a mathematically optimized approach,16 basic 

principles of neuropsychology,17,18 and evaluating prior demonstrated domains in sporadic 

AD were compared and found to converge on the 4 domains included in the cognitive 

composite for this study. This composite is similar to other composites. 19 Episodic memory 

is assessed with the DIAN Word List test delayed recall and the delayed recall score from 

the Wechsler Memory Scale-Revised Logical Memory IIA subtest.20 Executive functioning 

and processing speed is assessed with the Wechsler Adult Intelligence Scale-Revised Digit-

Symbol Substitution test, and mental status with the Mini Mental State Examination 

(MMSE). This cognitive composite was developed by normalizing each individual test to a 

z-score before averaging. All components except the MMSE are normalized using the mean 

and standard deviation (SD) of each component score from mutation carriers well before 
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symptom onset (EYO ≤ −15). However, the MMSE has a ceiling effect, the SD among those 

with EYO ≤ −15 is small, and using this SD will overweight MMSE. A simple smoothing 

spline model for the rate of decline of MMSE was fit, and the estimated SD from the model 

is used for the normalization. The details for the normalization are provided in the 

Supporting Information.

Next, the 4 z-scores are equally weighted to construct a single composite. The construction 

of the cognitive composite creates a single score with mean zero and SD near 1 for 

participants in a healthy state (EYO ≤ −15).

2.4 | The cognitive DPM based on the DIAN observational study

Let Yij be the jth cognitive composite measured at EYOij for participant i, i = 1, …, k. Let ni 

be the number of observations for participant i. The underlying rationale of the cognitive 

DPM is to represent a participant’s composite score at any given EYO as a function of this 

participant’s score in a healthy stage (defined as EYO ≤ −15 in this study) plus a decline 

from the relatively healthy stage to this particular EYO. The cognitive composite is modeled 

as a function of EYOij by using a mixed-effects model,

Yi j = γi + f EYOi j + δi ∣ α + εi j for i = 1, …, k; j = 1, …, ni .

The random effect parameter γi is the individual cognitive composite at the relatively 

healthy stage defined as (EYO ≤ −15) in this study. The function f(x) represents the mean 

decline from the relatively healthy stage to a given EYO (the semiparametric model 

presented below). The random effect δi represents a participant-level adjustment to 

incorporate the uncertainty in the estimate for the covariate age of onset.

Function f(x) is modeled as a monotonically decreasing spline with knots at each integer 

value for EYO between (inclusive) −15 and +15, represented by α−15, α−14, …, α15. The 

modeling puts no restriction on the shape of the decline curve—it does not enforce linearity, 

but only a decline in cognitive mean as the participant ages. The decline is defined for all 

continuous EYOs by using linear interpolation between the values of α

f (x) =
0 x ≤ − 15

(1 + x − x)α x + (x − x )α x + 1 −15 < x ≤ 15
α15 x > 15

, (1)

where [x] is the floor function and it represents the largest integer less than x. The 

parameters for this model are the values of f at each knot point αx. The errors, εij, are 

assumed to be independent and identically distributed with a normal distributions N(0, σ2). 

The prior distributions for the 2 random effects across participants are modeled as: γi~N(0, 

1), δi~N (0, 2); the variance, σ2, is assumed to be a weak (nearly non-informative) prior 
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inverse-gamma distribution: σ2~IG (0.01, 0.01), and the αs are assumed to be proportional 

to a weak normal distribution restricted to decreasing values:

αx N αx − 1, 1002 I[αx < αx − 1], for x = − 14, …, 15,

For identifiability, we assume that the mean cognitive score at EYO −15 (considered as 

healthy) is 0; thus, participants with EYO ≤ −15 or less are represented as Yij = γi + εij. This 

preserves the interpretation of the random effect γi to represent the mean cognitive score in a 

healthy state of the individual. This monotonicity assumption in α plays 2 very important 

roles. The first is that it forces the estimates of the mean cognitive composite to decline over 

time—accounting for the scientifically expected result as part of the model. The second is 

that this restriction creates inherent smoothing as well, creating a smooth estimate of the 

mean decline over time.

