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Abstract

To follow up on our prior Part I review, this Part II review summarizes and provides updated 

literature on novel quinoline and quinazoline alkaloids isolated during the period of 2009–2016, 

together with the biological activity and the mechanisms of action of these classes of natural 

products. Over 200 molecules with a broad range of biological activities, including antitumor, 

antiparasitic and insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-

inflammatory, hepatoprotective, antioxidant, anti-asthma, antitussive and other activities, are 

discussed. This survey should provide new clues or possibilities for the discovery of new and 

better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
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1. INTRODUCTION

Quinoline and quinazoline alkaloids, two important classes of N-based heterocyclic aromatic 

compounds, have attracted tremendous attention from researchers worldwide, because of 

their wide-ranging biological activities and their varied applications over the past 200 years.1 

Since quinine was isolated in the 19th century,2 increasing numbers of related natural 

products have been isolated and identified. Most of these compounds and their derivatives 
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exhibit significant biological activities, such as antitumor, antimalarial, antiparasitic and 

insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-inflammatory, anti-

oxidant and other effects.3,4 Many of the derivatives are used today as agricultural products 

and the pharmaceutical drugs. The prominent applications are antimalarial (Quinine, 

Quinidine, Chloroquine, Mefloquine, etc), antiviral (Saquinavir), antibacterial 

(fluoroquinolones such as Ciprofloxacin, Sparfloxacin, etc), antifungal-antiprozoal 

(Clioquinol), anthelmintic (Oxamniquine), local anesthetic (Dibucaine), antiasthmatic 

(Montelukast), anticancer (Camptothecin, Irinotecan, Topotecan, Gefitinib, etc), 

antipsychotic (Aripiprazole, Brexpiprazole, etc), antiglaucoma (Cartiolol) and cardiotonic 

(Vesnarinone).5

In view of the importance and significant biological activities of quinoline and quinazoline 

alkaloid natural products, we previously reviewed the developments in this field from the 

perspective of biological activities (covering the literature up to year 2008). Over the past 

decade, the marine environment has become an increasingly important resource in natural 

products research, and more new compounds have been isolated from marine 

microorganisms and identified as new leads in the discovery of useful chemotherapeutic 

agents. Meanwhile, research has been continually published on the new marked biological 

activities and mechanisms of action of quinoline and quinazoline alkaloids.

Consistent with our previous review, this review summarizes and provides updated literature 

on all novel quinoline and quinazoline alkaloids isolated during the period of 2009–2016 

(Table 1), together with the biological activity and the mechanisms of action of these classes 

of natural products. The authors hope that the two reviews provide new clues or possibilities 

for the discovery of new and better drugs from naturally occurring quinoline and quinazoline 

alkaloids.

2. BIOLOGICAL ACTIVITIES OF QUINOLINE AND QUINAZOLINE 

ALKALOIDS

A. Antitumor Activity

1. Quinoline and quinazoline indole alkaloids—

Since 1966, researchers have made significant attention to the important and famous 

quinoline indole alkaloid camptothecin (CPT), due to its specific and strong inhibitory 
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effects on the DNA-replicating enzyme topoisomerase I.6,7 In the presence of CPT, cells 

either undergo cell cycle arrest in S-phase or continue progression with subsequent 

accumulation of DNA damage, ultimately resulting in cell death. Until now, more than 5000 

related publications have been published; many focused on the derivatization of CPT. 

Because excessive harvesting has severely depleted the traditional plant sources. 

Camptotheca acuminata and Nothapodytes nimmoniana, of CPT over the past two decades,
8,9 alternate natural sources of CPT have been urgently sought, leading to the identification 

of Apodytes dimidiata, Codiocarpus andamanicus, Gomphandra comosa, Gomphandra 
coriacea, Gomphandra polymorpha, Gomphandra tetrandra, Iodes cirrhosa, Iodes 
hookeriana, Miquelia dentata, Miquelia kleinii, Natsiatum herpeticum, Nothapodytes 
foetida, Ophiorrhiza mungos, multiple shoot cultures of Ophiorrhiza rugosa var. decumbens, 
Pyrenacantha volubilis and Sarcostigma kleinii.10,11,12,13 Meanwhile, methods to obtain 

CPT from microorganisms have been developed recently. In 2013, CPT, 9-MeO-CPT and 

10-OH-CPT also were produced from three fungi, Fomitopsis sp. P. Karst (MTCC 10177), 

Alternaria alternata (Fr.) Keissl (MTCC 5477) and Phomposis sp. (Sacc.) in mycelial mats in 

shake flasks containing potato dextrose broth.14

Besides CPT, other cytotoxic quinoline and quinazoline indole alkaloids have been 

identified. In 2009 and 2014, Kam and coworkers identified three new quinoline bisindole 

alkaloids.15,16 Leucophyllidine (1) (Fig. 1) from Leuconotis griffithii showed significant and 

comparable in vitro cytotoxicity toward drug-sensitive and vincristine-resistant (VJ300) 

human KB cells, with IC50 values of 2.95 and 2.92 μg/mL (5.16 and 5.10 μM), respectively.
15 Angustifonines A (2) and B (3) (Fig. 1) from Bousigonia angustifolia exhibited 

cytotoxicity against HL-60 (leukemia), SMMC-7721 (hepatoma), A549 (lung carcinoma), 

MCF-7 (breast cancer) and SW480 (colon cancer) (IC50 2.71–16.2 μM).17 Compared with 

the above compounds, meloyunine B (4) (Fig. 1), a 6/7-seco rearranged spiro-indolone 

alkaloid from Melodinus yunnanensis, showed weak cytoxicity against the same five human 

cancer cell lines with IC50 values of 13.3 to 40.0 μM.18 Other new compounds, meloyunine 

A (5), a monoterpenoid quinoline alkaloid meloyunine C (6), the possible intermediate 

14,15-dehydromelohenine B (7) and their precursor Δ14-vincamenine (8) (Fig. 1), were 

inactive (IC50>40 μM). In comparison, the paclitaxel control exhibited exceptional 

inhibitory activity (IC50<0.008 μM), and cisplatin displayed IC50 values ranging from 1.05 

to 21.9 μM.18

Rutaecarpine, an intriguing indoloquinazoline alkaloid from Evodia rutaecarpa, presents 

wide-ranging pharmacological activities, such as cardiovascular protective, antitumor, anti-

inflammatory and other effects.19 It presented weak cytotoxic effects against A375-S2 

(human malignant melanoma), HeLa, MCF7, THP-1 and L929 with the IC50 values ranging 

from 150 to 239 μM.19 During the last ten years, three new rutaecarpine derivatives, (7R,

8S)-7-hydroxy-8-methoxy-rutaecarpine (9), (7R,8S)-7-hydroxy-8-ethoxy-rutaecarpine (10) 

and 2-methoxy-7,8-dehydroruteacarpine (11) (Fig. 2) were isolated from two plants in the 

Rutaceae family along with other known alkaloids.20,21 Compounds 9 and 10 displayed IC50 

values of 7.82 and 8.31 μM against leukemia HL-60 cells, but only 22.3 and 27.9 μM against 

gastric carcinoma N-87 cells. Meanwhile, evodiamine presented the best cytotoxic activity 

among all isolated indolequinazoline alkaloids with significant IC50 values of 5.88 and 7.30 
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μM against the same two cell lines, respectively.20 The presence of the two substituents at 

position-7 and -8 of the alkaloid led to decreased potency against N-87. Alkaloid 11 together 

with 2-hydroxyruteacarpine and 2-methoxyruteacarpine from Zanthoxylum poggei 
displayed a low level of cytotoxic activity against the prostate cancer PC-3 cell line with 

IC50 values of 22.1, 17.4 and 19.4 μM, respectively (IC50 value of the positive control 

doxorubicin was 0.9 μM).21 They also strongly suppressed the phagocytosis response 

activated with serum opsonized zymosan in in vitro oxidative burst studies using whole 

blood; the IC50 values ranged from 21.6 to 25.9 μM.21 Rutaecarpine exhibited weak 

cytotoxic activity against the human monocytic leukemia THP-1 cell line as well as 

protective effects toward murine liver cancer Hepa-1c1c7 cells against oxidative stress–

induced DNA damage by reducing the condensation and fragmentation of nuclei and 

inhibiting DNA strand breaks and apoptosis.22,23

Our previous review reported that fumiquinazolines A–G were first isolated from the fungus 

Aspergillus fumigatus in 1992 and 1995.24 Subsequently, fumiquinazolines J–P (12–18) and 

tryptoquivaline K (19) (Fig. 3) were identified from fungus of the same genus.25,26 

Fumiquinazoline J exhibited high cytotoxicity against murine lymphoma L5178Y cells with 

an IC50 value of 3.6 μM, but much lower activity against human ovarian A2780 and 

leukemia K562 cell lines with IC50 values of 18.5 and 15.0 μM, respectively. The remaining 

alkaloids were not cytotoxic against these cell lines.25,26 Subsequently, some tryptoquivaline 

(20) analogues, tryptoquivalines F (21), H (22), L (23) and O (24), fiscalins A (25) and C 

(26), sartorymensin (27), a quinazolinone-containing indole, epi-fiscalins A (28) and C (29), 

neofiscalin A (30), epi-neofiscalin A (31) and 3′-(4-oxoquinazolin-3-yl)spiro[1H-

indole-3,5′-oxolane]-2,2′-dione (32) (Fig. 3) were isolated from the fungus Neosartorya 
siamensis (KUFC 6349). Except for alkaloid 27 (IC50 39–73 μM), all of the compounds 

showed no in vitro growth inhibitory activity (IC50 >100 μM) against U373 (glioblastoma), 

Hs683a (glioblastoma), A549, MCF-7 and SK-MEL-28 (melanoma) cell lines.27 

Meanwhile, 15β-hydroxy-5N-acetylardeemin (33) showed greater cytotoxic activity against 

human HeLa contaminant KB (IC50 61.4 μM) and rat hepatic HSC-T6 (IC50 88.2 μM) cell 

lines than its geometric hydroxylated and non-hydroxylated congeners, 16α-hydroxy-5N-

acetylardeemin (34) and 5N-acetylardeemin (35) (Fig. 3), from Aspergillus terreus.28

During the past ten years, other new alkaloids without cytotoxic activity also were reported. 

Examples include three N-glycosylated fumiquinazoline-type alkaloids fumigatosides B–D 

(36–38) from Aspergillus fumigatus29 and evollionines B and C (39, 40)30 (Fig. 4) from 

Evodia rutaecarpa.

