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Abstract

Purpose of Review Periprosthetic joint infection (PJI) is a devastating complication after total joint replacement. A main source
for antibiotic tolerance and treatment failure is bacterial production of biofilm—a resilient barrier against antibiotics, immune
system, and mechanical debridement. The purpose of this review is to explore some novel approaches to treat PJI and biofilm-
related infections.

Recent Findings Innovative treatment strategies of bacterial and biofilm infections revolve around (a) augmenting current
therapies, such as improving the delivery and efficiency of conventional antibiotics and enhancing the efficacy of antiseptics
and (b) administrating completely new therapeutic modalities, such as using immunotherapy, nanoparticles, lytic bacteriophages,
photodynamic therapy, novel antibiotics, and antimicrobial peptides.

Summary Several promising treatment strategies for PJI are available to be tested further. The next requirement for most of the novel
treatments is reproducing their effects in clinically representative animal models of PJI against clinical isolates of relevant bacteria.

Keywords Periprosthetic joint infection - Nanoparticles - Monoclonal antibodies - Antimicrobial peptides - Antibiotic

conjugation - Phage therapy

Introduction

Total joint replacement (TJR) of the hip and knee is a common
orthopedic procedure that provides significant improvements in
patients’ quality of life [1, 2]. Unfortunately, 1% of primary TJR
cases develop periprosthetic joint infection (PJI), a devastating
complication that requires morbid revision surgery and is asso-
ciated with high patient dissatisfaction [3, 4]. Although the inci-
dence of PJI is lower compared to other types of surgery, the
large volume of TJR procedures performed across industrialized
countries have led to the identification of orthopedics as the most
common source of surgical-related infections among hospital
inpatients [5]. Given that the prevalence of PJI is expected to rise
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over the next decade [6], and that treating a single case of PJI is
over five times that of a primary joint replacement [7], there is
tremendous interest from both researchers and health administra-
tors to improve PJI prevention and treatment.

A central aspect to the pathogenesis of PJI involves the
adhesion of invading bacteria to the surface of prosthetic im-
plants followed by the formation of “biofilm,” an extracellular
polysaccharide glycocalyx which protects the dividing bacte-
ria from the immune system, antibiotics, and even mechanical
debridement [8]. Despite recent improvements in understand-
ing how bacteria alter their metabolic processes and commu-
nicate while in biofilm, clinical success in eradicating PJI
through revision surgery remains poor [9], even in the early
postoperative period [10]. Therefore, the purpose of this re-
view is to contrast the limitations of contemporary methods
for removing PJI biofilms with novel, innovative strategies
that will hopefully become integrated with clinical care.

Why Do Contemporary Treatments Fail?

A commonly cited reason for failure of contemporary PJI
treatment is the inability to correctly identify the offending
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pathogen. Clinical PJI is currently hypothesized to occur ei-
ther due to perioperative contamination or hematogenous in-
filtration of the articular space, most commonly by Gram-
positive bacteria found on the patient’s skin [11]. Correctly
identifying the offending organism through synovial fluid or
tissue culture guides selection of both systemic and local an-
tibiotics and has been shown to be an important prognosticator
of treatment success [12]. Yet while previous literature fo-
cused on managing culture-negative infections, such presen-
tations are rare [13]. Instead, recent studies suggest that stan-
dard culture techniques fail to detect all bacteria present within
the infected joint space, leading to inadequate antimicrobial
therapy [14]. Swearingen and colleagues [15¢¢] utilized 16S
ribosomal RNA gene sequencing on components as well as
suture material retrieved from three clinical PJI cases.
Compared to standard culture, 16S rRNA methods identified
at least three distinct bacterial species in each case compared
to one alone found in clinical culture. Furthermore, Huang
[16] found that culture of sonicated joint fluid and broad-
range polymerase chain reaction (PCR) analysis of joint fluid
were significantly more sensitive for diagnosing PJI compared
to standard tissue culture, with sonicated fluid culture being
the best for identifying polymicrobial infections and fungal
infections. The improved sensitivity of sonicated joint fluid
culture and culture of fluid from sonicated implants has been
reported in several other recent publications [17-19], strength-
ening a growing argument that sonication should become a
standard of care for effectively diagnosing PJI [20]. In addi-
tion to inadequate diagnostic methods, a lack in evolution of
PJI treatment methods is another reason that treatment failures
remain common.