To calculate the posterior distribution, an MCMC algorithm is used with a single chain after 

a burn-in of 10 000 observations and a chain length of 100 000. The algorithm uses 

adaptively updated Metropolis-Hastings steps for improved convergence and mixing.21,22 

See the Supporting Information for further details.

2.5 | Estimated natural decline of ADAD population using DIAN observational study

We apply the mixed effects cognitive DPM to the DIAN observational data. The posterior 

mean and SD of the natural decline at each EYO point—the α in Equation (1)—are 

presented in Table 1. In Table S2, the posterior mean and SD of the natural decline is 

provided without the monotonicity assumption. Each decline parameter, α, represents the 

mean decline in the cognitive composite from the healthy state. The model estimated decline 

from an EYO of −15 to an EYO of 0 (onset) is −1.06, meaning that the mean decline to the 

point of estimated symptom onset is approximately a 1 point z-score decline in the cognitive 

endpoint. In the 4 years following onset, there is an estimated additional 1.09 decline, 

meaning that the rate of decline is estimated to increase 3 to 4 times after onset compared 

with the 15 years before onset. The posterior mean of the model standard error of the 

cognitive test around the true mean, σ, is 0.333 with a SD of 0.019.

2.6 | Modeling therapeutic treatment effect

With the progression of cognitive decline estimated as a function of EYO, we are interested 

in modeling a potential treatment effect on the rate of cognition decline in the ADAD 

population. We extend the above-described mixed effects model of cognitive decline across 

natural history participants to incorporate a treatment effect under an experimental treatment 

with an assumption of a proportional treatment effect to the rate of natural cognitive decline. 

In particular, if a treatment is provided to subject i at time Ti, measured on the time scale of 

EYO, then the model for the cognitive endpoint incorporates the effect of the treatment from 

the point of intervention forward. The multiplicative effect to the future rate of progression 

after intervention is modeled as eθ, with log-progression rate θ. The cognitive composite Yij 

with corresponding timing of the observation as EYOij, is modeled as
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Yi j = γi + g(EYOi j ∣ δi, Ti, θ) + εi j for i = 1, …, k; j = 1, …, ni .

The decline function g is a combination of the natural decline f and the effect of the 

intervention θ:

g EYOi j ∣ δi, Ti, θ =
f EYOi j + δi ∣ α EYOi j ≤ Ti

f (Ti + δi ∣ α) + eθ f EYOi j + δi ∣ α − f (Ti + δi ∣ α) EYOi j > Ti

The random effects γi and δi, the variance σ2, and the mean decline at each knot (α) are 

modeled in the same way as in Equation (1). The prior distribution for the decline 

parameters is varied from the original model to have an SD of 1.5 between yearly deviations. 

The choice was based on calibrating the model to have good type I error properties while 

still being relatively uninformative. The priors of α’s are set to be

αx N αx − 1, 1.52 I[αx < αx − 1], for x = − 14, …, 15.

The effect of a treatment is captured by the parameter θ. The value of eθ is the proportional 

effect of the treatment and is referred as the cognitive progression ratio (CPR). If the CPR is 

equal to 1, then the rate of decline on the treatment is identical to the control (natural history 

or placebo) after the treatment intervention. A value of the CPR larger than 1 would indicate 

an increased rate of decline for the treatment compared with the control. If the CPR is less 

than 1, then the rate of decline is slower for the treatment than for the control. The value of 

the CPR is interpreted as the ratio of the rate of decline under the treatment to the control; 

thus, this quantity is directly interpretable as the size of the treatment effect and its clinical 

relevance. The CPR can be thought of much like a hazard ratio in a time to event analysis.23 

For example, if the CPR is 0.70, then the rate of decline on the treatment is slowed by 30% 

compared with the control.