2. Furoquinoline alkaloids—The furoquinoline alkaloids are biogenetically derived 

from 2-substituted oxygenated 4-quinolones after prenylation at C-3. Linear or angular 

dihydrofuroquinolines result from formation of a ring with the prenyl group at C-2 or C-4, 

respectively.31,32 To date, more than 30 furoquinoline alkaloids, including some with 

marked antitumor activity, have been identified. Skimmianine and 5-methoxydictamnine 

(41) (Fig. 5) demonstrated weak cytotoxic activity in vitro against A549, BGC-823 (gastric 

cancer), HCT15 (colorectal cancer), HeLa (cervical cancer), HepG2 (liver cancer), MCF-7, 

SK-MEL-2 and SGC-7901 (gastric cancer) cells with IC50 values between 33.3 and 40.3 
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μg/mL.33 The former compound also displayed weak cytotoxic activity against THP-1 and 

HCT116 (colon cancer) cell lines.22,34 Other furoquinoline alkaloids, such as 5-

methoxyrobustine (42), dictamnine, robustine, isopteleine (43) (Fig. 5) and γ-fagarine also 

presented weak cytotoxic activity against MCF-7 cells,35,36 and two new furoquinoline 

alkaloids, aegelbines A (44) and B (45) (Fig. 5) from Aegle marmelos were weakly active 

against MCF-7 as well as HepG2 and PC-3 cell lines.37

A new γ-fagarine derivative, 7-isopentenyloxy-γ-fagarine (46) (Fig. 6), exhibited significant 

cytotoxicity against Raji (lymphoma) and Jurkat (leukemia) cell lines with IC50 values of 1.5 

and 3.6 μg/mL, respectively, compared with 14.5 and 9.3 μg/mL for atanine and 15.6 and 

11.5 μg/mL for skimmianine.38 Compound 46 was also more cytotoxic against the MCF-7 

cell line (IC50 15.5 μg/mL), than atanine, skimmianine and perfamine (47) (Fig. 6). 

Furthermore, all alkaloids displayed moderate to low cytotoxicity against KG-1a (leukemia) 

and HEp-2 (HeLa contaminant), and higher effects against the multidrug-resistant 

HL-60/MX1 cell line, compared with the control etoposide (p<0.05)., Flow cytometry 

analysis on treated Raji and Jurkat cells showed the arrest of cell cycle progression at the 

sub-G1 phase in a dose-dependent manner, and even at the lowest concentration used 

(40.9%) compound 46 caused the greatest increase in the number of these cells with sub-G1 

DNA content. According to computational analyses, the cytotoxicity toward different cell 

lines correlated well with certain molecular descriptors. Based on the cytotoxicity 

relationships with the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO), charge transfer may be part of the interaction of 

these compounds with their target sites. The similar cytotoxic trends against various cell 

lines suggested that these compounds may act through parallel mechanisms.38

Anstifolines A (48) and B (49) (Fig. 6), two dimeric furoquinoline alkaloids from Dictamnus 
angustifolius, exhibited more significant cytotoxicity (IC50 10.6–14.3 μM) against human 

lung cancers A549 and NCI-H460 than dictamnine and robustine.39 Dictamine also 

demonstrated cytotoxicity toward HepG2 cells.40

3. 2-Substituted quinoline or quinazoline alkaloids—Evodiamine, a major 2-

substituted quinoline alkaloid from Evodia rutaecarpa, displays various biological effects, 

including antitumor. More specifically, it inhibits cancer cell proliferation, invasion and 

metastasis, and induces apoptosis many tumor cell lines both in vitro and in vivo,41 

including breast cancer, prostate cancer, leukemic T-lymphocyte, melanoma, cervical 

cancers, colon cancer and lung cancer cells. Moreover, evodiamine shows insignificant 

toxicity against normal human peripheral blood cells. In addition, this alkaloid sensitizes 

chemoresistant breast cancer cells to adriamycin, Briefly, evodiamine induces apoptosis by 

caspase-dependent and caspase-independent pathways as well as the mitochondrial caspase-

dependent apoptotic pathway, and could activate Cdc2/cyclin B to induce cell cycle arrest 

(G2/M phase). It directly inhibits human umbilical vein endothelial cell (HUVEC) tube 

formation and invasion as well as the release and expression of VEGF, which is related with 

endothelial cells angiogenesis. Structure-activity relationship studies showed that the 

functional groups at position 14 and the configuration of hydrogen at position 13b of 

evodiamine may affect its inhibitory effects on invasion and metastasis of Lewis lung 

carcinoma, lung metastasis of colon 26-L5 and B16-F10 cells.
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In 2015, evodiamine, other known alkaloids and four new quinolone alkaloids, 1-methyl-2-

[6-carbonyl-(E)-4-undecenyl]-4(1H)-quinolone (50), 1-methyl-2-[6-carbonyl-(E)-7-

tridecenyl]-4(1H)-quinolone (51), 1-methyl-2-[15-hydroxypentadecenyl]-4(1H)-quinolone 

(52) and 1-methyl-2-[13-hydroxytridecenyl]-4(1H)-quinolone (53) (Fig. 7) were isolated 

from E. rutaecarpa.42 Among these compounds, evodiamine exhibited the best cytotoxic 

activity against HL-60 and PC-3 cell lines with GI50 values of 0.51 μM and 14.4 μM, 

respectively, compared with 1.84 and >80 μM for the positive drug 5-Fu. Other active 

alkaloids were 1-hydroxyrutaecarpine, evocarpine, 1-methyl-2-undecyl-4(1H)-quinolone, 1-

methyl-2-[13-hydroxytridecenyl]-4(1H)-quinolone and dihydroevocarpine with GI50 values 

between 8.34 and 16.0 μM against HL-60. The potencies of these quinolone alkaloids may 

relate to the length of the side-chain. An α,β-unsaturated carbonyl in the side-chain 

decreased the cytotoxicity. Indolopyridoquinazoline alkaloids with a phenolic hydroxyl on 

ring-E exhibited higher potency than those with an unsubstituted ring-E.42

4. Tryptanthrin—

The quinazoline alkaloid tryptanthrin was first isolated from the traditional Chinese 

medicine (Qingdai) in 1985. Later studies reported its cytotoxic activity against melanoma 

B16,43 U-937 and HL-60 cells,44 as well as antitumor activity against azoxymethane-induced 

intestinal tumor.45 At low concentrations (0.5 μg/mL), tryptanthrin induces differentiation of 

leukemia cells, but at higher concentrations (10 μg/mL), can kill cells through apoptosis, 

possibly through a caspase-3/Fas antigen pathway.44 In addition, it strongly inhibited HGF 

production stimulated by various HGF inducers in human dermal fibroblasts, probably 

through events downstream of MAPK activation.46 More recently, its significant cytotoxic 

effects against MCF-7, NCI-H460 and SF-268 (glioblastoma) cell lines (IC50 9.4, 8.5 and 

22.6 μM) have been reported.47 Tryptanthrin significantly inhibits K562 cell proliferation in 

a time- and dose-dependent manner, and has proliferation-attenuating and apoptosis-

inducing effects on K562 cells. This effect likely results from a reduction in mitochondria 

membrane potential, mito cyt-c release and pro-caspase-3 activation.48 Flow cytometric 

analysis showed that tryptanthrin-treated WEHI-3B JCS cells underwent cell cycle arrest at 

the G0/G1 phase, and had down-regulated expression of cyclin D2, D3, Cdk 2, 4 and 6 

genes. Meanwhile, tryptanthrin induced differentiation in the same cells by increasing 

vacuolation, cellular granularity and NBT-reducing activity. Thus, tryptanthrin exerts an 

antitumor effect on WEHI-3B JCS (myelomonocytic leukemia) cells by causing cell cycle 

arrest and triggering cell differentiation in a dose- and time-dependent manner.49
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In 2013, studies were conducted to determine tryptanthrin’s effects on the growth and 

differentiation of LA-N-1 cells, one of the most common extracranial solid cancers in young 

children.50 Tryptanthrin inhibited the growth of the neuroblastoma cells in a dose- and time-

dependent manner and induced cell cycle arrest at the G0/G1 phase. It also significantly 

reduced N-myc proto-oncogene protein expression. Thus, tryptanthrin suppresses the growth 

of and induces neuronal differentiation in neuroblastoma cells.50 Subsequent studies showed 

that tryptanthrin inhibited the proliferation, migration and tube formation of human 

microvascular endothelial cells (HMEC-1) in a concentration-dependent manner and 

significantly suppressed angiogenesis in Matrigel plugs in mice in vitro. The in vitro and in 
vivo anti-angiogenic activities were realized by targeting the vascular endothelial growth 

factor2 (VEGFR2)-mediated extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway.
51 In other studies, tryptanthrin exerted an anti-angiogenic effect by inhibiting cell cycle 

progression and Akt and FAK signaling in human vascular endothelial cells.52

Furthermore, in addition to the transporter pathway, tryptanthrin down regulated glutathione 

S-transferase (GST) π expression, reduced GST activity and reversed multi-drug-resistance 

(MDR) partly by modulating the GST π-related pathway in the MDR response in 

doxorubicin-resistant MCF-7 cells.53,54 It was well absorbed across Caco-2 monolayers and 

inhibited P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP2). 

These results indicated that tryptanthrin may act as a potential chemoadjuvant agent through 

multiple targets.

5. Simple quinoline or quinazoline alkaloids—While quinine is a well-known 

compound for treating malaria, it also exhibited a distinct antiproliferative and pro-apoptotic 

effect in HeLa and A549 tumor cell lines.55 It inhibited the lipopolysaccharide (LPS)-

induced activation of AKT by inhibiting its phosphorylation at Thr-308 and Ser-473. It also 

reversed LPS-induced proliferation and suppressed the anti-apoptotic protein B-cell 

lymphoma (BCL)-2, as well as the activation of the pro-apoptotic factor BCL-2-associated X 

protein. The inhibitory effect on the tumor cell proliferation was attributed to prevention of 

the tumor necrosis factor receptor-associated factor TRAF6 interaction.55

Quinoline-5,8-diones are also interesting potential anticancer agents. One new compound 

sannanine (54) (Fig. 8) from Streptomyces sannanensis showed cytotoxicity against four 

human tumor cell lines BGC823 (gastric cancer), PANC1 (pancreatic cancer), HepG2 and 

NCI-H460, with IC50 values of 6.6, 5.8, 3.1 and 1.8 μM, respectively.56

Two new quinazoline alkaloids (S)-vasicinone-1-O-β-D-glucopyranoside (55) and (R)-

vasicinone-1-O-β-D-glucopyranoside (56), (Fig. 8) together with (S)-vasicinone, vasicine 

and deoxyvasicinone were isolated from the seeds of Peganum harmala.57 Two (55 and (S)-

vasicinone) of the five compounds exhibited only weak inhibitory activity against human 

gastric cancer MCG-803 cells with IC50 values of 84.1 and 94.5 μM.