The core approach to the treatment of PJI has not changed
in several decades [21], and recent literature confirms that
contemporary methods failing to adequately eradicate bacteria
from the periprosthetic environment. The “gold standard”
treatment for chronic PJI involves removing infected implants
and inserting a polymethylmethacrylate cement spacer that
elutes high concentrations of antibiotics. Unfortunately, these
antibiotics are only eluted in pertinent concentrations for 24—
48 h after insertion [22, 23] and have recently been associated
with postoperative renal injury [24, 25]. Additionally, bacte-
rial biofilm has been detected on the surface of antibiotic ce-
ment spacers at the time of revision surgery [26-28].
Furthermore, since these cement spacers are temporary and
purposefully inserted with less structural stability to facilitate
later removal, they have been associated with high rates of
complications, including joint dislocation, spacer fracture,
and fracture of the surrounding bone [29]. The combination
of invasive surgery, side effects from antibiotics, and compli-
cations from spacer implants culminate in high perioperative
morbidity rates with two-stage revision treatments, with rates
being reported as high as 15% in a recent series of patients
treated in a high volume center [4]. Treatment of early PJI with

irrigation and debridement, while less morbid, has been asso-
ciated with poor cure rates of just over 50% [10, 30]. Such low
cure rates are believed to occur in part due to surgeon vari-
ability in how surgical debridement is performed, but also due
to current topical agents being ineffective in removing biofilm
from metal and plastic implant surfaces [30]. Currently, ad-
ministration of dilute betadine [31], chlorhexidine [32], and
vancomycin powder [33] has all been separately advocated to
improve irrigation and debridement treatment outcomes, but
these effects have only been observed in retrospective case
series. The limited quality of evidence and high degree of both
morbidity and mortality obviate the need for novel methods of
preventing and eradicating biofilm formation around artificial
joint implants. The next section will explore emerging treat-
ments (Fig. 1) which can (a) enhance contemporary therapies
or (b) represent completely new therapeutic modalities for
eradicating PJI.

PJI Treatment—Enhancing Contemporary
Methods

Antibiotic Combination Therapy

Combining synergistic antibiotic medications is an established
approach in infectious disease medicine that results in a supe-
rior antimicrobial effect against biofilm-based infections and
lower resistance rates compared to individual antibiotic use.
An antibiotic used in PJI management that significantly in-
creases in efficacy when used in combination therapy is rifam-
pin. Rifampin is an inhibitor of DNA-dependent RNA synthe-
sis that is particularly effective against Staphylococcus aureus.
However, due to the rapid development of S. aureus resis-
tance, rifampin is usually combined clinically with
flucloxacillin (a penicillin-based antibiotic that inhibits cell
wall synthesis) [34, 35]. An alternative to flucloxacillin is
moxifloxacin, a fluoroquinolone that targets DNA synthesis
and had been reported to have a broad spectrum of activity,
high efficiency against Staphylococcus infections, rapid tissue
penetration, long half-life, and comparable bio-viability
whether administered orally or intravenously [36, 37].
Greime et al. explored possible synergistic activities of rifam-
pin combined with moxifloxacin using a mouse model of PJI
and demonstrated that the rifampin-moxifloxacin combination
exhibited superior bactericidal effects compared to the mono-
therapy, effectively clearing bone and tissue of bacteria after
14 days of treatment. Combination therapy also significantly
reduced viable bacteria counts within the biofilm formed on
the stainless-steel implant. Furthermore, while some bacterial
resistance was observed in the rifampin-alone group, no resis-
tance was reported for the rifampin-moxifloxacin combination
[38]. This combination was comparable in bactericidal activ-
ities to a rifampin-flucloxacillin combination, suggesting that
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NPs: Novel antibiotics
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Fig. 1 Schematic showing antibiofilm strategies to penetrate, disrupt
matrix, and eliminate bacterial cells embedded within the biofilm.
These strategies include using lytic phage, nanoparticles (NPs),

moxifloxacin is a suitable alternative for clinical use [38]. This
effort is a good example of why continuous exploration of
synergistic interactions between antibiotics is necessary, espe-
cially when considering that the increasing number of resistant
PJI organisms encountered clinically.