We explore the ramifications of different treatment effects by showing how a modeled 

treatment effect slows the cognitive decline. Figure 1 shows the estimated natural decline 

and the decline if a treatment is started at EYO −15 with a 30% slowing (blue) or 70% 

slowing (green). A mutation carrier is expected to naturally decline to a z-score of −1 

approximately at EYO −1. A 30% treatment effect would lead to a delay of 3 years (from 

EYO −1 to EYO 2) to reach the same −1 z-score, whereas a 70% treatment effect would lead 

to a delay of 9 years.

2.7 | Simulation of ADAD clinical trials

To demonstrate the behavior of the cognitive DPM, we simulated virtual ADAD clinical 

trials by using the DPM as the primary analysis. We selected the virtual patient simulation 

parameters to closely mimic the original DIAN-TU trial design. We simulated trials with 3:1 
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treatment to placebo randomization ratio of 80 patients. We include 2 interim analyses for 

efficacy. Overall, we make the following assumptions for our simulated trials:

• Sample size: 80 (60:20)

• Duration: 4-year follow up after the last enrolled participant for any group. If 

cognitive measures beyond 4-year follow-up are available for participants 

enrolled earlier in the trial, the data will be incorporated into the cognitive 

endpoint model to estimate the treatment effect.

• Accrual rate: a mean of 5 per month simulated from a Poisson distribution

• Frequency of cognitive assessments: every 6 months

• Dropout rate: 5% annually, simulated independent of cognitive value, meaning 

missing completely at random

• Simulation of an individual participant

– An EYO at enrollment is simulated as a uniform value over the integers 

from −15 to +10 (inclusive).

– Expected natural cognitive progression: All new placebo participants 

behave like the cognitive model (with assumed monotonically 

decreasing cognitive mean values) estimates from the DIAN 

observational data, with respective variability of new measurements. In 

particular, posterior mean estimates given in Table 1 that were 

estimated using all DIAN observational participants are used to 

simulate the cognitive measure (including the SD of 0.333). The 

postbaseline scores are simulated assuming a treatment CPR value (1 

for placebo, and different values of CPR for the experimental 

treatment).

– A simulation of CDR global based on the baseline cognitive composite 

is conducted to determine if the additional entry criterion of CDR 

global ≤1 is met. If the CDR global criterion is not met, a substitute 

participant is simulated until the participant meets the CDR global 

condition.

• Interim analysis: 2 interim analyses are conducted: when the last participant in 

the treatment cohort reaches 2 years and 3 years of follow-up. At each interim, 

the treatment will be stopped for efficacy if it demonstrations a statistically 

superior slowing of cognitive decline. If efficacy is not demonstrated at any 

interim analyses, then the experimental treatment will continue to the next 

interim analysis or the final analysis. The rules defined for efficacy success are as 

follows: a treatment will be stopped early for efficacy if the posterior probability 

that the treatment slows the rate of cognitive decline is greater than or equal to 

0.9952 (see the Supporting Information for the calculation of this threshold to 

control type I error).
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• Primary analysis: The primary analysis is performed when the last participant 

enrolled to the trial has been followed for 4 years. The null hypothesis of the 

primary analysis is H0: CPR = 1 against the alternative hypothesis: HA: CPR < 1. 

The treatment will be declared successful, and the null hypothesis rejected in 

favor of the alternative, and a slowing of the rate of cognitive decline concluded 

if the posterior probability of a CPR < 1 is greater than or equal to 0.9952. The 

threshold for final success has been determined to control the one-sided type I 

error at 0.025 or less taking into account the interim analyses.

Assuming hypothetical values of CPR ranging from 0% to 80%, we simulated 5000 trials for 

each reduction, and 50 000 draws from each MCMC algorithm to calculate posterior 

probabilities. Power is estimated as the proportion of the 5000 trials that meet a primary 

analysis of superiority. Using the same simulated data, analyses based on MMRM were also 

conducted. The MMRM analysis model included participant-level random effects, a fixed 

effect for the cognitive score at baseline for placebo and treated participants, fixed effects for 

time-varying rates of decline for placebo participants (where time is included as years since 

baseline and is used as categorical), and fixed effects for time-varying treatment effects for 

treatment participants. The treatment effect at year 4 is tested by contrasting the group 

difference. The power using MMRM is estimated as the proportion of the 5000 trials with P-

value less than .05 for a 2-sided test. Simulations of the DPM were conducted by using 

Fortran and the MMRM analysis conducted using R.

