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Abstract

Everyday speech perception is challenged by external acoustic interferences that hinder verbal 

communication. Here, we directly compared how different levels of the auditory system 

(brainstem vs. cortex) code speech and how their neural representations are affected by two 

acoustic stressors: noise and reverberation. We recorded multichannel (64 ch) brainstem 

frequency-following responses (FFRs) and cortical event-related potentials (ERPs) simultaneously 

in normal hearing individuals to speech sounds presented in mild and moderate levels of noise and 

reverb. We matched signal-to-noise and direct-to- reverberant ratios to equate the severity between 

classes of interference. Electrode recordings were parsed into source waveforms to assess the 

relative contribution of region-specific brain areas [i.e., brainstem (BS), primary auditory cortex 

(A1), inferior frontal gyrus (IFG)]. Results showed that reverberation was less detrimental to (and 

in some cases facilitated) the neural encoding of speech compared to additive noise. Inter-regional 

correlations revealed associations between BS and A1 responses, suggesting subcortical speech 

representations influence higher auditory-cortical areas. Functional connectivity analyses further 

showed that directed signaling toward A1 in both feedforward cortico-collicular (BS→A1) and 

feedback cortico-cortical (IFG→A1) pathways were strong predictors of degraded speech 

perception and differentiated “good” vs. “poor” perceivers. Our findings demonstrate a functional 

interplay within the brain’s speech network that depends on the form and severity of acoustic 

interference. We infer that in addition to the quality of neural representations within individual 

brain regions, listeners’ success at the “cocktail party” is modulated based on how information is 

transferred among subcortical and cortical hubs of the auditory-linguistic network.
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INTRODUCTION

In natural listening environments, noise and reverberation hinder the successful extraction of 

speech information (for review, see White-Schwoch and Kraus, 2017). Although both are 

acoustic interferences, each has a distinct effect on speech signals (for review, see Bidelman, 

2017; Helfer and Wilber, 1990; Nabelek and Dagenais, 1986). Noise is caused by the 

addition of external competing sound(s) that masks target speech. Contrastively, 

reverberation is the persistence of reflected acoustic energy in the sound field caused by 

internal room acoustics (Kinsler et al., 2000). Reverberation produces an overlap between 

direct and indirect sounds that “smears” a signal’s spectrum. Natural reverberation also acts 

to low-pass filter speech compared to the overall flattening of modulations produced by 

noise. Conveniently, the degree of noise and reverberation superimposed on a target signal 

can be quantified by similar metrics. For noise, the relative contribution of “noise” and 

“signal” are quantified via the signal-to- noise ratio (SNR). Similarly, the proportions of 

acoustic energy attributable to signal and reverberant energy are characterized (in dB) by the 

direct-to-reverberant energy ratio (D/R), or less commonly, “wet- to-dry” ratio (von Békésy, 

1938; Zahorik, 2002).

While both acoustic stressors hinder intelligibility, behavioral studies reveal that human 

listeners show a differential sensitivity when perceiving signals in noise vs. reverberation 

(Larsen et al., 2008; McShefferty et al., 2015; Zahorik, 2002). That is, even when the 

relative intensities between signal and interference are matched in severity (i.e., SNR≈D/R), 

noise and reverberation can impact speech perception in different manners. While each 

interference reduces speech understanding by ~15–20%, vowel confusion patterns can differ 

under these two acoustic backdrops (Nabelek and Dagenais, 1986). Interestingly, reverb also 

induces less listening effort than noise during speech comprehension, even at similar levels 

of behavioral performance (Picou et al., 2016). This suggests that while there is a 

comparable tax on speech intelligibility, noise and reverberation might uniquely impact the 

underlying neural representations for speech (cf. White-Schwoch and Kraus, 2017). To our 

knowledge, this possibility has not been formally tested.

It is now well-established that speech-in-noise (SIN) understanding is determined by more 

than audibility or peripheral hearing status (Middelweerd et al., 1990; Song et al., 2011) (but 

see Humes and Roberts, 1990). The fact that SIN performance is not reliably predicted from 

the audiogram (Killion and Niquette, 2000) and varies among even normal-hearing listeners 

(Song et al., 2011) has led to the notion that central brain mechanisms play a critical role in 

supporting successful cocktail listening (e.g., Alain et al., 2014; Bidelman and Howell, 

2016; Billings et al., 2009; Billings et al., 2010; Billings et al., 2013; Parbery-Clark et al., 

2011; Song et al., 2011). In this regard, electrophysiological studies have been important in 

elucidating these central factors of speech sound processing.
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The brain’s neuroelectric response to speech reflects an aggregate of activity generated from 

both brainstem and cortical structures. By exploiting properties of each response (e.g., 

spectral bandwidth), one can isolate their contributions within the scalp EEG and examine 

sound encoding within various structures of the auditory hierarchy (Bidelman et al., 2013). 

The cortical ERPs are composed of several “waves” (e.g., P1-N1-P2), reflecting activation of 

auditory thalamus, cortex, and associative areas (Picton et al., 1999). ERPs are sensitive to 

the acoustic features of speech (Agung et al., 2006; Chang et al., 2010; Kraus and Cheour, 

2000; Sharma and Dorman, 1999) and correlate with listeners’ perceptual skills (Bidelman 

et al., 2014b; Ross and Tremblay, 2009; Tremblay et al., 2001). The subcortical component, 

or frequency-following response (FFR), is a sustained potential emitted dominantly from the 

upper brainstem that closely mirrors acoustic stimuli with high fidelity (Bidelman, 2018; 

Krishnan, 2007; Skoe and Kraus, 2010). FFR activity similarly correlates with listeners’ SIN 

perception (Anderson et al., 2010; Parbery-Clark et al., 2009a; Song et al., 2011). Yet, few 

studies have examined FFRs to reverberant speech (Bidelman and Krishnan, 2010; Fujihira 

and Shiraishi, 2015), and we unaware of any directly contrasting the effects of noise and 

reverb on speech FFRs. Moreover, while a number of studies have investigated the 

independent contributions of brainstem (e.g., Bidelman, 2016; Bidelman and Krishnan, 

2010; Billings et al., 2013; Krishnan et al., 2010; Parbery-Clark et al., 2009a; Song et al., 

2011) and cortical neurophysiology (e.g., Alain et al., 2014; Bidelman and Howell, 2016; 

Billings et al., 2010; Billings et al., 2013; Shtyrov et al., 1998) to degraded speech 

processing, examining these functional levels simultaneously (within individual listeners) 

would offer a more comprehensive, systems-level characterization of the biological 

mechanisms underlying cocktail party listening in different acoustic scenarios and possible 

interplay between stages of the neuroaxis.