In contrast, 4-methyl-2-quinazolinamine (57) (Fig. 8) from Streptomyces sp. GS DV232 

presented moderate activity against liver (HepG2), breast (MCF-7) and gastric (AGS, 

HMO2) cancer cell lines, and good antiproliferative effects on a lung (A549) cancer cell line 
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(IC50 0.154 μM).58 The IC50 values of the positive controls doxorubicin and melphalan were 

0.045 and 3.4 μM, respectively.

Moreover, the benzoquinoline alkaloid marcanine A (58) (Fig. 8) from Polyalthia 
plagioneura displayed growth inhibitory activity against BEL-7402 (liver cancer), K562, 

SPC-A-1 (lung cancer) and SGC-7409 (gastric cancer) with IC50 values of 9.54, 11.8, 8.69 

and 1.53 μM, respectively.59 In contrast, saprosmines A (59) and B (60), with ketal groups 

rather than an oxo moiety at position-5, did not show cytotoxic activity against the same four 

cancer cell lines (all IC50 > 50 μM).60 4-Methoxycarbonyl-5,10-benzogquinolinequinone 

(61) exhibited IC50 values between 11.9 and 29.6 μM against SPCA-1, BEL-7402, 

SGC-7901 and K-562, while the 4-methylated cleistopholine (62) was inactive.60 The 

quinazoline leucomidine C (63) (Fig. 8) from Leuconotis griffithii was also inactive against 

the HL-60 cell line.61

6. Flindersine derivaties—Flindersine, with a more unusual pyranoquinoline core, 

showed cytotoxicity against Raji cells with an IC50 value of 14.9 μg/mL.38 5-

Methoxyflindersine or haplophytin-A (64) (Fig. 9) from Haplophyllum acutifolium induced 

the classical features of apoptosis and externalization of annexin-V-targeted 

phosphatidylserine residues in HL-60 cells at a concentration of 50 μM.62 Treatment with 

compound 64 (50 μM) induced DNA fragmentation, DNA ladder formation and the 

externalization of annexin-V-targeted phosphatidylserine residues, and also resulted in the 

activations of caspase-8, -9 and -3, and the cleavage of poly (ADP-ribose) polymerase 

(PARP). Furthermore, loss of mitochondrial membrane potential (Δψm), release of 

cytochrome c and Smac/DIABLO to the cytosol, and formation of death-inducing signaling 

complex (DISC) also were found in the treated HL-60 cells. The alkaloid’s potent apoptotic 

activity was exerted via both extrinsic and intrinsic pathways, suggesting a good potential to 

treat leukemia.

Because some alkaloids function as intercalative topoisomerase poisons, ten quinoline 

alkaloids were investigated for potential intercalation into DNA using a molecular docking 

approach.63 Skimmianine, stauranthine (65), 3′,6′-dihydroxy-3′,6′-dihydrostauranthine 

(66) and trans-3′,4′-dihydroxy-3′,4′-dihydrostauranthine (67) (Fig. 9) were able to dock 

intercalatively and consistently into DNA, and the docked orientations were also 

electronically favorable.

7. Pyrrole-containing and other quinoline or quinazoline alkaloids—A growing 

class of natural products includes pyrrole-containing quinoline alkaloids. Most of them are 

isolated from marine sources,64 and many exhibit antitumor activity. Ammosamides A and B 

(68, 69) (Fig. 10) from marine-derived Streptomyces variabilis exhibited activity against 

colorectal cancer HCT-116 cells via covalent modification of myosin, which are involved in 

numerous cell processes, including cell cycle regulation, cytokinesis and cell migration.65,66 

In studies three years later, the oxidized ring-opened ammosamide D (70) (Fig. 10) exhibited 

good cytotoxicity (IC50 3.2 μM) against pancreatic cancer MIA PaCa-2 cells, but did not 

inhibit mTOR up to 20 μM.67 In contrast, the non-chlorinated pyrroloquinoline alkaloid 

lymphostin (71) (Fig. 10) from Streptomyces sp. KY11783 showed nanomolar inhibition of 
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mTOR and potent cytotoxicity against LNCap (prostate) and MDA-468 (breast) cancer cell 

lines.64

Meanwhile, the new 2-pyrrolyl-substituted 4-quinolinone alkaloid penicinoline E (72), 

together with three known derivatives, methyl-penicinoline (73), penicinoline (74) (Fig. 10) 

and quinolactacide, were isolated from Penicillium sp. ghq208.68 Only 73 and 74 exhibited 

moderate cytotoxicity against the HepG2 cell line with IC50 values of 11.3 and 13.2 μM, 

respectively,68 the latter compound also showed potent in vitro cytotoxicity toward 95-D 

cells with an IC50 value of 0.57 μg/mL.69 The presence of a carboxyl group at C-3 appears 

to be essential for the cytotoxicity of this unusual pyrrolyl 4-quinolinone alkaloid type.

In 2015, novel heterocylic alkaloids eudistidines A (75) and B (76) (Fig. 11) were isolated 

from Eudistoma sp. in a screen for inhibitors of the binding interaction between HIF-1α and 

the transcriptional coactivator p300, which plays an important role in the survival of solid 

tumors in low oxygen environments and involves the C-terminal transactivation domain (C-

TAD) and cysteine histidine-rich domain 1 (CH1), respectively, of the two proteins.70 The 

former compound effectively inhibited CH1/C-TAD binding with an IC50 of 75 μM. The 

unique scaffold of this natural alkaloid could lead to novel molecular probes to study p300/

HIF-1α interactions and the role these proteins play in tumor response to low oxygen 

conditions or new therapeutic anticancer lead compounds that could disrupt critical protein-

protein binding events. During the same year, novel bisheterocyclic quinolineimidazole 

alkaloids (+)- and (−)-spiroreticulatine (77, 78) (Fig. 11) from Fascaplysinopsis reticulate 
were inactive against K562, A549, Hela or Jurkat tumor cell lines, but inhibited IL-2 

production in a dose-dependent manner.71

Eight compounds of the discorhabdin A- and B-type, including (+)-discorhabdin/prianosin A 

(79), (+)-discorhabdin B (80), (+)-discorhabdin G*/I (81), (−)-discorhabdin W (82), (+)-(6R,
8S)-1-thiomethyldiscorhabdin G*/I (83), both enantiomers of 16a,17a-dehydrodiscorhabdin 

W (84) and (+)-3-dihydrodiscorhabdin A [with reassignment of its configuration from (3S,
5R,6S,8S)-85 to the C3-epimeric (+)-(3R,5R,6S,8S)-86] (Fig. 12), were isolated from the 

marine genus Latrunculia.72 In biological screening against the murine leukemia P388 cell 

line, 83 (IC50 0.28 μM) and both enantiomers of 84 (IC50 0.45 μM) exhibited potent 

antiproliferative activity comparable to the respective ‘parent’ compounds 81 (IC50 0.6 μM) 

and discorhabdin W (IC50 0.13 μM). However, 85 (IC50 2.1 μM) and 86 (IC50 1.8 μM) were 

less potent, reflective of the role played by the C-3 keto group in increasing the 

antiproliferative potency, as again observed with discorhabdin A (IC50 0.11 μM).72

Meanwhile, nine new melodinus-type alkaloids, melohemsines A–I (87–95), meloscine (96), 

sandine (97), 10-hydroxyscandine (98), 10-hydroxy-14,15-β-epoxysandine (99), 14,15-β-

epoxysandine (100), meloscine N4-oxide (101), scandine N4-oxide (102) and melodinine U 

(103) were isolated from Melodinus hemsleyanus,73 and two rearranged quinuclidine 

alkaloids, cincholenines A (104) and B (105) (Fig. 13) were found in Cinchona ledgeriana.74 

None of the compounds showed IC50 values under 40 μM.
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B. Anti-parasitic and Insecticidal Activities

1. Anti-malarial activity—Malaria is an infectious disease with ravaging effects in many 

parts of the world. Four protozoan species of the genus Plasmodium (P. falciparum, P. 
malariae, P. ovale and P. vivax) are responsible for this infection.75 In 2013, this disease led 

to an estimated 198 million cases and resulted in 584,000 deaths.76 Half of the world’s 

population is at risk from malaria.77 Isolated quinoline alkaloids have been investigated as 

possible antimalarial agents since quinine was found to inhibit the endocytosis of P. 
falciparum78 and quinidine, an erythro diastereoisomer of quinine, was also found to exhibit 

significant antimalarial activity.79

Recently, increasing numbers of papers have focused on the mechanism of antimalarial 

drugs. Studies in 2014 showed that quinine significantly inhibited breast cancer resistance 

protein- (BCRP-) and P-gp-mediated transport at concentrations within the clinically 

relevant prophylactic and therapeutic range, and inhibited adenosine triphosphate (ATP) 

binding cassette transporter activity.80 Quinidine and cinchonine, which have identical 

stereochemistry at carbons 8 and 9, exhibited stronger inhibition of human and Drosophila 
melanogaster serotonin receptor transporter (hSERT and dSERT) function than their 

enantiomers, quinine and cinchonidine.81 Furthermore, quinine and cinchonidine bound to 

the central receptor binding site (S1), whereas quinidine and cinchonine bound to the S2 site 

in small molecule docking studies. These results indicated that distinct cinchona alkaloids 

bind to two different sites on SERT, with the most potent antimalarial inhibitors of SERT 

appearing to preferentially bind to the S2 site. This difference implies separate modes of 

transporter inhibition.81

Among quinoline alkaloids reported with antimalarial activity between 2009 to 2016, 

examples are 6-methoxy-7-hydroxydictamnine,36 4-methoxy-1-methylquinolin-2-one,82 

(2′R)-2′,3′-epoxy-N-methylatanine,83 kokusaginine,84 and maculosidine.85 Nitidine (106) 

(Fig. 14) from Toddalia asiatica exhibited high antiplasmodial activity with an IC50 of 0.045 

μg/mL against the K39 strain of P. falciparum in vitro and likely acts by a similar 

mechanism of that of chloroquine.86 The furoquinoline evoxine (107) (Fig. 14) from Teclea 
gerrardii displayed the activity against the CQS (chloroquine susceptible) D10 strain of P. 
falciparum with an IC50 value of 24.5 μM.87

Aplidiopsamine A (108) (Fig. 15) from Aplidiopsis condluata has a tricyclic 3H-pyrrolo[2,3-

c]quinoline substructure conjugated to adenine. It exhibited significant growth inhibition of 

P. falciparum chloroquine resistant (IC50 1.65 μM for Dd2) and sensitive strains (IC50 1.47 

μM for 3D7) and minimal toxicity toward HEK-293 cells.88 Ascidiathiazone A (109) (Fig. 