2.8 | Trial simulation results

Figure 2 presents the power using the cognitive DPM as a function of the assumed treatment 

effect with analyses at the second, third, and fourth years. Additionally, the power of the 

MMRM at the fourth year for the exact same assumptions is shown. The cognitive DPM 

yields a substantial increase in power compared with the traditional MMRM (Figure 2). For 

an assumed 40% reduction in the cognitive decline, the cognitive DPM provides 91.1% 

power whereas the MMRM only yield 26.7% power at the fourth year analysis. Importantly, 

we show that even for therapies with greater than 50% effect on slowing disease progression, 

using an MMRM approach still yields less than 50% power to detect this effect at the fourth 

year. Even the second and third year analyses using cognitive DPM yield more power than 

MMRM when the reduction in cognitive decline is more than 30%.

The 3 main reasons for this substantial increase are as follows:

1. Positioning a participant in the model based on their EYO rather than change 

from baseline

2. Allowing the extended follow-up to contribute to the primary analysis in a very 

strong way

3. The assumption of a common proportional effect across time for the treatment 

arm rather than fitting the effect for a single visit

To understand the role that the first of these plays consider a participant coming in at an 

EYO of −14. The expected decline is very different from a participant coming in at an EYO 

of +1. The MMRM analysis characterizes the observations as time from baseline, while the 
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cognitive DPM treats them as the progression relative to their stage of disease (EYO). The 

estimated SD for a single cognitive test using the cognitive DPM is 0.333. If we use the 

exact same simulation of virtual participants and calculate the SD in the 4-year change from 

baseline values, it is 0.85. As a heuristic argument, to create the same standard error in the 

change from baseline at 4 years (0.85/ n), one would need to enroll 6.52 participants for the 

MMRM relative to 1 for the cognitive DPM (a SD of 0.33).

We have simulated a wide range of different scenarios around the assumption of the natural 

decline, variability, accrual rates, and drop-out rates and displayed the robustness of the 

model to these changes in assumptions. In all the scenarios we investigated, the DPM led to 

large increases in power compared with the typical MMRM model (results not shown).

3 | DISCUSSION

Having research participants that are before onset, yet are destined to develop AD, and at a 

very predictable time, while tragic, provides an incredible scientific opportunity for 

developing disease-modifying therapies. While the ability to characterize those that will get 

AD allows studying the disease before onset, the ability to characterize the time of onset and 

the decline rate before and after onset makes an enormous difference in the ability to learn 

from prevention trials. We present a flexible cognitive DPM that provides a strong 

characterization of the cognitive decline of ADAD mutation carriers in the DIAN 

observational cohort. The model demonstrates the highly consistent behavior of cognitive 

decline and has been extended to estimate effects of potential disease modifying treatment 

effects. The model provides tremendous power increases—for example, it allows detection 

of a potential treatment effect with 80 ADAD patients compared with what normally would 

take more than 400 ADAD patients. We show that the cognitive DPM accounts for the 

heterogeneity between trial participants and efficiently uses the outcome assessment in the 

extended follow-up, and thus reduces the required sample size to achieve sufficient power 

for clinical trials compared with common alternative approaches. In addition, the DPM 

allows for characterizing a clinically relevant estimate of effect size.

The cognitive DPM is developed based on a particular cognitive composite, but it is not 

restricted to this unique composite. Any composite or any single cognitive measurement can 

potentially be used with in a similar model. A similar DPM could be used on a variety of 

endpoints as long as their behavior exhibits progressive decline. Furthermore, the DPM 

could be extended to jointly model multiple outcomes by assuming individual random 

effects for each outcome to share a multivariate normal distribution with a common age of 

onset and by using the same proportion for the treatment effect.