To this end, our recent studies have championed the use of concurrent FFR-ERPs recordings 

to examine hierarchical auditory processing (e.g., Bidelman, 2015; Bidelman and Alain, 

2015b; Bidelman et al., 2013; Bidelman et al., 2014b) (see also Bellier et al., 2015; Slugocki 

et al., 2017). Dual FFR-ERP paradigms have provided important insight into how lower vs. 

higher tiers of the neuroaxis code complex sounds and interact during early perception when 

object-based representations of speech are still in their nascent stages (e.g., Bidelman et al., 

2013). Translational applications have further shown how brainstem vs. cortical function is 

uniquely strengthened by plasticity (Bidelman and Alain, 2015a; Bidelman et al., 2014a; 

Musacchia et al., 2008), are differentially compromised by hearing loss (Bidelman et al., 

2014b), and are altered in neurocognitive disorders (Bidelman et al., 2017). This approach 

emphasizes a growing body of work that advocates speech processing as an integrative and 

dynamic network (Kraus and White-Schwoch, 2015; Obleser et al., 2007; Scott et al., 2009) 

which includes possible interactions and/or signal transformations between brainstem-cortex 

(Gao and Suga, 1998; Suga et al., 2002) and auditory-linguistic brain areas downstream (Du 

et al., 2014). Given that early brainstem-cortical and later auditory-linguistic interplay can 

presumably vary on an individual basis, we hypothesized these individual differences might 

modulate cocktail party perception. Here, we exploited dual FFR-ERPs to further investigate 

the neural encoding of impoverished (noisy and reverberant) speech and better define the 

functional connectivity between subcortical and cortical hubs of the auditory system.
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The aims of the present study were thus twofold. First, we directly compared how 

subcortical and cortical levels of the auditory system encode different forms of degraded 

speech information. While previous reports have investigated relations between brainstem 

and cortical auditory processing (e.g., Bidelman et al., 2013; Bidelman et al., 2017; 

Krishnan et al., 2012; Musacchia et al., 2008; Slugocki et al., 2017), studies have focused 

exclusively on scalp (electrode-level) recordings and therefore, can only infer contributions 

of sub- and neo-cortex from volume conducted mixtures of EEG signals. Here, source 

analysis of brainstem FFRs and cortical ERPs allowed us to parse region-specific activity 

with higher granularity and more definitively reveal how neural processing within each tier 

of the neuroaxis coordinate during speech processing. Functional connectivity analysis 

evaluated the directed, causal signaling between brainstem and cortical regions and how 

inter-regional neural communication might predict listeners’ speech perception skills. We 

also measured source FFR/ERPs elicited by noisy and reverberant speech. This allowed us 

to directly assess how neural speech representations are affected by different acoustic 

stressors common to the auditory scene. To anticipate, our data reveal that degraded speech 

perception is governed by intra- and inter- regional brainstem-cortical activity including 

important cortico-collicular (brainstem-cortical) and cortico- cortical (frontotemporal) 

signaling.

METHODS

Participants

Eleven adults (age: 24.7 ± 2.7 years) participated in the experiment. All had obtained a 

similar level of formal education (at least an undergraduate degree), and were monolingual 

speakers of American English. Musical training is known to enhance auditory evoked 

responses (e.g., Bidelman et al., 2011; Musacchia et al., 2008; Zendel and Alain, 2009) and 

improve degraded speech-listening skills (Bidelman and Krishnan, 2010; Parbery-Clark et 

al., 2009a; Parbery-Clark et al., 2009b). Hence, all participants were required to have 

minimal formal musical training (1.3 ± 1.8 years) and none within the past 5 years. 

Audiometric screening confirmed normal hearing (i.e., thresholds < 25 dB HL) at octave 

frequencies (250–8000 Hz). All participants reported no history of neuropsychiatric 

disorders. Participants gave written informed consent in compliance with a protocol 

approved by the University of Memphis Institutional Review Board and were compensated 

monetarily for their time.

Stimuli

Brainstem and cortical auditory ERPs were elicited by a 300 ms/vCv/speech token/ama/

(Bidelman and Howell, 2016) (Figure 1). The pitch prosody fell gradually over the token’s 

duration (F0= 120 Hz to 88 Hz). Vowel formant frequencies (F1–F3) were 830, 1200, and 

2760 Hz, respectively.

Noise-degraded speech—In addition to this “clean” stimulus (SNR = ∞ dB), noise-

degraded stimuli were created by adding four-talker babble noise (Killion et al., 2004) to the 

clean token at SNRs of +10 and +5 dB. SNR was manipulated by changing the level of the 

masker rather than the signal to ensure SNR was inversely correlated with overall sound 
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level (Binder et al., 2004). To mimic real-world acoustic scenarios, babble was presented 

continuously so that it was not time-locked to the stimulus presentation (e.g., Alain et al., 

2012).

Reverberant speech—Reverberant speech was simulated via convolution reverb. We 

used the XFX1 (v1) reverb plugin in Sound Forge 9 (Sony Inc.) with the “Rich Hall” preset 

to simulate acoustics of a realistic room (RT60: 500 ms; early reflection style: 16 ms; 

predelay: 30 ms; filter attenuation: 20– 12000 Hz; early reflection attenuation: −20 dB). We 

then exported the “wet” (reverberant) portion of the signal (i.e., 0% mix of the “dry” speech) 

to extract only the “interference” component of the reverberant signal. Effectively, this 

resulted in a simulation as if the speech was produced in a reverberant environment but with 

only indirect (reflected) energy containing no direct sound. We then mixed the original 

(clean) speech token with this reverberation to create reverb-degraded speech at mild and 

medium direct-to-reverberant ratios (D/R) of +10 and +5 dB, respectively. Importantly, this 

approach allowed us to precisely control and equate the overall level of severity (i.e., SNR 

and D/R) between noise- and reverb-degraded stimuli. This avoided potential confounds of 

having different degrees of acoustic “noisiness” (i.e., signal figure-ground quality) between 

noise and reverb conditions and allowed us to focus on differences in sound quality 

produced by each acoustic stressor1. Acoustic waveform and spectrograms are illustrated for 

the clean, +5dB SNR noise-degraded, and +5 dB D/R reverberant speech in Figure 1.