Antibiotic Conjugation

Intracellular colonization is an increasingly understood meth-
od bacteria utilize to evade host immune detection and antibi-
otic binding. S. aureus has demonstrated this capability, with
both in vivo and in vitro studies demonstrating its ability to
colonize phagocytic and non-phagocytic cells [39-41]. Novel
antibiotic development methods have focused on uptake of
antibiotics by the infected host cell, leading to intracellular
antibiotic-bacterial interaction and intracellular elimination
of the intracellular bacteria. Surewaard et al. demonstrated
intracellular colonization of hepatic Kupffer cells (KC) by
methicillin-resistant Staphylococcus aureus (MRSA) in a
mouse-model. While conventional vancomycin failed to erad-
icate the infection and resulted in a 50% mouse mortality,
treatment with vancomycin-loaded liposomes (vancosomes)
produced intracellular uptake of vancomycin, death of
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intracellular MRSA and 100% mouse survival [41]. Another
proposed method involves conjugating an antibiotic to an an-
tibacterial antibody, producing an antibody-antibiotic conju-
gate (AAC). Lehar conjugated an anti-S. aureus antibody to
rifalogue, a rifamycin derivative [40]. While this AAC had no
bactericidal activity against free-floating extracellular bacteri-
al cells and was not able to diffuse into the mammalian cells
due to its size, it was capable of attaching to extracellular
MRSA cells. These opsonized bacterial cells were then phago-
cytosed by human macrophages, endothelial and epithelial
cells, and intracellular proteases cleaved the antibody-
antibiotic link, producing antibiotic-mediated bacterial death.
Antibiotic conjugation to kill intracellular bacterial cells is a
novel and very promising approach to prevent antibiotic treat-
ment failure. It is yet to be tested in an in vivo PJI model.

Nanoparticles for Antibiotic Delivery

Nanoparticles (NPs) are microscopic materials ranging from
10 to 100 nm. NP matrix can be made of organic (liposome, d
solid lipid NPs) or inorganic (silver, copper, gold NPs) mate-
rial [42¢¢]. Various NPs have been investigated for delivering
antibiotics, including solid lipid NPs (SLNs, a lipid based
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colloidal carrier, 50-100 nm in size), liposomes (phospholipid
vesicles, 20—100 nm in size), and polymeric micelles (block
amphiphilic copolymer micelles, 10-1000 nm in size) [42¢¢].
NPs are biostable, biocompatible, and capable of carrying
hydrophilic and hydrophobic drugs, making them attractive,
localized antibiotic delivery systems that could produce fewer
toxic side effects compared to antibiotic boluses [42¢¢]. In
addition, some NPs have been documented to enhance antibi-
otic penetration within bacterial biofilm. Liu et al. demonstrat-
ed significant improvement of the anti-S. aureus biofilm and
bactericidal activities of triclosan in vitro when it was loaded
into NPs of engineered mixed shell polymeric micelles
(MSPMs) [43]. The MSPMs penetrated the S. aureus biofilm
matrix at different depths and bound to the bacterial cells. This
interaction led to bacterial production of lipase enzymes that
degraded the NPs core, and resulted in triclosan release caus-
ing bacterial cell death within the biofilm. Another group re-
ported success with augmenting in vitro efficacy of rifampin
loaded SLN in comparison to using rifampin alone against
Staphylococcus epidermidis biofilm biomass and viable bac-
terial cells [44]. Chetoni [45] documented that using
tobramycin-SNL resulted in a reduction in tobramycin MIC
for Pseudomonas aeruginosa to 2 pg/mL compared to using
tobramycin alone (4 pg/mL). Moreover, antibacterial activity
of polymorphonuclear granulocytes (PMNs) against phagocy-
tosed P. aeruginosa was significantly increased when
tobramycin-SNL was administrated, possible due to
tobramycin-SNL penetrating both PMNs and bacterial cells
[45]. NP modalities show promise in eliminating resistant in-
fections, with in vivo testing using a representative PJI model
being the next required step.