15) was a moderately potent in vitro growth inhibitor of P. falciparum K1 strain (IC50 3.3 

μM) and Trypanosoma brucei rhodesiense (IC50 3.1 μM). However, it was effectively 

inactive towards T. cruzi and Leishmania donovani and exhibited low cytotoxicity against a 

mammalian cell-line (L6, IC50 167 μM).89

Several 4-hydroxyquinoline alkaloids, including six known [2-n-octyl-4-hydroxyquinoline 

(110), 2-n-nonyl-4-hydroxyquinoline (111), 2-n-undecyl-4-hydroxyquinoline (112), 2-(E)-

non-1′-enyl-4-hydroxyquinoline (113), n-heptyl-4-hydroxyquinoline N-oxide (116), 2-n-

nonyl-4-hydroxyquinoline N-oxide (118)] and four new [2-((Z)-undec-4′-enyl)-4-
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hydroxyquinoline (114), 2-(3′-(2′-hexylcyclopropyl)propyl)-4-hydroxyquinoline (115), 2-n-

octyl-4-hydroxyquinoline N-oxide (117) and 2-((Z)-undec-4′-enyl)-4-hydroxyquinoline N-

oxide (119)] compounds as well as 3-n-heptyl-3-hydroxyquinoline-2,4(1H,3H)-dione (120) 

(Fig. 15), from Pseudomonas aeruginosa BCC76810 were evaluated for antimalarial effects. 

Most of the 11 compounds, including both 4-hydroxyquinolines (110–114) and 4-

hydroxyquinoline-N-oxides (116–119), exhibited activity against P. falciparum, K1 strain 

(IC50 0.25–2.07 μg/mL) with moderate to weak cytotoxicity against cancerous [KB, MCF-7, 

NCI-H187 (lung cancer)] and non-cancerous (Vero) cells.90

2. Antitrypanosomal and antileishmanial activities—American trypanosomiasis, 

known as Chagas disease, is a potentially life-threatening illness caused by the protozoan 

parasite Trypanosoma cruzi. To date, about 7 to 8 million people are estimated to be infected 

worldwide, mostly in Latin America.91 To avoid the severe side effects induced by the 

current drugs benznidazole and nifurtimox as well as find enhanced clinical efficacy,92,93 

natural products, especially quinoline alkaloids, have been investigated as new 

antitrypanosomal medicines. Cretton and co-workers isolated waltheriones A (121), C (122) 

and E–L (123–130), together with antidesmone and 8-deoxoantidesmone (131) (Fig. 16) 

from Waltheria indica in the years 2014 and 2015.94,95 Compounds 125, 126 and 129 (Fig. 

16) showed potent and selective growth inhibition toward Trypanosoma cruzi with IC50 

values of 0.02 (125) and 0.04 (126, 129) μM. The remaining compounds were less potent 

(IC50 0.1–3.1 μM; >50 μM for 121). All compounds exhibited weak activity against T. 
brucei and T. brucei rhodesiense. However, except for three compounds (121, 122 and 

antidesmone), the isolated alkaloids also showed significant cytotoxicity against murine 

skeletal L-6 cells, with 129 being the most cytotoxic (IC50 0.07 μM vs podophyllotoxin 0.02 

μM). Thus, the selectivity index (SI: IC50 cytotoxicity/IC50 anti-T. cruzi activity) values of 

most of the waltheriones ranged from 1.8 to 33.8, making them too toxic to be considered as 

antichagasic hits.94,95 The sole exception was 122 with a cytotoxicity IC50 of 101 μM and 

better SI of 52.4.95

Leishmaniasis, a major health problem worldwide, is a neglected tropical parasitic disease 

resulting from the infection of macrophages by obligate intracellular parasites of the genus 

Leishmania.96,97 Due to the prevalence of HIV/VL co-infections, leishmaniasis has recently 

become a more studied problem,98 and alkaloids are prospective compounds to combat this 

disease.99–101 Among five investigated furoquinoline alkaloids (dictamine, γ-fagarine, 

skimmianine, flindersiamine and masculine), γ-fagarine presented significant in vitro 
activity against L. amazonensis, L. infantum and L. braziliensis with IC50 values of 17.3, 

26.5 and 22.2 μM, with comparable inhibition (97%) to that of the reference drug.102 In L. 
amazonensis infected Balb/c mice treated orally with γ-fagarine at 10 mg/kg daily for 14 

days, lesion weight decreased significantly by 90.5% and lesional parasites dropped 

drastically by 97.4%.102 N-Methyl-8-methoxyflindersine (132) (Fig. 17) also exhibited 

selective leishmanicidal activity against intracellular promastigotes (EC50: 14.3 μg/mL).103

3. Acaricidal and insecticidal activity—Luo and co-workers isolated N-

methylswietenidine B (133), methyl 2-(3-hydroxy-1-methyl-2,4-dioxo-1,2,3,4-

tetrahydroquinolin-3-yl)-acetate (134) and 3-hydroxy-1-methyl-3-(2-
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oxopropyl)quinoline-2,4(1H,3H)-dione (135), N-methylflindersine (136) and 4-hydroxy-3-

methoxy-1-methyl-2(1H)-quinolinone (137) (Fig. 17) from Micromelum falcatum.104 Only 

136 showed strong toxicity toward brine shrimp with an LD50 value of 1.39 μg/mL; the 

LD50 values of the other four compounds were more than 50 μg/mL. Six new 4-phenyl-3,4-

dihydroquinolones [6-deoxyaflaquinolone E (138), isoaflaquinolone E (139), 14-

hydroxyaflaquinolone F (140), aniduquinolones A (141), B (142) and C (143)] were 

characterized from the endophytic fungus Aspergillus nidulans.105 The two latter alkaloids 

as well as the known isolated aflaquinolone A (144) (Fig. 17) had reported LD50 values of 

7.1, 4.5 and 5.5 μM, respectively, against brine shrimp (Artemia salina).105 Moreover, two 

enantiomeric quinazolines, 2-[(S)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one 

(145) and 2-[(R)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one (146) (Fig. 17) 

from the alga-endophytic fungus Talaromyces sp. Cf 16 exhibited weak toxicity toward 

brine shrimp (LC50 97.8 and 106 μg/mL).106 The latter compound also showed weak 

inhibition against Staphylococcus aureus.

In addition, penicinoline showed strong insecticidal activity against A. gossypii,65 and 

quinolactacide showed excellent activity against Myzus persicae.107 8-Hydroxyquinoline 

was very effective against the growth of Toxoplasma; its IC50 value was 0.213 μM.108 The 

LD50 values of quinoline-4-carbaldehyde from Ruta chalepensis were 0.084 mg/cm2 and 

0.065 mg/cm2 against Sitophilus oryzae by the fumigant and the contact methods, 

respectively.109 Changing the position of the aldehyde groups in the quinoline skeleton 

increased the insecticidal activity.

Our group reported that the quinazoline alkaloid vasicine from Peganum harmala presented 

weak acaricidal activity against Psoroptes cuniculi.110 Its LT50 values were 12.2 h and 9.79 

h at 1.25 and 2.5 mg/mL, respectively.

C. Antibacterial and Antifungal Activities

Several antibacterial drugs have been developed from alkaloids. Quinolone antibiotics arose 

out of the synthesis of quinine, metronidazole resulted from the structural alteration of 

azomycin, and bedaquiline was produced from studies on the quinoline scaffold.111 

Quinolone antibiotics target the bacterial type IIA topoisomerase/gyrase.112,113 The 

compounds stabilize the enzyme-DNA cleavage complex; two quinolone molecules bind 

with the enzyme and intercalate into the cleaved DNA. This action stops the free 3′ 
hydroxyl of the DNA from attacking the phosphotyrosine link in the enzyme-DNA complex 

and thereby prevents religation of the DNA.114 The decreased level of religation eventually 

leads to bacterial cell death.

Flindersine alkaloids are a novel class of quinoline alkaloids. Flindersine exhibits both 

antibacterial and antifungal activities. Its MIC values against bacteria Bacillus subtilis, 

Staphylococcus aureus, S. epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, 

Acinetobacter baumannii and fungi Trichophyton rubrum 57, T. mentagrophytes, T. simii, 
Epidermophyton floccosum, Magnaporthe grisea and Candida albicans were 31.25, 62.5, 

62.5, 31.25, 250, 125, 62.5, 62.5, 62.5, 62.5, 250 and 250 μg/mL.115 The analog 8-

methoxyflindersine exhibited similar inhibitory activity against the C. albicans-sensitive 
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mutant strain DSY2621, but was inactive against a wild strain of this yeast.116 Meanwhile, 

the structurally related veprisine showed moderate activity against S. aureus.117

Furoquinoline alkaloids also exhibit antibacterial and antifungal activities. Skimmianine 

showed weak antimicrobial and antifungal activities against two Gram-positive bacteria (S. 
aureus and S. epidermidis), five Gram-negative bacteria (Escherichia coli, Enterobacter 
cloacae, Pseudomonas aeruginosa, Klebsiella pneumoniae and Shigella dysenteriae), three 

pathogen fungi (C. albicans, C. tropicalis and C. glabrata) and the oral pathogens S. mutans 
and S. viridans.33 Skimmianine also exhibited antimycobacterial activity against 

Mycobacterium tuberculosis H37Ra ATCC 25177 and M. tuberculosis H37Rv ATCC 

27294.22 Kokusaginine exhibited moderate antibacterial activity against methicillin-resistant 

S. aureus SK1with an MIC value of 16 μg/mL.118

Our prior review summarized the antibacterial effects of four sesquiterpenoid quinoline 

antibiotics, aurachins A–D. Since then, aurachins C and D together with two new related 

compounds, aurachins Q (147) and R (148) (Fig. 18), were isolated from Rhodococcus sp. 
Acta 2259.119 Aurachins C and R exhibited moderate antibacterial activity against 