Procedure

Listeners heard 2000 trials of each condition (passive listening) presented with fixed, 

rarefaction polarity using a jittered interstimulus interval (400–700 ms; 20-ms steps, uniform 

distribution). Stimulus presentation was controlled by MATLAB® 2013b (The MathWorks) 

routed to a TDT RP2 interface (Tucker-Davis Technologies). Tokens were delivered 

binaurally at 81 dB SPL through ER-30 insert earphones (Etymotic Research). ER-30 

earphones feature an extended acoustic tubing (20 ft) that allowed us to place their 

transducers outside the testing booth. Spatially separating the transducer from participants 

avoided the possibility of electromagnetic stimulus artifact from contaminating neural 

responses (Aiken and Picton, 2008; Campbell et al., 2012). The low-pass frequency response 

of the headphone apparatus was corrected with a dual channel 15 band graphical equalizer 

(dbx EQ Model 215s; Harman) to achieve a flat frequency response through 4 kHz. Stimulus 

level was calibrated using a Larson–Davis SPL meter (Model LxT) measured in a 2-cc 

coupler (IEC 60126). The entire experimental procedure, including electrophysiological and 

behavioral testing (described below) took ~2 hrs.

1While figure-ground quality was equated between noisy and reverberant speech (i.e., SNR = D/R), we did not attempt to control for 
inherent spectrotemporal difference between interferences classes. For example, unlike additive noise, reverb distorts the target itself 
as reflect portions of the speech signal overlap with itself and lead to a blurring or “temporal smearing” of the waveform’s fine 
structure (Nabelek et al., 1989; Wang & Brown, 2006). Thus, while we control the overall level of interference, we retain intrinsic 
differences characteristic of noise vs. reverberation (e.g., timbral flux, dynamic temporal effects, lowpass filtering in reverb vs. overall 
flattening of modulation in noise).
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Behavioral speech-in-noise task

Before EEG testing, we measured listeners’ speech reception thresholds in noise using the 

QuickSIN test (Killion et al., 2004). Participants were presented two lists of six sentences 

with five key words per sentence embedded in four-talker babble noise. Sentences were 

presented at 70 dB SPL via insert earphones (bilaterally) using pre-recorded signal-to-noise 

ratios (SNRs) that decreased in 5 dB steps from 25 dB (very easy) to 0 dB (very difficult). 

Listeners scored one point for each key word correctly repeated. “SNR loss” (computed in 

dB) was determined as the SNR required to correctly identify 50% of the key words (Killion 

et al., 2004). We averaged SNR loss from two lists for each listener. As there is no reverb 

analog to the QuickSIN, this test functioned as a (normative) behavioral assay of degraded 

speech listening skills.

Electrophysiological recordings

EEG acquisition and preprocessing—Electrophysiological recording procedures were 

identical to our previous report (Bidelman and Howell, 2016). Neuroelectric activity was 

recorded from 64 sintered Ag/AgCl electrodes at standard 10-10 scalp locations (Oostenveld 

and Praamstra, 2001). EEGs were digitized at a sampling rate of 5000 Hz (SynAmps RT 

amplifiers; Compumedics Neuroscan) using an online passband of DC-2500 Hz. Electrodes 

placed on the outer canthi of the eyes and the superior and inferior orbit were used to 

monitor ocular activity. During online acquisition, all electrodes were referenced to an 

additional sensor placed ~1 cm posterior to Cz. Data were re-referenced off-line to a 

common average reference for subsequent analyses. Contact impedances were maintained ≤ 

5 kΩ.

Subsequent pre-processing was performed in Curry 7 (Compumedics Neuroscan). Ocular 

artifacts (saccades and blinks) were first corrected in the continuous EEG using a principal 

component analysis (PCA) (Picton et al., 2000). Cleaned EEGs were then epoched (−200–

550 ms), baseline-corrected to the pre-stimulus period, and averaged in the time domain to 

obtain compound evoked responses (containing both brainstem and cortical activity) for 

each stimulus condition per participant.

Source waveform derivations—Scalp potentials (sensor-level recordings) were 

transformed to source space using discrete inverse models. Fitting was carried out in 

BESA® Research v6.1 (BESA, GmbH). We used a four-shell volume conductor head model 

(Berg and Scherg, 1994; Sarvas, 1987) with BESA default settings, i.e., relative 

conductivities (1/Ωm) of 0.33, 0.33, 0.0042, and 1 for the head, scalp, skull, and 

cerebrospinal fluid, respectively, and sizes of 85 mm (radius), 6 mm (thickness), 7 mm 

(thickness), and 1 mm (thickness) (Herdman et al., 2002; Picton et al., 1999). From grand 

averaged responses, we seeded dipoles in prominent hubs of the speech network, including 

brainstem (BS), bilateral primary auditory cortex (A1), and bilateral inferior frontal gyrus 

(IFG). Although a simplistic speech circuit, these three regions of interest (ROIs) have been 

shown to predict SIN processing in several neuroimaging studies (Adank et al., 2012; 

Bidelman and Krishnan, 2010; Bidelman and Dexter, 2015; Bidelman and Howell, 2016; 

Binder et al., 2004; Coffey et al., 2017; Du et al., 2014; Scott and McGettigan, 2013; Song et 

al., 2011) and allowed specific hypothesis testing of the relation between auditory 
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brainstem-cortical connectivity and degraded speech perception. Sparse source models have 

also been shown to better resolve subcortical sources in M/EEG than denser dipole 

configurations (Krishnaswamy et al., 2017), further justifying a restricted dipole count. 

While EEG inverse solutions are non-unique, we have confirmed the biological plausibility 

of this brainstem-cortical configuration (clean spatial separation, spatiotemporal dynamics) 

using identical modeling assumptions in our recent source imaging and computational 

studies (Bidelman, 2018). Overall, the model provided an excellent fit to the grand averaged 

data across stimuli and listeners (goodness of fit: 82 ± 4.5%). This dipole configuration was 

then used to guide source derivations at the single-subject level.

To extract each individual’s source waveforms within each ROI, we transformed listener’s 

scalp recordings into source-level responses using a virtual source montage (Scherg et al., 

2002). This digital re-montaging applies a spatial filter to all electrodes (defined by the foci 

of our dipole configuration). Relative weights are then optimized to image activity within 

each brain ROI while suppressing overlapping activity stemming from other active brain 

regions (for details, see Scherg and Ebersole, 1994; Scherg et al., 2002). This allowed us to 

reduce each listener’s electrode recordings (64-channels) to 5 source channels, each of 

which estimated activity generated within a single ROI (i.e., left/right IFG, left/right A1, 

BS). For each participant, the model was held fixed and was used as a spatial filter to derive 

their source waveforms (Zendel and Alain, 2014), reflecting the neuronal current (in units 

nAm) as seen within each anatomical ROI. Source waveforms were then bandpass filtered 

into high- (80 – 1500 Hz) and low- (0.5 –20 Hz) frequency bands to isolate the periodic 

brainstem FFR vs. slower cortical ERP waves from each listeners’ compound evoked 

potential (Bidelman et al., 2013; Musacchia et al., 2008). Comparing FFR and ERP source 

waveforms allowed us to assess the relative contribution of brainstem and cortical generators 

to degraded speech processing. Identical model assumptions for the inverse solution (e.g., 

volume conductor, conductivities) were used for brainstem and cortical ROIs waveforms; 

only the anatomical location of the dipole differed. Importantly, EEG provides more 

consistent SNR for both deep (brainstem) and superficial sources (cortex) and between focal 

and distributed models compared to other neuroimaging modalities (e.g., MEG; Goldenholz 

et al., 2009).