Nonthermal Plasma

Plasmas are ionized gases (partially or completely).
Nonthermal (low temperature) plasma uses noble gases (e.g.,
helium) and chemically active gases (e.g., oxygen) [46].
Nonthermal (cold) plasma possesses antibacterial properties
due to its ability to cause oxidative stress and DNA damage
[47, 48]. It is used in several medical and biomedical areas
such as sterilization of heat sensitive surfaces, superficial
wound and skin disinfection, and surface alteration [49].
Cold plasma antibiofilm activities have been reported against
Gram-negative, and to a lesser extent against Gram-positive
bacteria in vitro [50]. Chlorhexidine digluconate (CHG) is an
antiseptic that is used as an irrigation solution during PJI treat-
ment process. However, reports have indicated
Staphylococcus biofilm tolerance and incomplete biofilm
elimination after 2% CHG treatment [51, 52]. Recently, pub-
lished data has reported that combining physical and chemical
treatment of nonthermal plasma with 1% CHG. At clinically
relevant doses, this combination had antibiofilm activities on
orthopedic surfaces. Specifically, it resulted in a significant

sterilization of mature P. aeruginosa biofilm grown on titani-
um coupons compared to using each agent separately, for 5,
10, or 15 min [53]. Interestingly, this high efficiency is
achieved when plasma treatment preceded chlorhexidine ap-
plication. It is thought that treatment order effect is the result
of the plasma breaking and dislodging the biofilm, which
resulted in more accessible, easily eliminated bacterial cells
by CHG. The combination of cold plasma and CHG seems
like a promising method to de-contaminate biofilms that are
attached to titanium surfaces. More in vitro work is needed to
test the efficiency of this treatment method against PJI relevant
bacteria (such as Staphylococcus). Furthermore, in vivo ex-
periments will be required to confirm the ease, suitability,
efficiency, and any cytotoxic or deleterious effects on the sur-
rounding tissue due to the usage of cold plasma and CHG
treatment.

PJI Treatments—Novel Agents
Antibiotics

Oritavancin and dalbavancinare are newly FDA approved an-
tibiotics that have specific antimicrobial activity against skin
infections caused by Gram-positive bacteria [54]. Oritavancin
is a semisynthetic lipoglycopeptide with a long half-life that
acts by disrupting bacterial cell membrane and inhibiting
transglycosylation and transpeptidation [55]. Oritavancin has
been reported to have bactericidal activities against
methicillin-sensitive Staphylococcus aureus (MSSA),
MRSA, vancomycin-resistant S. aureus, and methicillin-
resistant coagulase-negative Staphylococci. Lehoux et al. in-
vestigated in vivo bone penetration and concentration of
oritavancin after being administrated intravenously. The group
showed that oritavancin was rapidly absorbed by rabbit bones
with stable concentrations for more than 165 h [56]. Similarly,
dalbavancin is a semisynthetic lipoglycopeptide antibiotic that
has a long half-life and acts by inhibiting bacterial cell wall
synthesis [57]. It is capable of penetrating and spreading into
bone and articular tissue [58]. Dalbavancin was shown to
retain antibiofilm activities in vitro against PJI clinical isolates
of S. epidermidis and S. aureus [59]. Its efficiency to treat
MRSA rat sternal osteomyelitis demonstrated significant bac-
tericidal properties after 14 days of treatment and it was as
effective as vancomycin. Moreover, dalbavancin was able to
control the systematic spread of MRSA [60]. Currently,
oritavancin and dalbavancin are only approved for the treat-
ment of skin and skin structure infections; however, there is a
great potential for their usage in treating PJIs especially since
they possess the ability to penetrate bone and articular tissue.
While the high cost of these antibiotics might be a limitation,
future work should focus on testing these two antibiotics in
vivo in a clinically representative PJI model.
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Immunotherapy (Monoclonal Antibodies)