Staphylococcus epidermidis DSM 20044, Bacillus subtilis DSM 347 and Propionibacterium 
acnes DSM 1897, and weak inhibitory activity against glycogen synthase kinase 3β. The 

two other aurachins were inactive at concentrations below 100 μM, and all four compounds 

were inactive against Gram-negative bacteria.119 Meanwhile, 4-oxo-1,4-dihydroquinoline-3-

carboxamide (149) (Fig. 18) from Nocardiopsis terrae YIM 90022 showed antimicrobial 

activity against S. aureus, B. subtilis and E. coli with MICs of 64, 64 and 128 μg/mL and 

antifungal activity against P. oryzae with an MIC of 256 μg/mL.120 4-Hydroxyquinoline N-

oxides also displayed anti-Bacillus cereus activity,90 and 5-hydroxy-4-

(chloromethyl)-5,6,7,8-tetrahydroquinoline (150) (Fig. 18) from a Belize extract inhibited 

the growth of pathogenic, saprophytic marine fungi and marine bacteria.121

Eight novel 5-alkyl-1,2,3,4-tetrahydroquinolines (5aTHQs, 151–158) (Fig. 19) bearing 

different side chains were isolated from a combined culture of Streptomyces nigrescens 
HEK616 and Tsukamurella pulmonis TP-B0596.122 All eight compounds inhibited the 

growth of yeast cells, most likely by targeting the membrane lipids. 5aTHQ-7n (151) 

exhibited the most potent growth inhibition with an MIC value of 6.3 μM compared with 

0.25 μM for amphotericin B. The length and methylation pattern of the side chain at C-5 had 

a critical effect on the potency and selectivity toward the growth of yeast cells.122 Among 

several quinoline alkaloids [waltherions E–L and M–Q (159–163, respectively), 5(R)-

vanessine (164) (Fig. 19), 8-deoxoantidesmone and antidesmone] isolated from Waltheria 
indica, waltheriones E–I, N and Q, 5(R)-vanessine, 8-deoxoantidesmone and antidesmone 

showed growth inhibitory activity against Candida albicans on both planktonic cells and 

biofilms (MIC ≤32 μg/mL).123 However, the selectivities were much weaker (SI, 0.3–5) 

compared with those of fluconazole and caspofungin (>100). All compounds also exhibited 

in vitro toxicity against HeLa cells with IC50 values ranging between 9.5 and 50 μg/mL.

Various new and known pentacyclic alkaloids were isolated from different chromotypes of 

the western Mediterranean ascidian Cystodytes dellechiajei.124 The purple morph collected 

in Catalonia contained shermilamine B (165) (known) and N-deacetylshermilamine B (166) 
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(new) (Fig. 20). The green morph collected in the Balearic Islands contained 11-

hydroxyascididemin (167) (known) as well as cystodimines A (168) and (169) (new) (Fig. 

20). The blue morph collected in Catalonia yielded ascididemin (170) (known) (Fig. 20). 

Among the tested compounds, 170 exhibited the best activity with MIC values of 0.2 and 0.3 

μM against E. coli and E. luteus, respectively, while 167 and 169 showed the weakest 

activity with MIC values of 2.6 μM against E. coli and 10.5 μM against E. luteus.124 The 

benzo[g]quinoline-5,10-dione cleistopholine (171) (Fig. 20) from the fruiting tree Annona 
salzmannii showed significant antibacterial activity (MIC 250 μg/mL) against S. 
epidermidis, Enterococcus faecalis and Candida dubliniensis.125

The important quinazoline alkaloid tryptanthrin has a wide range of biological effects, 

including promising antibacterial activity toward methicillin-resistant S. aureus126 and anti-

tubercular activity against Mycobacterium tuberculosis.127 Tryptanthrin could bind the site 

of InhA with free binding energy of −7.94 kcal/mol and inhibition constant (Ki) of 1.50 

microm. Active site residues of InhA interacting with tryptanthrin were Ser13, Thr39, 

Phe41, Leu63, Asp64, Val65, Ile95, Phe97 and Ile122. So, tryptanthrin has good affinity at 

the binding site of the enoyl-acyl carrier protein reductase of M. tuberculosis and 

compounds of this type could be developed as anti-tubercular drugs against this therapeutic 

target, particularly for combating MDR strains.127 While the quinazoline alkaloid 

vasicine128 and its acetate129 showed moderate antibacterial activity, vasicine acetate also 

significantly inhibited M. tuberculosis at 200 and 50 μg/mL for one multi-drug-resistant 

(MDR) strain and one sensitive strain, respectively. Besides vasicine, additional quinazoline 

alkaloids vasicoline, vasicolinone, vasicinone, adhatodine (172) and anisotine (173) (Fig. 21) 

also exhibited anti-tubercular activity.130

Among the four new cottoquinazolines A–D (174–177) (Fig. 21) from Aspergillus 
versicolor and A. versicolor LCJ-5-4, only compound 177 showed moderate antifungal 

activity against Candida albicans.131,132 Rutaecarpine and 7β-hydroxyrutaecarpine also 

showed antimycobacterial effects.22,133

D. Cardioprotective Activity

As mentioned previously, rutaecarpine exhibits multiple biological effects;134 however, its 

cardiovascular pharmacological properties, such as inotropic and chronotropic, vasorelaxant, 

anti-platelet aggregation and anti-inflammatory effects, are undoubtedly among the most 

important and have attracted much research interest.135,136 It significantly prolonged the 

latent period of inducing platelet plug formation in mesenteric venules when it was 

intravenously injected, and prolonged occlusion time by approximately 1.5-fold. Intravenous 

injection of rutaecarpine prolonged the bleeding time in the severed mesenteric arteries of 

rats.134 In 2015 studies on endothelial dysfunction related to atherosclerosis, Peng et al. 

found that pretreatment with rutaecarpine effectively inhibited Cx43 expression, but 

recovered the expression of Cx37 and Cx40. The alkaloid effectively improved gap junction 

communication and significantly prevented endothelial dysfunction induced in HUVEC-12 

cells by exposure to oxidized low-density lipoprotein (ox-LDL) in vitro, which is related to 

regulation of connexin expression patterns via TRPV1 activation.137 Rutaecarpine decreased 

monocyte adhesion by reversing the altered connexin (Cx) expression also induced by ox-
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LDL.138 In subsequent studies, the same group found that, more specifically, rutaecarpine 

pretreatment led to recovered Cx37 (artheroprotective) expression and inhibited Cx43 

(artherogenic) upregulation, thus, improving adenosine triphosphate-dependent hemichannel 

activity.138 In earlier studies, Xu et al. found that rutaecarpine promoted reverse cholesterol 

transport (RCT) in vivo and suppressed atherosclerosis in ApoE/mice by promoting ABCA1 

and SR-B1 activities within RCT.139 It triggered promoters of ABCA1 and CLA-1 genes, 

and increased ABCA1 and SR-BI/CLA-1 expression in vitro related to liver X receptor 

alpha and liver X receptor beta. In RAW264.7 cells, rutaecarpine could induce cholesterol 

efflux. Meanwhile, it attenuated macrophages and cholesterol accumulations in 

atherosclerotic lesions in vivo. The anti-atherosclerotic activity of rutaecarpine, as well as 

evodiamine, has also been linked to other targets or pathways, such as LIGHT, cAMP-

related pathways, etc.140–142 The inhibitory effects of evodiamine and rutaecarpine on 

LIGHT-induced migration and the activation of CCR1, CCR2, ICAM-1, ERK, and p38 

MAPK occur via decreased ROS production and NADPH oxidase activation.140

Moreover, rutaecarpine displays cardioprotective effects against ischaemia-reperfusion 

injury. Treatment with rutaecarpine led to a hypotensive effect in spontaneously hypertensive 

rats (SHR) and reversed cardiac susceptibility to reperfusion injury by increasing plasma 

calcitonin gene-related peptide (CGRP).143 Both cardiac function and vasodilator responses 

were significantly improved. Stimulation of CGRP release by rutaecarpine also led to 

reduced hypoxia-induced right ventricular remodeling in rats, and the effects involve the 

eIF3a/p27 pathway.144 Rutaecarpine down-regulated NOX4 expression and collagen 

accumulation in rats with pulmonary hypertension induced by monocrotaline.145 In addition, 

rutaecarpine protected against hypoxia-reoxygenation-induced myocardial cell injury and 

apoptosis in myocardial H9c2 cells partly due to the inhibition of the NADPH oxidase-ROS 

pathway,146 increased prolylcarboxypeptidase expression and decreased angiotensin II levels 

in 2K1C hypertensive rats,147 and inhibited vasoconstriction induced by anaphylaxis in 

guinea pigs.148

Several studies have reported evodiamine and rutaecarpine alkaloids to be putative selective 

agonists both in vitro and in vivo for transient receptor potential vanilloid 1 (TRPV1), a 

nonselective cation channel expressed on either sensory neuronal systems or nonneuronal 

sites.149–154 In 2016, Wang et al. investigated the inhibitory effects of evodiamine and 

rutaecarpine against TRPV1 channels, and against capsaicin- or proton-activated TRPV1 

activities.155 The results indicated that, compared with capsaicin, the two alkaloids had 

lower maximum responses for activating TRP1, suggestive of partial agonism. Thus, 

evodiamine and rutaecarpine may share the capsaicin binding site and act as partial 

TRPV1agonists (antagonists). In addition, evodiamine desensitized or competitively 

inhibited the activity of TRPV1. Rutaecarpine could be used as a potential anti-hypertensive 

lead compound with a novel mechanism.155

Both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease. 

Accordingly, Yan and co-workers reported on the neuroprotective effects of rutaecarpine on 

cerebral ischemia reperfusion injury in 2013.156 The compound enhanced learning and 

memory ability, ameliorated neurological symptoms, and reduced infarction volume and 

cerebral water content in mice with cerebral ischemia reperfusion injury.156 Administration 

Shang et al. Page 15

Med Res Rev. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of rutaecarpine attenuated hyperglycemia and enhanced insulin sensitivity, significantly 

decreased obesity, visceral fat accumulation, water consumption, and serum TC, TG and 

LDL-cholesterol levels in fat-fed, streptozotocin-treated rats. In addition, it increased PI3K 

p85 subunit levels and Akt/PKB phosphorylation, and decreased IRS-1 phosphorylation in 

liver tissues. In skeletal muscle cells, it promoted the phosphorylation of AMPK and ACC2, 

and increased glucose uptake. Results indicated that rutaecarpine improved hyperlipidemia 

and hyperglycemia in fat-fed, streptozotocin-treated rats by regulating the hepatic IRS-1/

PI3K/Akt signaling pathway and skeletal muscular AMPK/ACC2 signaling pathway.157

The diastereoisomeric quinoline akaloids quinidine and quinine, which are used to treat 

arrhythmia and malaria, respectively, block the hERG (human ether-a-go-go-related gene) 

potassium channel, which is essential for myocardium repolarization.158 Quinine was 14-

fold less potent than quinidine. In addition, they distinctly impacted the channel dynamics. 