FFR/ERP source waveform quantification—FFRs and ERP source waveforms were 

quantified based on their amplitude (FFR: RMS amplitude; ERP: N1 amplitude). Previous 

studies have shown correspondence between these measures and degraded speech perception 

(Bidelman and Howell, 2016; Billings et al., 2013; Parbery-Clark et al., 2011). The cortical 

N1 was taken as the negative-going deflection between 100 and 150 ms based on the 

expected noise-related delay in the ERPs (Bidelman and Howell, 2016; Billings et al., 2009) 

after factoring in the acoustic delay of the headphones based on the speed of sound in air 

[17.8 ms = (20 ft)/(1125 ft/s)].

Distributed source imaging (CLARA)

We used Classical Low Resolution Electromagnetic Tomography Analysis Recursively 

Applied (CLARA) [BESA (v6.1)] to estimate the neuronal current density underlying the 

sensor data recorded at the scalp. Distributed analyses were applied only to cortical activity 
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(i.e., 0.5–20 Hz filtered data). The CLARA technique models the inverse solution as a large 

collection of elementary dipoles distributed over nodes on a mesh of the cortical volume. 

The aggregate strength of current density in each voxel can then be projected 

spatiotemporally onto the neuroanatomy, akin to a functional map in fMRI. CLARA 

estimates the total variance of the scalp-recorded data and applies a smoothness constraint to 

ensure current changes little between adjacent brain regions (Michel et al., 2004; Picton et 

al., 1999). CLARA renders highly focal source images by iteratively reducing the source 

space during repeated estimations. On each step (x10), a spatially smoothed LORETA 

solution (Pascual-Marqui et al., 2002) is recomputed and voxels below a 1% max amplitude 

threshold are removed. This provided a spatial weighting term for each voxel of the 

LORETA image on the subsequent step. Ten iterations were used with a voxel size of 5 mm 

in Talairach space and regularization (parameter accounting for noise) set at 0.01% singular 

value decomposition. The spatial resolution of CLARA is estimated at 5–10 mm (Iordanov 

et al., 2014; Iordanov et al., 2016), which is smaller (better) than the physical distances 

between PAC and IFG, and between BS and PAC (~35–40 mm) (Mazziotta et al., 1995). We 

have previously used this approach to image electrophysiological speech processing (e.g., 

Alain et al., 2017; Bidelman, 2018). Source activations were visualized on BESA’s adult 

brain template (Richards et al., 2016).

We used cluster-based permutation tests (Maris and Oostenveld, 2007) implemented in 

BESA Statistics (2.0) to contrast the distributed source images and identify anatomical 

locations in the brain volume (and over time) that distinguished noise- vs. reverb-degraded 

speech. For each voxel and time point, a paired samples t-test was conducted contrasting the 

two mild forms of acoustic interference (i.e., +10 dB SNR noise vs. +10 D/R reverb). This 

allowed us to determine where and when neural activity showed significant differences 

(p<0.05) between interferences. Cluster values were derived based on the sum of all t-values 

of data points within a given cluster. Significant differences were determined by generating 

and comparing surrogate clusters from n=1000 resamples of the data permuting between 

stimulus conditions (e.g., Oostenveld et al., 2011). This identified contiguous clusters of 

voxels over time (i.e., statistical contrast maps) where stimulus conditions were not 

interchangeable (i.e., noisy speech ≠ reverberant speech; p < 0.05). Importantly, BESA 

corrects for multiple comparisons across the aggregate of all voxels and time points by 

controlling the familywise error rate through this clustering process. The same procedure 

was then repeated to contrast the two medium forms of interference (i.e., +5 dB SNR noise 

vs. +5 D/R reverb). In the present study, distributed source imaging was used to identify 

empirically, the most relevant cortical regions that distinguish noise and reverberant speech. 

Source montages, based on discrete dipole modeling, were then used to quantitatively 

investigate the time course of speech-evoked responses within each cortical ROI and assess 

their relation to brainstem activity.

Functional connectivity

We measured causal (directed) information flow between nodes of the brainstem-cortical 

speech network using phase transfer entropy (PTE) (Lobier et al., 2014). TE is a non-

parametric, information theoretic measure of directed signal interaction. It is ideal for 

measuring functional connectivity between regions because it can detect nonlinear 
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associations between signals and is robust against the volume conducted cross-talk in EEG 

(Hillebrand et al., 2016; Vicente et al., 2011). TE was estimated using the time series of the 

instantaneous phases of the signals, yielding the so-called phase transfer entropy (PTE) 

(Hillebrand et al., 2016; Lobier et al., 2014). PTE was computed between ROIs according to 

Eq. 1:

PTEX Y = ∑ p(yt + τ, yt
m, xt

n) log2
p(yt + τ ∣ yt

m, xt
n)

p(yt + τ, yt
n)

(Eq.1)

where X and Y are the ROI signals and the log(.) term is the conditional probabilities 

between signals at time t+τ for sample m and n. The probabilities were obtained by building 

histograms of occurrences of pairs of phase estimates in the epoch (Lobier et al., 2014). 

Following Hillebrand et al. (2016), the number of histogram bins was set to 

e0.626+0.4ln(Ns − τ − 1) (Otnes and Enochson, 1972). The prediction delay τ was set as (Ns x 

Nch)/N±, where Ns and Nch are the number of samples and ROI sources, respectively, and N
± the number of times the phase changes sign across time and ROI signals (Hillebrand et al., 

2016). PTE cannot be negative and has no upper bound. Higher values indicate stronger 

connectivity, whereas PTEX→Y =0 implies no directed signaling.