S. aureus surface protein A (SasA) is a microbial surface com-
ponent recognizing adhesive matrix molecules (MSCRAMMs)
and has been identified as a target for monoclonal antibodies
(mADs). Yang et al. generated anti-SasA mAb (2H7), which
binds to a widely conserved region of SasA, and evaluated it
against MRSA in a mouse of model of sepsis [61]. 2H7 was
capable of protecting 40% of mice from death when administrat-
ed 1 h following intravenous injection with MRSA [61]. 514G3
is another promising mAb that targets S. aureus cell wall moiety
Protein A (SpA), and has shown successful in vitro opsonization
of both MRSA and MSSA facilitating their clearance by immune
cells [62]. In vivo intravenous administration of 514G3 rescued
mice suffering from MRSA bacteremia when used alone or in
combination with vancomycin [62]. These examples of mAb
therapy are promising and should be appraised in in vivo PJI
models.

Nanoparticles with Bactericidal Effects

Several NPs have been identified to have passive antibacterial
properties. Silver, copper, zinc oxide, and quantum dots (their
core is made of semiconductor materials like cadmium or
zinc) are just few examples of designed NPs with bactericidal
activities [42¢¢]. NP lyse bacterial cells by several mecha-
nisms. They act by creating and increasing the concentrations
of reactive oxygen species, which results in the loss of cell
membrane integrity. Also, NPs interact with bacterial cell wall
which affects proteins participating in cell metabolism and
affects electron transport chain and physiological process in
bacterial cells [42¢¢]. Due to some NPs multiple bactericidal
modes of actions, it is more challenging for bacterial cells to
develop resistance against them [42¢¢]. Several in vitro reports
documented the ability of NPs, such as silver-NPs, graphene
oxide-silver nanocomposites, and spermidine-carbon quan-
tum dots (Spd-CQDs), to effectively lyse a broad range of
Gram-positive (S. aureus, Streptococcus mutans) and Gram-
negative bacteria (Klebsiella pneumoniae, E. coli,
Enterobacter cloacae, P. aeruginosa), with minimal cytotoxic
effects and high biocompatibility [63—65]. In vivo work using
a MRSA-infected wound healing model indicated high effi-
ciency in eliminating MRS A-wound infection in rats when the
wound was covered with Spd-CQDs treated gauze. The treat-
ment also showed faster wound healing and formation of col-
lagen fibers [63]. NPs provide a very promising approach to
treat multidrug resistance related infections. The technology
of NPs is yet to be tested in an in vivo PJI model.

Antimicrobial Peptides

Antimicrobial peptides (AMPs) are small oligopeptides
made of 5-100 amino acids. AMPs have been reported
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to possess efficiency against bacteria, viruses, and para-
sites [66]. The peptide’s length, net charge, hydrophobic-
ity, and structure play a role in determining its antimicro-
bial activities [66]. According to the LAMP Database,
there are thousands of AMPs of natural (e.g., human, an-
imal, bacteria) or synthetic origins [67]. Antibacterial
AMPs are capable of rapidly killing bacteria by creating
pores in the cell membrane or disrupting DNA, RNA, and
proteins biosynthesis [66]. The low possibility of resis-
tance development against AMPs, low cytotoxicity, and
immunogenicity among AMPs make them ideal agents
to treat biofilm infections [66]. Nisin and modified
medusin-PT are promising peptides, originally secreted
by tarsier leaf frog skin; they have shown efficiency in
vitro against multi species biofilm (including various
Streptococcus species) and MRSA biofilms, respectively
[68, 69]. Zapotoczna et al. (2017) reported the therapeutic
potential of the peptide D- Bac8c2,5Leu. The data dem-
onstrated that this AMP was efficient in eradicating viable
bacteria in a 5-day-old biofilms of MRSA and MSSA in
vitro. It showed anti-biofilm MRSA activities in vivo as
well (reduction of 9 logs- CFU/mL) when used as a cath-
eter lock solution in a rat central venous catheter infection
model. Moreover, D- Bac8c2,5Leu cytotoxicity and he-
molytic activities were at higher concentrations than its
biofilm eradiation ability [70]. Another promising peptide
is DJK-5, a cationic synthetic peptide. It was reported to
synergistically interact with conventional antibiotics (such
as ciprofloxacin and tobramycin) in vitro and significantly
eliminate preformed MRSA and P. aeruginosa biofilms in
a cutaneous abscess mouse model [71, 72]. It was also
capable of inhibiting lesion formation [72].