The results also indicate stereospecific block effect on the hERG channel, but F656C-hERG 

reversed this stereoselectivity. The mutation decreased affinity of the two drugs with hERG, 

and quinine was more potent than quinidine in F656C-hERG blockage.158 Quinine also 

stimulated adipogenesis through ERK/S6 signaling, acting at least partly via the bitter taste 

receptor T2R106.159

A new quinoline alkaloid, 8-hydroxy-9-methyl-furo[2,3-b]quinolin-4(9H)-one (178) (Fig. 

22) together with isopteleine, robustine, γ-fagarine, isodictamnine and skimmianine were 

isolated from Dictamnus angustifolius.160 All of the compounds showed significant 

inhibitory effects on platelet aggregation induced by adenosine diphosphate (ADP) at 250 

μM. Meanwhile, 8-hydroxy-4-quinolone (179) (Fig. 22), from Scolopendra subspinipes 
multilans, the Chinese red-headed centipede, exhibited antiplatelet effects.161 It prolonged 

activated partial thromboplastin and prothrombin times and inhibited the activity and 

production of thrombin and activated factor X. Furthermore, it inhibited thrombin-catalyzed 

fibrin polymerization and platelet aggregation, and enhanced antithrombotic effects in an in 
vivo pulmonary embolism and arterial thrombosis model.

E. Anti-viral Activity

Fumiquinazolines are quinazoline-containing indole alkaloids that possess pyrimido[2,1-

b]quinazoline and imidazo[1,2-a]indole moieties linked by a methylene (and in some cases 

further linked via additional spiro-bridges). The first compounds of this type were isolated 

from Aspergillus fumigates in 1992.162 During the following decades, about 40 

fumiquinazoline analogues were reported from various fungal genera. In 2016, two new 

fumiquinazoline analogues, neosartoryadins A (180) and B (181) (Fig. 23), were isolated 

from the endophytic fungus Neosartorya udagawae HDN13-313.163 They displayed anti-

influenza virus A (H1N1) effects with IC50 values of 66 and 58 μM, respectively, compared 

with 94 μM for the positive control ribavirin. Six new indole alkaloids, including five new 

glyantrypine derivatives and a new pyrazinoquinazoline derivative, together with eight 

known alkaloids were isolated from a culture of the mangrove-derived fungus Cladosporium 
sp. PJX-41.164 Oxoglyantrypine (182), norquinadoline A (183), deoxynortryptoquivaline 

(184) and quinadoline B (185) (Fig. 23) exhibited significant activity against H1N1 virus 

(IC50 82–89 μM). Trytoquivaline, quinadoline A (186), 3-hydroglyantrypine (187), 
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cladoquinazoline (188), epi-cladoquinazoline (189), glyantrypine (190), deoxytrytoquivaline 

(191) and CS-C (192) were weakly active (IC50 100–150 μM), and prelapatin B (193) (Fig. 

23) was inactive (IC50 >200 μM).164

Anti-HIV activity is another important biological activity of quinoline and quinazoline 

alkaloids. In 2010, buchapine and 3-(3-methylbut-2-enyl)-4-(3-methylbut-2-

enyloxy)quinolin-2-ol (194) were evaluated for their anti-HIV potential in the human CD4+ 

T cell line CEM-GFP infected with HIV-1NL4.3 virus.165,166 The IC50 and CC50 values of 

the former compound were 2.99 and 55.9 μM, respectively, and those of the latter compound 

were 3.80 and 71.2 μM, respectively, giving them identical therapeutic indices (TIs). In 

comparison, the IC50 and CC50 values of AZT were 1.04 and 24.0 μM, respectively. From a 

synthetic study on alkylated quinoline-2,4-diols, an unsubstituted ring B and free 2-OH 

group are essential for anti-HIV activity, and a prenyl group is best for HIV-1 inhibitory 

activity.165,166 Furthmore, trigonoine B (195) (Fig. 24) showed weak anti-HIV activity, 

preventing the cytopathic effects of HIV-1IIIB in C8166 cells with an EC50 value of 17.6 

μg/mL and TI value of 4.48, but no anti-HBV activity.167 Meanwhile, waltheriones A (121) 

and C (122) (Fig. 16) showed significant effects in an in vitro anti-HIV cytoprotection assay 

at concentrations of 56.2 and 0.84 μM and inhibition of HIV P24 formation of more than 

50% at 1.7 and 0.95 μM, respectively, while waltheriones B (196) and D (197) (Fig. 24) 

were only weakly active or inactive.168

Hepatitis C virus (HCV) infection is highly prevalent among global populations. The 4-

quinolone alkaloid pseudane IX (198) (Fig. 25) isolated from Ruta angustifolia possessed 

strong anti-HCV activity (IC50 1.4 μg/mL) and was more potent than ribavirin (IC50 2.8 μg/

mL).169 Also, the furoquinolines γ-fagarine and kokusaginine showed weaker but 

significant anti-HCV activity (IC50 20.4 and 6.4 μg/mL, respectively).

F. Anti-inflammatory Activity

Lipopolysaccharide (LPS) stimulation in cells causes inducible nitric oxide synthase (iNOS) 

overexpression and subsequently NO synthesis. Such stimulation occurs in response to 

exposure to inflammatory and immunologic stimuli, and has been implicated in the 

pathogenesis of numerous diseases, including septic shock, asthma, inflammatory bowel 

disease, osteoarthritis, and rheumatoid arthritis.170

In 2012, Yoon et al. evaluated the anti-inflammatory activity of alkaloids from Dictamnus 
dasycarpus by determining NO production in BV2 cells.171 The compounds included the 

new glycosidic quinoline alkaloid 3-[1β-hydroxy-2-(β-D-glucopyranosyloxy)-ethyl)-4-

methoxy-2(1H)-quinolinone (199), preskimmianine, seven known furoquinolines 

[skimmianine, dictamine, γ-fagarine, iso-γ-fagarine, halopine, dictangustine-A (200), and 

isomaculosidine (201) (Fig. 26)], and the known pyranoquinolone 8-methoxy-N-

methylflindersine. 8-Methoxy-N-methylflindersine and skimmianine showed the most 

potent inhibition of LPS-induced NO production with IC50 values of 0.4 and 7.0 μM, 

respectively. The corresponding value for the positive drug NG-nitro-L-arginine was 53.5 

μM.171 Other studies showed that, when injected into mice (5.0 mg/kg), skimmianine 

alleviated carrageenan-induced acute inflammation, decreased the mRNA levels of TNF-α 
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and IL-6, and reduced PGE2 and NO amounts, cyclooxygenase-2 (COX-2) and 5-

lipoxygenase (5-LOX) activities, neutrophil infiltration, lipid peroxidation, and associated 

oxidative stress in the paw tissue.172 In addition, a new compound, 2-[(6Z,9Z)-

pentadeca-6,9-dienyl]quinolin-4(1H)-one (202) from Tetradium ruticarpum and evodol 

inhibited fMLP/CB-induced elastase release with IC50 values lower than 14.4 μM, while 

rutaecarpine, evodiamine, and skimmianine inhibited O−2 generation (IC50 ≤20.9 μM) by 

human neutrophils in response to N-formyl-L-methionyl-L-leucyl-L-phenylalanine/

cytochalasin B (fMLP/CB).173 However, skimmianine, haplopine, and glycohaplopine from 

Zanthoxylum schinifolium did not inhibit NF-κB.174

Four new alkaloid glycosides clausenasides D–F (203–205) and 4-methoxy-8-O-β-D-

glucopyranosyloxy-2(1H)-quinolinone (206), along with two new quinoline alkaloids, 

clausenasides G–H (207, 208), as well as other known quinoline alkaloids, including 

integriquinolone (209), 4-methoxy-2(1H)-quinolone, 4-methoxy-1-methyl-2-quinolone, and 

ribalinine (210) (Fig. 27), were obtained from Clausena lansium.175 Compounds 203, 205, 

206, and 210 showed moderate inhibitory effects on LPS-induced NO production in BV2 

cells (IC50 <10 μM), the remaining compounds had IC50 values of over 10 μM. 

Leucophyllidine and eucophylline (211) (Fig. 27), a new tetracyclic vinylquinoline alkaloid, 

were isolated from Leuconotis eugenifolius.176 Leucophyllidine caused dose dependent 

inhibition of NO production stimulated by LPS (IC50 7.1 μM), showed iNOS inhibitory 

activity, and decreased iNOS protein expression, while eucophylline was inactive. Both 

compounds showed high cell J774.1 viability at the above concentration.176 In addition, the 

novel alkaloid scholarisine II (212) selectively inhibited COX-2 and markedly inhibited 5-

LOX, while scholarisine I (213) (Fig. 27) with a vinyl rather than hydroxyethyl group did 

not.177

The anti-inflammatory activity of tryptanthrin, a well-known indolo[2,1-b]quinazoline 

alkaloid, has been widely studied and was reported in our previous review. The compound 

potently inhibited COX-2 and 5-LOX-catalyzed leukotriene synthesis in vitro and in vivo,
178–180 as well as iNOS-catalyzed NO production and prostaglandin E2 production by 

activated macrophages.181 In view of these proven pharmacological effects, in 2016, the 

pharmacokinetic properties of tryptanthrin and its ability to cross blood-brain barrier (BBB) 

were evaluated in vivo and in vitro.182 A high BBB permeation potential was found in vivo 
that correlated well with an immortalized human monoculture BBB model (hBMEC cell 

line) and corroborated with the in silico prediction of BBB penetration. In addition, 

tryptanthrin was not subject to active efflux.182

G. Effect on AChE and BChE

The newest drugs to treat Alzheimer’s disease are acetylcholinesterase inhibitors (AChEIs). 