Intuitively, PTE can be understood as the reduction in information (units bits) necessary to 

encode the present of ROIY if the past of ROIX is used in addition to the past of ROIY. In 

this sense, it is similar to the definition of Granger Causality (Barnett et al., 2009), which 

states that ROIX has a causal influence on the target ROIY if knowing the past of both 

signals improves the prediction of the target’s future compared to knowing only its past. Yet, 

PTE has several important advantages over other connectivity metrics: (i) PTE is more 

robust to realistic amounts of noise and linear mixing in the EEG that can produce false-

positive connections; (ii) PTE relaxes assumptions about data normality and is therefore 

model-free; (iii) PTE is asymmetric so it can be computed bi-directionally between pairs of 

sources (X→Y vs. Y→X) to infer causal, directional flow of information between 

interacting brain regions. Computing PTE in both directions between pairwise sources (e.g., 

BS↔A1 and A1↔IFG) allowed us to quantify the relative weighting of information 

flowing between subcortical and cortical ROIs in both feedforward and feedback directions.

RESULTS

Sensor-level data

Scalp-recorded cortical ERPs and brainstem FFRs (electrode data) to noise and reverberant 

speech are shown in Figures 2–3. Visual inspection of scalp maps suggested weaker cortical 

responses with decreasing SNR for noise-degraded speech (Fig. 2). Weaker N1-P2 is 

presumably due to the decrease in inter-trial response coherence (i.e., increased jitter) caused 

by noise (Koerner and Zhang, 2015). This amplitude reduction was not observed for 

reverberant speech where ERPs showed little apparent change with increasing severity of 

reverb. Similarly, scalp FFRs (Fig. 3), reflecting phase-locked brainstem activity, showed a 

reduction in amplitude with increasing levels of noise but an apparent enhancement for 
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speech in reverberation. This was most apparent when directly comparing mild (+10 dB 

SNR noise vs. mild reverb) and moderate interferences (+5 dB SNR noise vs. med. reverb). 

Despite matching noise SNR and reverb D/R, reverberant speech produced larger responses, 

particularly at the voice fundamental frequency (F0) (Fig. 3B). The volume conducted 

nature of sensor recordings did not allow for the separation of underlying sources. Hence, 

subsequent analyses were conducted in source space.

Source waveform data

CLARA distributed source maps contrasting cortical activity (0.5–20 Hz) to noise- and 

reverb- degraded speech are shown in Figure 4. Contrasts between the +10 dB SNR noise 

and mild reverb conditions revealed responses to these mild forms of interference were 

differentiated in bilateral, but especially right, auditory cortex (Fig. 4A). The maximal effect 

(i.e., reverb > noise) occurred 80 ms after stimulus onset. Similarly, contrasts between the +5 

dB SNR noise and medium reverb conditions revealed that responses to moderate 

interferences were differentiated ~30 ms later (108 ms), primarily within left IFG (Fig. 4B). 

These data suggest a distributed cortical network for speech consisting of auditory (A1) and 

linguistic (IFG) brain regions that is differentially engaged, intra- and inter-hemispherically, 

depending on the severity of acoustic interference. While these distributed source analyses 

provided a whole-brain view of degraded speech processing, they do not allow specific 

hypothesis testing within the network. Consequently, we extracted source waveforms within 

cortical A1 and IFG as well as brainstem ROIs to investigate how noise and reverb modulate 

the subcortical-cortical encoding of speech. Following our previous report (Bidelman and 

Howell, 2016), left and right hemisphere responses were collapsed for subsequent analyses. 

This reduced the dimensionality of the data and provided increased SNR for source- level 

analysis. Pooling hemispheres is also motivated by the fact that even monaural stimulus 

presentation produces bilateral auditory cortical activity (Schonwiesner et al., 2007).

Brainstem (BS) and cortical (A1, IFG) source waveforms are shown in Figures 5A and B, 

respectively. BS sources illustrate the periodic frequency-following response (FFR) of the 

auditory midbrain (Bidelman, 2018). Response spectra (lowest panels) illustrate phase-

locked activity to the voice pitch (F0≈100 Hz) and harmonic structure of speech. A1 and 

IFG waveforms track the time course of speech encoding in primary auditory and linguistic 

brain regions and modulations with noise and reverberation. We used a mixed model, 3-way 

ANOVA (ROI x interference type x interference level; subject=random factor) to analyze 

response amplitudes. Initial diagnostics revealed that amplitudes were leptokurtic (i.e., high 

peakedness) in their distribution. Hence, amplitudes measures were asinh(.) transformed to 

improve normality and homogeneity of variance assumptions necessary for parametric 

statistics. The ANOVA revealed significant main effects of interference type [F1,140=7.01, 

p=0.009] and ROI [F2,140=8.45, p=0.0003]. Planned contrasts revealed linear effects of 

interference level on BS [t40 =3.34, p=0.0018] and IFG [t40 =2.62, p=0.0124] amplitudes. 

That is, relative to clean speech, FFR amplitudes steadily increased with additional noise but 

were also larger for reverberant compared to noisy speech (i.e., Fig. 5C and 5E; +10 dB < +5 

dB < mild < medium). This noise/reverb-related modulation was not observed in A1 [linear 

effect: t40 =0.64, p=0.53] (Fig. 5D). Within IFG, we also found a significant effect of 

interference type [F1,40=7.91, p=0.0076]. That is, despite matched level of severity, speech 
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in mild reverb elicited larger amplitudes than speech in mild noise (p=0.0129). The 

facilitation effect of reverb on cortical IFG responses parallels the reverb facilitation 

observed in the sensor-level data (Figs. 2–3).

Relations between brainstem and cortical speech responses

Pairwise Pearson’s correlations examined associations between brainstem and cortical 

neuroelectric responses (Fig. 6). We found that BS-FFRs were positively correlated with A1-

ERP amplitudes (r=0.74, p=0.0089) such that stronger brainstem speech encoding was 

associated with larger auditory cortical responses (Fig. 6A). This suggests that neural 

activity along the ascending auditory pathway (BS→A1) might drive responses downstream. 

No associations were observed between BS and IFG amplitudes (Fig. 6B; r=0.37, p=0.27) 

nor between A1 and IFG (Fig. 6C; r=0.20, p=0.56). The lack of correlation between 

A1→IFG (and BS→IFG) implies that speech representations might become more 

independent/abstract at higher levels of the neural hierarchy.