In a recently published article, de Breij and colleagues had
succeeded in modifying the human peptide LL-37 to produce
a superior version, namely, SAAP-148 [73]. SAAP-148 pos-
sesses enhanced bactericidal abilities against multidrug resis-
tance (MDR) bacteria (Enterococcus faecium, S. aureus, K.
pneumoniae, Acinetobacter baumannii, P. aeruginosa,
Enterobacter species) and persister cells. It also had better
biofilm eradication powers compared to LL-37 when tested
in vitro in 50% pooled human plasma. Moreover, ex vivo
wounded human skin infection model and in vivo mouse skin
models showed complete elimination of established biofilm-
associated infections of MRSA and MDR A. baumannii after
4 h of treatment with SAAP-148 ointment. Notably, no in-
duced resistance was reported [73].

AMPs have a lot of potential to treat biofilm related infec-
tions. It would be beneficial to test the efficiency of some of
the previously mentioned AMPs in an in vivo PJI model and
monitor the effects of AMPs activities on the joint microenvi-
ronment. The high cost of AMPs synthesis and possibility of
degradation by host proteases could be limiting factors for
their usage.
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Phage Therapy

Bacteriophages (phages) are naturally occurring viruses
that specifically attack and kill bacteria. Phages have very
high specificity towards bacterial species without affect-
ing the human microbiota [74]. This makes them great
cell-specific killing machinery against bacterial infections.
Lytic phages kill bacteria by recognizing certain bacterial
surface proteins, adsorbing, and injecting their genomic
material into the bacterial cell. The lytic phage then hi-
jacks the replication and translation machinery of the bac-
teria to make more phages. The new phage particles are
released which results in bacterial lysis and death [74].
Their efficiency against multidrug resistance bacteria and
even biofilm infections has been documented. Lytic
phages are used in food industry for the prevention of
bacterial contamination and growth (such as E. coli and
Salmonella) in dairy products. In fact, several commercial
phage preparations used for biocontrol of bacterial patho-
gens are approved by the FDA and the US Department of
Agriculture [75¢¢]. Moreover, a number of studies have
reported no adverse reactions of using lytic phages as a
treatment strategy for bacterial infections in humans [76,
77]. Phage therapy for clinical usage is not yet approved
by the FDA; however, in a recent case report, and after
getting FDA special emergency approval, intravenous ad-
ministration of phage cocktails successfully saved the life
of a male who had septic shock secondary to disseminated
multidrug resistant Gram-negative A. baumannii [76].
Phage efficiency has been reported against mature
biofilms as well. Alves showed that a phage cocktail
(made of six P. aeruginosa specific phages) in vitro was
capable of significantly reducing the biomass and viable
cell count (>4 logs) of P. aeruginosa in a mature biofilm
after 48 h of treatment [78]. Others have shown that ap-
plying phages to mature biofilm cultures followed by an-
tibiotics such as vancomycin or ciprofloxacin against S.
aureus or P. aeruginosa, respectively, synergistically re-
duced bacterial burden [79, 80]. In vivo, a S. aureus spe-
cific phage cocktail was used to treat MRSA osteomyelitis
in rabbits. Rabbits recovered from the infection, and
wound swab cultures were negative after 2 weeks of
intralesional injections of phage cocktail in the infected
soft tissue [81]. Another group reported the efficiency of
using phage cocktails to significantly reduce S. aureus
load in a mastitis mouse model [82]. Unfortunately, no
representative PJI animal model has been used yet to
demonstrate the efficiency of phage treatment [77]. The
usage of lytic phages to treat biofilm related infections is
a very promising therapeutic strategy and its safety had
been documented. It is widely used in Eastern European
medicine; however, it has not yet been approved in clin-
ical settings in Western countries.