As a newly discovered AChEI, the furoquinoline alkaloid skimmianine from Zanthoxylum 
nitidum inhibited 50% of AChE activity at a concentration of 8.6 μg/mL, while the IC50 

value of the standard physostigmine was 0.013 μg/mL.183 In the same study, other quinoline 

alkaloids, inclucing dictamnine, γ-fagarine, (−)-(S)-edulinine, zanthodioline, edulitine and 

haplopine, were weakly active or inactive. TLC bioautographic assay also supported 

skimmianine’s inhibitory activity, which was enhanced by the presence of a methoxy group 
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at C-7.183 In other studies, skimmianine, another furoquinoline kokusaginine, and the 

quinolin-4-one leiokinine A, inhibited AChE inhibition with IC50 values of 1.4 mM, 46 μM, 

and 0.21 mM, respectively.184 However, leptomerine (214) (Fig. 28), a natural quinolin-4-

one from Esenbeckia leiocarpa, showed the highest activity (IC50 2.5 μM), similar to that of 

the reference compound galanthamine (IC50 1.7 μM). In 2014, Sichaem and co-workers 

reported that, among three new furoquinoline alkaloids, leptanoines A–C (215–217) (Fig. 

28), together with known related alkaloids, including melineurine, skimmianine and 7-

hydroxydictamnine, isolated from Evodia lepta,185 melineurine showed the highest 

inhibitory activity towards butyrylcholinesterase (BChE) with an IC50 value of 47.9 μM, and 

skimmianine showed the highest inhibitory activity towards AChE with an IC50 value of 

69.1 μM.186 Lineweaver-Burk plots indicated that both compounds were mixed mode 

inhibitors of both ChE enzymes. Meanwhile, the new alkaloid 217 did not inhibit either 

enzyme (IC50 >200 μM).186 Another known furoquinoline alkaloid evolitrine significantly 

promoted nerve growth factor-mediated neurite outgrowth in PC12 cells (EC50 3.8 μg/mL), 

and potentially prevent neuronal degeneration and be useful for the medical treatment of 

Alzheimer’s disease.187

16α-Hydroxy-5N-acetylardeemin (34) (Fig. 3) displayed good inhibitory effect against 

AChE (IC50, 58.3 μM).28 Waltheriones A (121) (Fig. 16) and B (196) (Fig. 24) also inhibited 

AChE activity with IC50 values of 134 and 123 μg/mL, respectively, in a dose-dependent 

manner.188

Deoxyvasicine and vasicine from Peganum harmala showed potent AChE (IC50 2.37 and 

0.04 μM, respectively) and BChE (IC50 3.38 and 0.1 μM, respectively) inhibitory activity, 

but deoxyvasicinone, vasicinone and 2-carboxyl-3,4-dihydroquinazoline were inactive.189 

Vasicine undergoes metabolic inactivation in vivo in respect to cholinesterase inhibitory 

activity, as most of its main metabolites were weaker inhibitors of AChE and BChE.190 In 

studies on the seeds of P. nigellastrum, two new alkaloids nigellastrine I (218) and 

nigellastrine II (219) (Fig. 29), along with, vasicinone, vasicine, deoxyvasicinone, 

deoxyvasicine, showed good inhibitory effects against AChE.191 In 2016, ten new alkaloids 

were isolated from P. harmala.192 Among the compounds, peganumine D (220), S-

peganumine E (221) and R-peganumine E (222) have quinazolone skeletons, and 

peganumine F (223) and peganumine G (224) (Fig. 29) have both β-carboline and 

quinazolone skeletons. Compound 220 selectively inhibited AChE (IC50 5.71 μM), while the 

other compounds were inactive against both AChE and BChE. In addition, compound 224 
showed cytotoxicity against a ZR-75-1 (breast cancer) cell line (IC50 6.20 μM).192

H. Anti-oxidant Activity

The furoquinoline alkaloid haplopine-3,3′-dimethylallyl ether, isolated from Vepris 
glomerata,, has strong antioxidant effects, similar to and, in some instances, better than those 

of ascorbic acid.193 This alkaloid together with two additional furoquinoline alkaloids 

dictamnine and robustine inhibited superoxide anion generation (IC50: 13.0, 17.4, 32.8, 26.1 

μM, respectively) and elastase release (IC50: 19.6, 12.1, 29.3, 32.2 μM, respectively).193 In 

addition, various 4-hydroxyquinoline N-oxides also displayed antioxidant activities, with 2-

n-nonyl-4-hydroxyquinoline N-oxide showing the best antagonist activity.90 The nitrogen 
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oxide group was essential for the activity, as well as the length of the alkyl chain. The 

oxygen radical absorbance capacity (ORAC) value of cleistopholine, a quinoline alkaloid 

found in Annona salzmannii, was 0.25 relative trolox equivalents.125

In 2015, Popv et al investigated the antioxidant and membranotropic activities of the 

quinazoline alkaloid tryptantrin (triptantrin from orginal paper) in different model systems.
194,195 Tryptanthrin exhibited very weak antioxidant activity, 1000 times lower than that of 

trolox, a vitamin E water-soluble analog commonly used an anti-oxidative benchmark, and 

3000 times lower than that of the bioflavonoid dihydroquercetin. Meanwhile, vasicine, a 

quinazoline alkaloid isolated from Adhatoda vasica, inhibited the activities of ACh and 

trypsin by 38.4% and 37.4%, respectively, as well as 2-diphenyl-1-picrylhydrazyl (DPPH) 

by 70.4% (IC50 212.3 μM).128 Dose-dependent behavior was also seen in a ferric reducing 

ability of plasma (FRAP) assay.

I. Hepatoprotective Effect

Seventeen new alkaloids and their analogues were isolated from Isatis indigotica in 2012.196 

One quinolin-4-one [methyl l2-(4-oxo-1,4-dihydroquinoline-3-carboxamido)benzoate (225)] 

and two quinolin-2-ones [6-hydroxy-4-(5-hydroxymethylfuran-2-yl)-quinolin-2(1H)-one 

(226), (+)-(R)-2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxamide (227)] were included. 

Chiral HPCL was used to separate two enantiomers [(−)- and (+)-3-hydroxy-2H-pyrrolo[2,3-

b]indolo[5,5a,6-b,a]quinazoline-9(8H),7′-dione (228, 229)] with a unprecedented 

pyrrolo[2,3-b]indolo[5,5a,6-b,a]quinazoline skeleton (Fig. 30). Compounds 227–229 
reduced DL-galactosamine-induced hepatocyte (WB-F344 cell) damage with 44–55% 

inhibition at 10 μM, while the positive reference bicyclol resulted in 42% inhibition. 

However, the isolated alkaloids were inactive at 10 μM against HIV-1, HSV-1, and several 

human cancer cell lines.196

In 2014, Moon and co-workers proved that tryptanthrin protected hepatocytes against 

oxidative stress induced by tert-butyl hydroperoxide (tBHP) by activating the ERK/Nrf2 

(nuclear factor erythroid 2-related factor) pathway in HepG2 cells.197 The compound 

blocked tBHP-induced reactive oxygen species (ROS) production, mitochondrial 

dysfunction, and cell death, as well as reversed tBHP-induced glutathione (GSH) reduction. 

Meanwhile, tryptanthrin also brought about nuclear translocation and transactivation of 

Nrf2, as well as phosphorylation of ERK, a potential upstream kinase of Nrf2. However, 

rutaecarpine, a related quinazoline alkaloid, decreased the primary rat hepatocyte viability, 

increased lactate dehydrogenase and reactive oxygen species, reduced JC-1 and caused cell 

stress and membrane damage. It inhibited the activities of cytochrome P450 enzymes 

(CYPs) in human liver microsomes, especially CYP1A2, CYP2C9, CYP2C19, CYP2E1 and 

CYP3A4, which could lead to herb-drug interactions or result in hepatotoxicity.198

Members of the asperlicin family of metabolites, including the major metabolite asperlicin 

(230) and asperlicins B–E (231–234) (Fig. 31), which are produced by several strains of 

Aspergillus alliaceus, were discovered in the 1980s as selective antagonists of the 

cholecystokinin receptor CCKA. Compound 230 was a lead scaffold for subsequent high 

affinity, selective CCKA ligands. In 2012, Haynes et al. reported the identification of the 
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asperlicin gene cluster and characterization of short, efficient two enzymatic pathways to 

234.199

J. Anti-asthma, Antitussive, Expectorant and Bronchodilating Activities

Quinoline from Ruta chalepensis displayed a stronger relaxant effect (IC50, 0.42 mM) on the 

contractile activity of guinea pig trachea than five other compounds, including quinoline-3-

carboxaldehyde (>0.64 mM), quinoline-4-carboxaldehyde (>0.64 mM), 8-hydroxyquinoline 

(0.54 mM), quinazoline (0.48 mM) and quinoxaline (0.46 mM).200 The results indicated that 

quinoline derivatives have anti-asthma activity.

Because of the traditional clinical uses of Peganum harmala, in 2015 Liu and co-worker 

studied the antitussive, expectorant, and bronchodilating activity of two active quinazoline 

alkaloids (±)-vasicine and deoxyvasicine, found in this plant.201 In the antitussive studies in 

animals, the two compounds significantly inhibited coughing frequency and prolonged the 

cough latency period. The alkaloids also significantly increased phenol red secretion in 

expectorant testing done in mice. Compared with pretreatment in bronchodilation tests, 

vasicine and deoxyvasicine prolonged the pre-convulsive time by 28.6% and 29.7% at a dose 

of 45 mg/kg in guinea pigs, whereas aminophylline prolonged the pre-convulsive time by 

47.0%. These results suggested that (±)-vasicine and deoxyvasicine have significant 

antitussive, expectorant, and bronchodilating properties.201

K. Anti-allergic Activity

Allergic diseases are initiated by the development of allergen-specific T helper type 2 (Th2) 

cells and amplified by the degranulation of and cytokine release from basophils and mast 

cells during an effector phase. In 2011, tryptanthrin was studied for its effects on the 

initiation and effector phase responses of Type I allergy in vitro.202 It suppressed c-Maf 

mRNA expression in Th2 clone cells, inhibited IgE-mediated degranulation and IL-4 

production in RBL-2H3 cells, and reduced differentiation toward the Th2 phenotype, which 

is a key step in allergic initiation. Thus, tryptanthrin effectively inhibited the effector and 

exacerbation responses, as well as the initiator responses, of Type I allergy.202 Then in 2016, 

tryptanthrin was investigated regarding its regulating effects on thymic stromal 

lymphopoietin (TSLP)-induced mast cell proliferation and proinflammatory cytokine, tumor 

necrosis factor (TNF)-α production from mast cells.203 It significantly inhibited HMC-1 cell 

proliferation and suppressed mRNA expression and production of TNF-α induced by TSLP, 

and inhibited Ki67 mRNA expression, mRNA expression and production of IL-13, as well 

as the mRNA expression of IL-7 receptor a chain and TSLP receptor in TSLP-promoted 

HMC-1 cells.203 Moreover, tryptanthrin significantly suppressed the levels of intracellular 

calcium, IL-4, IFN-α, IL-6, TNF-α, and TARC/CCL17 (thymus and activation-regulated 

chemokine) as well as the production and mRNA expression of TSLP in activated HMC-1 

cells.204 It also inhibited IgE and IL-4 synthesis and promoted the secretion of IFN-γ.205 

Cumulatively, these results indicate that tryptanthrin has potential anti-allergic activity and 

could be used to treat mast cell-mediated allergic diseases or atopic dermatitis-like skin 

lesions.
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The uncommon U-shaped pyranoquinoline alkaloid euodenine A (235) (Fig. 32) from 

Euodia asteridula induced cytokine response via agonism of the human Toll-like receptor 4 

(TLR4).206 Thus, it can likely modulate the Th2 immune response without causing lung 

damage. Structure-activity relationship studies on the cyclobutane ring led to 10-fold more 

potent analogs. In cytotoxicity testing toward peripheral blood mononuclear cells (PBMCs), 

235 showed a small effect at 33 μM and clear evidence of toxicity at 100 μM.