Brain-behavior relations

We used a generalized linear mixed effects model (GLME) to evaluate relationships between 

neural responses to acoustically-degraded speech and behavioral performance (Fig. 7A). We 

considered the combination of all neural amplitude measures (BSFFR, A1ERP, IFGERP; 

pooled across noise/reverb conditions) as well as their interactions as predictors of listeners’ 

QuickSIN scores. Participants were modeled as a random term [i.e., QuickSIN ~ 

FFR*A1*IFG + (1|subject)]. Dependent variables were mean centered to reduce 

multicollinearity (Afshartous and Preston, 2011). We found that the overall model was 

significant [F1,3=11.56, p=0.037; null hypothesis coefficients=0] accounting for 81% of the 

variance in QuickSIN scores (adjusted-R2= 0.81). Scrutiny of individual model terms 

revealed significant neural predictors in BS (p=0.0241) and IFG (p=0.011) amplitudes. In 

addition to these focal responses, we observed significant A1*IFG (p=0.018) and BS*IFG 

(p=0.011) interactions. No other terms reached significance. Collectively, these results 

suggest that in addition to intra-regional activity within brainstem and cortical areas (BS, 

IFG), cortico-collicular (BS-A1) and cortico-cortical (A1-IFG) interactions are strong 

predictors of degraded speech perception abilities.

Functional connectivity

Phase transfer entropy, quantifying the feedforward (afferent) and feedback (efferent) 

functional connectivity between sources, is shown in Figure 7C. To investigate the 

behavioral relevance of PTE connectivity measures, we divided our cohort in two groups 

based on a median split of listeners’ QuickSIN scores. This resulted in two subgroups, 

“good” (n=6) vs. “poor” (n=5) SIN performers who differed in their SIN scores (Fig. 7B). 

Subgroups were otherwise matched in age (t9=1.61, p=0.14), musical training (t9= 0.25, 

p=0.81), and gender (Fisher’s exact test: p=1). Despite all having normal hearing, good 

listeners obtained better (~1 dB lower) SIN thresholds [t9= -2.47, p=0.035], confirming 

individual differences in SIN perception (Fig. 7B) (e.g., Song et al., 2011). We then analyzed 

each of these group’s PTE values to assess whether or not directed, inter-regional neural 

connectivity (i.e., BS↔A1 and A1↔IFG) could distinguish “good” vs. “poor” SIN 

performers (Fig. 7C). An ANOVA conducted on PTE values revealed a significant group x 
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region interaction in the strength of functional connectivity [F3,27=4.79, p=0.0084]. Identical 

results were also obtained with a Freidman non-parametric ANOVA (group x region: 

F3,27=4.79, p=0.0084). Tukey-Kramer contrasts revealed that this interaction was driven by 

stronger connectivity in “good” compared to “poorer” perceivers between IFG→A1 

(p=0.0041) and marginally stronger connectivity between BS→A1 (p=0.07) (Fig. 7C). No 

other regional pairs showed group differences in connectivity. These results confirm both 

bottom up (BS→A1) and top down (IFG→A1) communication directed toward A1 is 

important for degraded speech perception.

DISCUSSION

By measuring source-level FFR and ERPs to noise- and reverb-degraded speech, the present 

study helps elucidate how central neural representations for communicative signals are 

affected by different acoustic stressors common to the auditory scene. Collectively, our 

results relate to three primary findings: (i) reverberation is less detrimental to (and in some 

cases facilitated) the neural encoding of speech compared to additive noise matched in 

acoustic severity (i.e., signal figure-ground quality); (ii) listeners’ degraded speech 

perception skills are predicted by intra- and inter-regional brainstem-cortical activity 

including cortico-collicular (brainstem-cortical) and cortico-cortical (frontotemporal) 

interactions; (iii) functional connectivity directed toward A1 from BS (feedforward) and IFG 

(feedback) differentiates “good” from “poor” perceivers on behavioral SIN tests.

Noise and reverberation differentially impact the neural encoding of speech

Direct comparisons between acoustic stressors demonstrated that reverberation causes lesser 

interruption to the brain’s speech representations than comparable levels of noise. These 

findings cannot be attributed to trivial differences in “noisiness” (i.e., acoustic figure-ground 

quality) as noise and reverb were matched in their severity (i.e., SNR≈D/R). At both 

brainstem and cortical levels, reverberant speech produced larger evoked responses 

compared to clean speech, a facilitation that was most apparent in BS and IFG sources. 

Similarly, whole-brain analyses indicated that cortical activations were stronger for mild and 

moderate reverberation relative to comparable noise levels in both right A1 and left IFG 

(Fig. 4). The lesser impact of reverb than noise we find in electrophysical responses is 

consistent with behavioral data that demonstrates human speech perception is remarkably 

resilient to reverberation (Bradley et al., 1999; Culling et al., 2003; Nielsen and Dau, 2010; 

Watkins, 2005) and the fact that listeners notice fewer signal changes in reverberation than in 

noise (Larsen et al., 2008; McShefferty et al., 2015; Zahorik, 2002).

Weaker cortical responses in noise could reflect neural desynchronization caused by lower 

inter- trial phase coherence (i.e., increased jitter) of responses in the presence of acoustic 

interference (Koerner and Zhang, 2015). But why is a similar desynchronization to speech 

not observed in reverberation? Animal recordings (Sayles and Winter, 2008) and previous 

human FFR studies (Al Osman et al., 2017; Bidelman and Krishnan, 2010) show that speech 

cues are more easily maintained at the neural level in 15 reverb compared to noise (for 

review, see Bidelman, 2017). Some investigators have also postulated that neurons in the 

brainstem inferior colliculus—the putative generator of scalp FFRs (Bidelman, 2018; Smith 
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et al., 1975)—might perform a neural compensation that mitigates the negative effects of 

reverb and target signal representations (Slama and Delgutte, 2015). For a subset of 

collicular neurons, Slama and Delgutte (2015) found that the temporal coding of amplitude 

envelope was better for reverberant than for anechoic stimuli having the same modulation 

depth at the ear, indicating a robustness in auditory signal processing to reverb. The strong 

resilience of speech coding we find across brain levels may reflect population-level 

dynamics of these early neural compensatory mechanisms (Slama and Delgutte, 2015) that 

ultimately increase the tolerance of auditory processing in reverberation (Bradley et al., 

1999; Culling et al., 2003; Nielsen and Dau, 2010; Watkins, 2005).

Alternatively, the resilience of neural responses to reverberation could reflect a refinement of 

auditory signal processing aided by corticofugal (cortico-collicular) efferent pathways. 