Photodynamic Therapy

Photodynamic therapy (PDT) is another innovative avenue to
treat biofilm infections. PDT involves using light and the
proper non-toxic phenotiazinic dyes (such as methylene
blue—MB) which get absorbed by the bacteria. In the pres-
ence of oxygen and upon exposure to light, at a certain wave-
length, the absorbed dye gets activated resulting in the pro-
duction of reactive oxygen species leading to bacterial plasma
membrane and DNA damage with eventual cell death [83].
Briggs and Giannelli reported that PDT (laser and MB) treat-
ment in vitro eliminated MRSA, MSSA, S. epidermidis, and
P aeruginosa mature biofilm grown on polished titanium al-
loy (Ti-6Al-4V) discs or moderately rough titanium surface
[84++, 85]. Briggs observed improved PDT efficiency com-
pared to using MB or laser alone [84¢¢]. The low possibility
of bacterial resistance, and the fast minute-based bactericidal
action, makes PDT an attractive PJI treatment strategy specif-
ically during revision surgery to sterilize the infected area after
removing implants [84¢¢]. Nevertheless, further investigation
is required in vivo to assess PDT efficacy and the histologic
effects on surrounding healthy tissue.

Electrical Stimulation of Titanium

Cathodic voltage-controlled electrical stimulation (CVCES)
of titanium had been reported to effectively eliminate bacteria
on titanium surfaces. This stimulation method is composed of
three electrodes that provide titanium with constant cathodic
voltage [86]. CVCES causes an alteration to the electrochem-
ical properties of the titanium implant. While the exact mech-
anism of action of the electrical stimulation is not clear, it is
thought to be linked to the changes in titanium voltage-
dependent electrochemical properties [86]. In vitro experi-
ments demonstrated significant bacterial elimination of
MRSA formed on coupons of commercially pure titanium
(cpTi), as well as in the surrounding solution following treat-
ment with cathodic voltage-controlled electrical stimulation
[86]. A similar pattern of MRSA elimination was seen using
arat model of an infected shoulder titanium implant. In anoth-
er study, using the same in vivo rat model, subcutaneous in-
jections of vancomycin (150 mg/kg), and cathodic voltage-
controlled electrical stimulation (— 1.8 V for 1 h) of the titani-
um implant, resulted in 99.8% reduction in MRSA biofilm
load on the implant and in the synovial fluid [87¢¢]. This
combination therapeutic strategy was better than using vanco-
mycin or cathodic voltage-controlled electrical stimulation
separately. The proposed mechanism of elimination was
linked to possible disruption of the biofilm biomass from the
implant surface resulting in bacteria being released in the sur-
rounding environment, which may make it more susceptible
to vancomycin treatment. Histological evaluation of the treat-
ed area surrounding the implant indicated no negative effect of
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the stimulation [87+¢]. While CVCES shows promise, further
optimization of the treatment protocol and parameters is need-
ed using in vivo models.

Conclusion

PJI remains a significant cause of morbidity and mortality for
joint replacement patients, with current treatments being lim-
ited by their invasive nature and inability to consistently erad-
icate bacterial biofilm. Several promising treatment modalities
for PJI have been presented in this review (Fig. 1), and the
growing number of publications related to PJI annually sug-
gests interest for innovations in treatment will continue for
years to come. The next requirement for most of the presented
novel treatments is reproducing their effects in clinically rep-
resentative animal models of PJI against clinical isolates of
offending organisms. In addition to measuring bactericidal
effects, monitoring for adverse physiological effects and pres-
ervation of joint locomotion will be important before moving
forward to clinical trials.
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