L. Effect on Thioredoxin Reductase

Thioredoxin reductase (TrxR) is a potential target for new treatments for human diseases, 

such as cancer, AIDS, and autoimmune diseases.207 Since fumiquinazolines A–C were first 

reported in 1992,24a their structural novelty and potent pharmaceutical effects have attracted 

much attention from chemists and pharmacologists. In 2016, nine fumiquinazoline-type 

alkaloids, versiquinazolines A–I (236–244) (Fig. 33), along with cottoquinazolines B–D, 

were isolated from the gorgonian-derived fungus Aspergillus versicolor LZD-14-1.208 

Compounds 236, 237, and 241, bearing a methanediamine or an aminomethanol unit, 

represent unique fumiquinazoline subtypes found for the first time. Compounds 236, 237, 

and 242 exhibited inhibitory activity against TrxR (IC50 12–20 μM). All compounds 

exhibited weak growth inhibitory activity against A549 and A2780 tumor cell lines (IC50 

>50 μM).208

M. Antidiabetic Activity

In 2016, Selvaraj and co-workers isolated glycosin (245) (Fig. 34) from Rhizophora 
apiculata by bioassay guided fractionation and studied its antidiabetic effects and possible 

mechanism of action.209 In diabetic rats (induced by streptozotocin and nicotinamide) 

treated with 245, blood-glucose levels were significantly reduced and hepatic enzyme 

activities, as well as levels of urea and creatinine, were decreased. However, increases were 

seen in body weight, hemoglobin, high-density lipoprotein and insulin levels, and 

hexokinase activity when compared to untreated rats. Compound 245 interacted with 

dipeptidyl peptidase-IV, insulin receptor, protein tyrosine phosphatase 1B and PPARγ with 

good affinity and binding energy in a docking simulation. These results indicated that 245 
could act as antihyperglycemic agent, associated with antihyperlipidemia, and possibility 

function as a ligand for proteins that are targets for antidiabetic drugs.209

Rutaecarpine also enhanced the blood lipid profile, mitigated inflammation, and improved 

kidney, liver, and pancreas pathology status of T2DM rats.210 When incubating 24 hours 

with this alkaloid (20–180 μmol/L), production of IL-1, IL-6 and TNF-α in cultured IR-

PSMC cells induced by palmitic acid significant decreased dose-dependently. However, the 

alkaloid did not show cytotoxic effect towards the cultured primary skeletal muscle cells at 

concentrations up to 180 μmol/L. It also promoted glucose consumption and improved 

insulin resistance, possibly by suppressing inflammatory cytokines in insulin-resistant 

primary skeletal muscle cells.

N. Antinociceptive Activity

Anhydroevoxine and choisyine (246) (Fig. 35) from Choisya Aztec-Pearl, a hybrid of C. 
ternata and C. dumosa, were investigated for antinociceptive activity.211 At the doses of 3 
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and 10 mg/kg, these two furoquinoline alkaloids were two-fold more potent than morphine 

in treated animals using the hot plate model. Furthermore, mechanistic studies indicated that 

the opiate and nitric oxide (NO) system may play an important role in the antinociceptive 

activity. The cholinergic system may also be involved.211

O. Other Activities

The prescription of quinine is severely restricted in some countries, although serious adverse 

effects and fatality are rare. However, in many other countries, quinine is used to treat 

cramps from all causes. The Grading of Recommendations Assessment, Development and 

Evaluation system was applied to articles published during the period of 2010–2014 to 

assess the efficacy and safety of quinine-based treatment of muscle cramps.212 The study 

found low quality evidence that quinine (200 mg to 500 mg/daily) significantly reduced the 

total number of cramps and days experiencing cramps, and moderate quality evidence that 

quinine reduced the intensity of cramps. Moderate quality evidence showed that the use of 

quinine for up to 60 days did not lead to a significantly greater incidence of serious adverse 

events than use of placebo in the identified trials. Based on these results, quinine likely can 

be used safely to treat muscle cramps, but certainly, more evidence should be collected as 

further proof of safety.212

In 2014, Dhingra and Valecha reported that punaravine (247) (Fig. 36), a quinolin-4-one 

alkaloid isolated from Boerhaavia diffusa, showed significant antidepressant activity in 

unstressed and stressed mice in different models.213,214 When compound 247 was 

administered orally for 14 successive days, immobility periods and sucrose preference were 

significantly decreased in both stressed and unstressed mice. In addition, the alkaloid also 

significantly decreased monoamine oxidase activity and malondialdehyde levels, and 

significantly reversed the stress-induced decreases in reduced glutathione and catalase 

activity. The stress-induced increases in plasma nitrite and corticosterone levels also were 

significantly diminished. Evodiamine, a quinazoline alkaloid, also exerted antidepressant 

effects in rats as determined by reversal of various stress-associated behavior measures 

(decreased sucrose preference, numbers of crossing in an open-field test, increased 

immobility time in a forced swimming test) as well as biological measures (decreased 5-HT 

and Na+ levels).215

In 2015, known fumiquinazolines F and L (14, Fig. 3) as well as new fumiquinazoline S 

(248), isochaetominines A–C (249–251), and 14-epi-isochaetominine C (252) (Fig. 36) were 

isolated from a culture of a marine-derived Aspergillus sp. fungus; they exhibited weak 

inhibition against Na+/K+-ATPase (IC50 17, 20, 34, 78, 20, 38, and 57 μM, respectively).216 

Aspergillus fumigatus Af293 is also a known source of fumiquinazoline alkaloids.217

Indoleamine 2,3-dioxygenase (IDO) is overexpressed in various diseases, including cancer,
218 Alzheimer’s disease,219 age-related cataracts,220 and HIV encephalitis.221 Recent studies 

have suggested that IDO inhibition might enhance the efficacy of cancer treatment and 

concomitant administration of an IDO inhibitor might improve the efficacy of therapeutic 

vaccination or chemotherapy, thus, IDO has been highlighted as an attractive 

chemotherapeutic target.218,222–224 In 2012, three benzodiazepine alkaloids, benzomalvins 

B (253), C (254), and E (255), (Fig. 37) were isolated from Penicillium sp. FN070315.225 
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Compound 255 inhibited IDO activity in a dose-dependent manner. While 255 was less 

potent (IC50 21.4 μM) than mendione, the positive control IDO inhibitor (IC50 3.7 μM), it 

was more potent than 253 and 254 (IC50 126 and 130 μM, respectively).225

3. CONCLUSION

Quinoline and quinazoline alkaloids present a promising and expanding platform of active 

natural compounds and their potential has only been partially developed by both the 

academic community and the pharmaceutical industry to date. Although the discovery of 

quinine and camptothecin opened a new area for antimalarial and anticancer drug 

development, respectively, the identification of additional new compounds or significant 

biological activities will undoubtedly contribute continually to the development of future 

new drugs. During the period of 2009 to 2016, more than 200 compounds from these classes 

were newly found and most of them exhibited marked biological properties. The continued 

attention and long-lasting research on the isolation and identification of naturally occurring 

quinoline and quinazoline alkaloids will open the way to targeted pharmacological 

modelling and synthetic modifications, resulting in new and better drugs based on the 

original effects of these alkaloids.
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Figure 1. 
Chemical structures of compounds 1–8
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Figure 2. 
Chemical structures of compounds 9–11
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Figure 3. 
Chemical structures of compounds 12–35
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Figure 4. 
Chemical structures of compounds 36–40
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Figure 5. 
Chemical structures of compounds 41–45
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Figure 6. 
Chemical structures of compounds 46–49
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Figure 7. 
Chemical structures of compounds 50–53
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Figure 8. 
Chemical structures of compounds 54–63
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Figure 9. 
Chemical structures of compounds 64–67
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Figure 10. 
Chemical structures of compounds 68–74
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Figure 11. 
Chemical structures of compounds 75–78
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Figure 12. 
Chemical structures of compounds 79–86
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Figure 13. 
Chemical structures of compounds 87–105
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Figure 14. 
Chemical structures of compounds 106–109
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Figure 15. 
Chemical structures of compounds 110–120
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Figure 16. 
Chemical structures of compounds 121–132
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Figure 17. 
Chemical structures of compounds 133–146
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Figure 18. 
Chemical structures of compounds 147–150
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Figure 19. 
Chemical structures of compounds 151–158
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Figure 20. 
Chemical structures of compounds 165–171
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Figure 21. 
Chemical structures of compounds 172–177
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Figure 22. 
Chemical structures of compounds 178 and 179
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Figure 23. 
Chemical structures of compounds 180–193
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Figure 24. 
Chemical structures of compounds 194–197
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Figure 25. 
Chemical structures of compounds 198
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Figure 26. 
Chemical structures of compounds 199–202
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Figure 27. 
Chemical structures of compounds 203–213
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Figure 28. 
Chemical structures of compounds 214–217
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Figure 29. 
Chemical structures of compounds 218–224

Shang et al. Page 65

Med Res Rev. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 30. 
Chemical structures of compounds 225–229
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Figure 31. 
Chemical structures of compounds 230–234
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Figure 32. 
Chemical structures of compounds 235
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Figure 33. 
Chemical structures of compounds 236–244

Shang et al. Page 69

Med Res Rev. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 34. 
Chemical structures of compounds 245
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Figure 35. 
Chemical structures of compounds 246
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Figure 36. 
Chemical structures of compounds 247–252
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Figure 37. 
Chemical structures of compounds 253–255
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