Cortical neurons can enhance the SNR of their own thalamo-collicular inputs via 

corticofugal gain but only when their receptive fields can accurately estimate task-relevant 

stimulus features—termed “egocentric selection” (Suga et al., 2000). However, why 

corticofugal effects would be specific (and/or larger) for reverberant compared to noise-

degraded speech is unclear. Whether such top-down modulations can occur under strictly 

passive listening tasks (as used here) also remains speculative. That said, efferent 

modulations from the lower brainstem to the cochlea (olivocochlear bundle) that provide an 

“antimasking” function (Winslow and Sachs, 1987) are observed under passive scenarios 

and are highly predictive of SIN skills at the behavioral level (Bidelman and Bhagat, 2015; 

Mishra and Lutman, 2014). However, our data show that afferent (BS→A1) rather than 

efferent (A1→BS) brainstem-cortical signaling differentiated “good” from “poor” listeners 

on the QuickSIN (Fig. 7C).

Remarkably, these brain-behavior associations were observed between passive neural 

encoding of relatively simple speech sounds (i.e., vCv in noise) and more complex speech 

recognition (i.e., QuickSIN), corroborating findings of recent brainstem and cortical ERP 

studies (Bidelman and Dexter, 2015; Song et al., 2011). Still, most real-world “cocktail 

party” scenarios require more than mere passive figure-ground (cf. target-noise) analysis as 

assessed here. Indeed, listeners must often parse multiple streams of competing speech 

information in a multi-talker environment, a process itself enhanced by attention (Alain, 

2007; Ding and Simon, 2012; Hill and Miller, 2010; Puvvada and Simon, 2017; Xiang et al., 

2010). Future studies are needed to clarify the role of afferent/efferent interplay during 

speech processing and the impact of active vs. passive listening paradigms. Furthermore, 

while we find acoustically matched noise SNR and reverb D/R are processed differentially 

by the auditory system, it is still possible these interferences differ in their perceptual 

equivalency. Thus, an interesting extension to the present study would be to examine speech 

coding and brainstem-cortical connectivity for noise and reverb stimuli first titrated for 

perceptual difficulty. On this point, Picou et al. (2016) have recently shown that reverb 

induces less listening effort than noise during speech comprehension, which is consistent 

with our neurophysiological findings.
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Hierarchical neural encoding of degraded speech

Cross-level comparisons between functional tiers revealed that noise- and reverb-related 

changes in neural responses were generally larger in brainstem compared to cortex. While 

FFRs exhibited systematic amplitude increases with increasing noise/reverb, A1 responses 

showed more muted changes. This suggests acoustic interferences have a differential effect 

on subcortical vs. cortical tiers of the auditory hierarchy during speech processing (i.e., BS > 

A1). To our knowledge this has not been previously reported and is only made apparent by 

the dual FFR-ERP paradigm used here.

The lesser effect of noise/reverb at the cortical compared to brainstem level might be 

accounted for by differences in how non-auditory, compensatory brain regions are 

marshalled during degraded speech processing. In cortex for instance, top-down control of 

auditory A1 responses from frontal regions can occur pre-attentively and independent of 

attention (Doeller et al., 2003). Top-down influences are also generally stronger at cortical 

relative to subcortical levels (Galbraith and Kane, 1993; Hillyard and Picton, 1979; Okamoto 

et al., 2011; Woods and Hillyard, 1978). Thus, the smaller interference-induced changes we 

find in A1 relative to brainstem (midbrain) could be due to stronger “top-down” influences 

from higher-order, non-auditory brain areas (e.g., IFG) to primary auditory cortex than those 

from corticofugal modulations between brainstem and A1. This notion is consistent with 

recent studies showing strong engagement of IFG (linguistic areas) in addition to A1 

(primary auditory areas) during passive (Bidelman and Dexter, 2015; Bidelman and Howell, 

2016) and active (Binder et al., 2004; Du et al., 2014; Scott and McGettigan, 2013) SIN 

processing. Indeed, our data here demonstrate that IFG is actively involved during speech 

processing in both distinguishing noise from reverberant speech (Fig. 4) and in predicting 

behavioral QuickSIN scores (Fig. 7). Our results corroborate the notion that neural activity 

in frontal brain regions outside conventional auditory system are robust predictors of SIN 

perception (Adank et al., 2012; Bidelman and Dexter, 2015; Bidelman and Howell, 2016; 

Binder et al., 2004; Wong et al., 2008). Nevertheless, the strong interactions we find between 

BS and A1 do indicate that degraded speech processing also depends on the functional 

interplay between subcortical and cortical hubs of the auditory hierarchy—perhaps in 

maintaining a veridical depiction of the speech signal during its neural ascent.

Feedforward/feedback to A1 from BS and IFG is critical to degraded speech perception

In this regard, our GLME and PTE results help reveal important patterns of functional 
connectivity during degraded speech processing. We found intra-regional activity within 

auditory BS and IFG were themselves strong predictors of listeners’ QuickSIN performance, 

in agreement with previous neuroimaging studies (cf. Bidelman and Howell, 2016; Binder et 

al., 2004; Coffey et al., 2017; Du et al., 2014). Similarly, BS and A1 activity was strongly 

correlated, suggesting that neural representations in lower auditory relays (which dominate 

FFRs) might feed-forward to influence sound encoding at the cortical level. These results 

corroborate findings of Coffey et al. (2017) who suggested that superior feed532 forward 

(brainstem-cortical) neural encoding during noise-degraded speech processing provides 

better information to A1. We replicate and extend these results by showing brainstem-

cortical reciprocity is also critical for speech processing in other acoustic stressors (i.e., 

reverb) but that behavior also depends on links between auditory and linguistic cortical 
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regions. In addition to cortico-collicular (BS-A1) associations (Bidelman and Alain, 2015a; 

Coffey et al., 2017), we found that cortico-cortical (A1-IFG) interactions were a strong 

predictor of degraded speech perception abilities (cf. Adank et al., 2012; Binder et al., 2004). 

The observation that BS and IFG responses were largely independent (Figs. 6 and 7A) 

further suggests speech undergoes several neural transformations from brainstem, through 

the auditory cortices, in route to linguistic brain regions during the analysis of speech.

Functional connectivity corroborated these regression results by demonstrating the direction 
of inter-regional signaling that drives degraded speech perception. In particular, we found 

that bottom up (BS→A1) and top down (IFG→A1) directed communication towards 

primary auditory cortex (A1) is critical in determining successful degraded speech 

perception and differentiating “good” vs. “poorer” listeners (Fig. 7). Our connectivity 

findings broadly agree with notions that speech is processed in a dynamic, and distributed 

fronto-temporal network (Bidelman and Dexter, 2015; Bidelman and Howell, 2016; Du et 

al., 2014; Obleser et al., 2007; Scott and McGettigan, 2013; Scott et al., 2009) whose 

engagement is differentially recruited depending on signal clarity, intelligibility, and 

linguistic experience (Adank et al., 2012; Bidelman and Dexter, 2015; Scott and 

McGettigan, 2013).