The model provides additional inferential strength based on the extended length of follow-up 

of some participants beyond 4 years based on the assumption of a proportional treatment 

effect. This is a desirable aspect of analyzing a progressive disease—the most valuable 

information is from those participants with the longest exposure. Many alternative analysis 

models, like the MMRM, do not increase their inferential strength when participants have 

extended followup. Using a proportional treatment effect to the rate of decline and using 

extended follow-up can be used in sporadic AD trials. For example, the change since 
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baseline in ADAS-cog 116 and in ADAS-cog 1424 in mild AD in EXPEDITION1 and 

EXPEDITION2 trials and the decline over time in standardized MMSE and in Bristol 

Activities of Daily Living Scale in the trial for donepezil and memantine11 indicated 

approximately proportional treatment effects from baseline to the end of study. But, without 

a reliable estimate of the age of onset in the preclinical stage, the ability to use a DPM with 

time based on EYO remains elusive in sporadic AD trials. Methods that can be potentially 

used to find an estimated age of onset for sporadic AD have been proposed.25

The delayed-start design (also referred to as the staggering-start design) has been considered 

in designs to demonstrate disease-modifying treatment effects.24,26,27 The cognitive DPM 

can be easily modified to analyze a treatment effect in a delayed start design by 

incorporating the starting time of each treatment as a function of the delayed start.

Compared with other well-established mixed effects models like the MMRM using time 

since baseline as a categorical variable,6,11,12 our model uses a stronger assumption of the 

proportional treatment effect, but this assumption can be relaxed by partitioning participants 

into different stages and then using multiple proportional treatment effects. Another 

assumption in our model is that we assumed a monotonic decline in the cognition over time. 

Although some individuals may violate this assumption in short random fluctuations, the 

monotonic decline has clear face validity in this population as there is essentially complete 

penetrance of these mutations leading to an inevitable cognitive decline. We have extended 

the model to allow parameters of “a learning curve” on the early visits after treatment. This 

allows the model to estimate a bump that may occur based on learning how to do well on the 

cognitive tests through practice.

Supplementary Material
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FIGURE 1. 
The decline trajectories for natural history and for 30% and 70% treatment effects [Colour 

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2. 
Power comparison between the cognitive disease progression model (DPM) and mixed 

model for repeated measures (MMRM) for a sample size of 60:20 (treatment: placebo). The 

gains in power using the cognitive DPM are striking compared with the commonly used 

MMRM model [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1

The posterior mean (SD) of the mean cognitive decline for each EYO estimated by the cognitive disease 

progression model using Dominantly Inherited Alzheimer Network observational study

EYO Posterior Mean (SD) of αEYO EYO Posterior Mean (SD) of αEYO

−15 0 (0) 1 −1.20 (0.18)

−14 −0.07 (0.06) 2 −1.40 (0.29)

−13 −0.14 (0.08) 3 −1.70 (0.41)

−12 −0.21 (0.09) 4 −2.15 (0.44)

−11 −0.27 (0.09) 5 −2.66 (0.38)

−10 −0.33 (0.10) 6 −2.93 (0.34)

−9 −0.39 (0.10) 7 −3.11 (0.38)

−8 −0.46 (0.11) 8 −3.37 (0.37)

−7 −0.53 (0.11) 9 −3.71 (0.24)

−6 −0.61 (0.12) 10 −3.86 (0.24)

−5 −0.68 (0.12) 11 −4.07 (0.27)

−4 −0.76 (0.12) 12 −4.29 (0.37)a

−3 −0.83 (0.13) 13 −6.10 (0.94)a

−2 −0.90 (0.13) 14 −7.77 (1.51)a

−1 −0.98 (0.14) 15 −9.22 (1.73)a

0 −1.06 (0.14)

a
The minimum of this composite score is −4.11, which is achieved around estimated years from symptom onset (EYO) 11 or when all the 

components have scores of 0. These z-scores are less than the minimum and are model estimated decline that had the monotonic decline continued 
beyond EYO 11. However, autosomal-dominant Alzheimer’s disease patients rarely if any survive past EYO 10.
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