Our results reveal that a series of hierarchical computations are involved in degraded 

auditory processing, whereby neural correlates for speech are maintained in successively 

more abstract forms as the signal traverses the auditory system. This parallels similar 

hierarchical processing observed for non- speech sounds (Bidelman and Alain, 2015b). It is 

thought that information relayed from lower levels of the pathway are successively pruned 

so as to allow easier readout of signal identity in higher brain areas responsible for 

generating percepts (Chechik et al., 2006). Indeed, multi-unit (Perez et al., 2013) and ERP 

studies (e.g., Bidelman and Alain, 2015b; Bidelman et al., 2013; Bidelman et al., 2014b) 

directly comparing responses in brainstem and early sensory cortex help bolster the notion 

of a continued abstraction in the neural code (see also Sinex et al., 2005; Sinex et al., 2003). 

It is possible that the current data reflect a similar pruning operation where speech cues 

coded in lower structures (brainstem) are faithfully carried forward into cortex (A1) but are 

then recast upon arrival in IFG into more abstract, invariant representations that are more 

robust to surface-level stimulus manipulations like noise (Adank et al., 2012; Bidelman and 

Howell, 2016; Binder et al., 2004; Du et al., 2014).

Collectively, findings of the present study point to fundamental differences in how noise and 

reverberation affect the subcortical-cortical neural encoding of speech. A differential neural 

coding between interferences may help account for the challenges observed by hearing 

impaired listeners in certain acoustic environments (but not others) as well as the unique 

types of perceptual confusions listeners experience in noise compared to reverberation 

(Nabelek and Dagenais, 1986).
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Highlights

• Examined source-level brainstem/cortical ERPs to speech in noise an reverb

• Reverb less detrimental than severity-matched noise to neural encoding

• BS→A1 and IFG→A1 functional connectivity predicted speech-in-noise 

perception

• “Cocktail party” success driven by bottom-up and top-down communication 

toward A1
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Figure 1. Speech stimuli
Example time waveforms and spectrograms for the speech stimulus/ama/presented in clean 

(no noise), noise-degraded (+5 dB SNR), and reverberant (+5 dB D/R) tokens.
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Figure 2. Cortical ERPs (electrode data)
Grand average responses at frontal and temporal channels (T7/8, Fz) to speech as a function 

of noise SNR (top traces) and reverb D/R (bottom traces). Responses appear as a series of 

obligatory waves within the first 200 ms of speech characteristic of the auditory P1- N1-P2 

signature. Topographies illustrate the distribution of activity across the scalp. Blue map 

colors refer to negative voltage, red colors indicate positive voltage. Reverberation is less 

detrimental t (and in some cases facilitates) the neural encoding of speech compared to 

additive noise.
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Figure 3. Brainstem FFRs (electrode data)
(A) Grand average time waveforms and (B) response spectra to noise-degraded and 

reverberant speech. F0, voice fundamental frequency. Spectra illustrate enhancements in 

speech encoding (particularly at F0) with reverberation compared to speech presented in 

equivalent amounts of interference. Otherwise as in Fig. 2.
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Figure 4. Statistical contrasts (t-maps) of source responses to noise and reverberant speech
Data filtered 0.5–20 Hz (i.e., cortical activity). Functional data projected on the brain 

volume are displayed on the BESA brain template (Richards et al., 2016). (A) Contrast of 

mild forms of acoustic interference (+10 dB SNR noise vs. mild reverb). (B) Contrast of 

moderate forms of acoustic interference (+5 dB SNR noise vs. medium reverb). Maps are 

masked (p<0.05) and corrected for multiple comparisons (see text). Bottom traces show the 

running t-value (noise > reverb) of the cluster marker in the brain volume by crosshairs. 

Cool colors denote locations where reverb > noise. Degraded speech is processed in bilateral 

A1 and IFG. For mild acoustic interferences (A), noisy and reverberant speech are 

differentiable mainly in right A1. This contrasts speech in moderate interferences (B), which 

becomes distinguishable ~30 ms later in left IFG.
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Figure 5. Brainstem FFR and cortical ERP source responses to speech in noise and reverberation
Source waveforms (collapsed across hemispheres) extracted from cortical (IFG, A1; 0.5–20 

Hz) and brainstem (BS; 80–1500 Hz) dipole sources. (A) Responses in noise, (B) Responses 

in reverb. Bottom traces below BS-FFR waveforms show the spectra of phase-locked 

activity from the brainstem source. Gray trace, stimulus waveform. (C–E) Changes in IFG, 

A1, and BS source amplitudes across interferences. Shading and errorbars = ±1 s.e.m.
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Figure 6. Correlations between BS, A1, and IFG source activity during degraded speech 
processing
(A) BS-FFRs are positively correlated with A1-ERP amplitudes; stronger brainstem 

encoding of speech is associated with larger responsivity in auditory cortex. No associations 

were observed between BS and IFG amplitudes (B) nor between A1 and IFG (C) suggesting 

speech representations become more independent at higher levels of the speech hierarchy 

beyond lemniscal auditory regions. Solid lines, significant correlations; dotted lines, n.s. 
correlations. **p < 0.01
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Figure 7. Degraded speech perception performance is predicted by intra-regional activations and 
inter-regional connectivity
(A) BS, A1, and IFG activity and their inter-regional interactions (pooled across all 

interference conditions) account for 81% of the variance (adj-R2) in behavioral QuickSIN 

scores. Cortico-collicular (BS-A1) and cortico-cortical (A1-IFG) neural interactions are also 

strong predictors of perception. Lines connecting ROIs show pairwise source terms that 

interacted in the GLME (solid lines, significant; dotted lines, n.s.) Statistical flags within 

ROIs reflect the main effect of that source in the GLME. (B) QuickSIN scores for “good” 

(n=6) vs. “poor” (n=5) SIN performers (median split of scores). Despite all having normal 

hearing, certain listeners obtain better (~1 dB lower) SIN thresholds indicating individual 

differences in SIN perception. (C) Functional connectivity in the brainstem-cortical speech 

network that differentiates “good” vs. “poor” SIN performers. Values represent the 

magnitude of connectivity computed via phase transfer entropy (Lobier et al., 2014). 

Statistical flags represent group contrasts at each connection. Feedforward (BS→A1) and 

feedback (IFG→A1) towards primary auditory cortex (A1) is stronger in “good” relative to 

“poor” perceivers. †p < 0.1; *p < 0.05; **p ≤ 0.01
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