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Abstract

Background—Radiomic Analysis is defined as computationally extracting features from 

radiographic images for quantitatively characterizing disease patterns. There has been recent 

interest in examining the use of MRI for identifying prostate cancer aggressiveness in patients on 

active surveillance (AS).

Purpose—To evaluate the performance of MRI-based radiomic features in identifying presence 

or absence of clinically significant prostate cancer in AS patients.

Study Type—Retrospective.

Subjects Model—MRI/TRUS fusion-guided biopsy was performed for 56 prostate cancer 

patients on AS who had underwent pre-biopsy

Field Strength/Sequence—3T, T2-weighted and Diffusion-weighted.

Assessment—A pathologist histopathologically defined the presence of clinically significant 

disease. A radiologist manually delineated lesions on T2w-MRs. Then, three radiologists assessed 

MRIs using PIRADS v2.0 guidelines. Tumors were categorized into four groups: MRI-negative-

biopsy-negative (Group1, N=15), MRI-positive-biopsy-positive (Group2, N=16), MRI-negative-

biopsy-positive (Group3, N=10), and MRI-positive-biopsy-negative (Group4, N=15). 308 

radiomic features (First-order statistics, Gabor, Laws Energy, and Haralick) were extracted from 
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within the annotated lesions on T2w images and ADC maps. The top 10 features associated with 

clinically significant tumors were identified using minimum-redundancy-maximum-relevance and 

used to construct three machine learning models which were independently evaluated in their 

ability to identify the presence and absence of clinically significant disease.

Statistical Tests—Wilcoxon rank-sum tests with p-value <0.05 considered statistically 

significant.

Results—7 T2w-based (First-order Statistics, Haralick, Laws, and Gabor) and 3 ADC-based 

radiomic features (Laws, Gradient and Sobel) exhibited statistically significant differences (p-

value <0.001) between malignant and normal regions in the training groups. The 3 constructed 

models yielded overall accuracy improvement of 33, 60, 80% and 30, 40, 60% for patients in 

testing groups, when compared to PIRADS v2.0 alone.

Data Conclusion—Radiomic features could help in identifying the presence and absence of 

clinically significant disease in AS patients when PIRADS v2.0 assessment on MRI contradicted 

pathology findings of MRI-TRUS prostate biopsies.
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INTRODUCTION

Active surveillance (AS) is considered a viable alternative to radical treatments such as 

surgery or radiation therapy, specifically for patients diagnosed with lower risk or indolent 

prostate cancer (PCa)1–4. However, an AS protocol requires patients to be closely monitored 

and evaluated regularly with MRI scans and prostate biopsies. Annual biopsies identify 

whether patients on AS exhibit upgrading or upstaging of their disease; a change that would 

warrant reverting to more radical therapy.

Biopsies have an increased risk of complications (e.g. infection, bleeding, urinary retention, 

and erectile dysfunction) in addition to causing patient anxiety. Even with imaging-guided 

biopsy procedures, there is the risk of not correctly targeting the lesion of interest or even 

potentially missing the whole tumor altogether. Consequently, there has been increasing 

interest in the use of non-invasive MRI for monitoring PCa patients on AS regimens1,2,5–7.

Prostate multiparametric-MRI (mpMRI) provides structural and functional imaging via T2-

weighted (T2w), diffusion-weighted (DW), and dynamic contrast-enhanced (DCE) 

sequences, for lesion characterization6–8. In 2015, the European Society of Urogenital 

Radiology (ESUR) introduced the second version of the prostate imaging reporting and data 

system (PIRADS v2)9, a structured reporting system that defines clinically significant 

cancer. PIRADS allocates lesion scores ranging from 1 (highly unlikely to be malignant)) to 

5 (highly likely to be malignant))9. However, PIRADS evaluations greatly depend on the 

experience level of the radiologist and his/her ability to interpret mpMRI of the prostate. 

Schimmoller et al.10 showed that evaluating PCa using PIRADS gave only moderate to good 

inter-reader agreement when performed by three blinded readers.
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Recently, there has been increasing interest in employing Radiomics or computerized feature 

analysis of MR images to quantitatively describe tissue appearance and subtle structural 

details, and thus enable diagnosis and risk stratification of PCa on mpMRI11. Wang et al.12 

showed that a Radiomics-based machine learning classifier could increase the predictive 

performance of PIRADS. There have been several studies examining the capability of 

Radiomics for characterizing PCa based on Gleason score (i.e. clinically significant disease). 

Fehr et al.6 correlated mpMRI Radiomics (Haralick features) to Gleason scores from 

repeated TRUS-guided biopsies and whole-mount evaluation of radical prostatectomy 

specimens. Litjens et al.13 showed that radiomic features extracted from mpMRI could 

distinguish not only low- from high-grade PCa, but also tumor confounders from 

noncancerous tissue. Ginsburg et al.14 found that Radiomics-based machine learning 

classifiers trained primarily for PCa diagnosis did not accurately distinguish PCa tumors 

based off Gleason scores.

One limitation with these previous studies is that all considered patients underwent radical 

prostatectomy, in other words the patients in these studies typically tended to have later-

staged, larger tumors. To the best of our knowledge, no previous work has focused on 

machine learning, Radiomics-based characterization, and risk stratification of PCa within 

AS regimens. These cases are typically characterized with earlier-staged tumors and also 

tend to represent the more challenging cases for PIRADS-based characterization.

In this work, our goal was to identify radiomic features from bi-parametric MRI (T2w and 

Diffusion) that could accurately identify the presence or absence of clinically significant 

disease in highly challenging cases where there was a discordance between PIRADS and 

histopathologic findings for PCa patients on AS.

MATERIALS AND METHODS

Dataset Description

Approval for this retrospective study was granted by Institutional Review Board 

(SVH12/007), and written informed consents were obtained from all patients before MRI 

and biopsy7. Figure 1 depicts patient selection/exclusion criteria and the overall 

experimental design. A total of 344 men, all older than 40 years with elevated PSA levels or 

abnormal digital rectal examination (DRE) outcome and with no previous prostate MRI or 

biopsy were considered for this study. All participants underwent pre-screening 30-core 

trans-perineal template-guided mapping biopsy (TTMB) between April 2012 and March 

2014 as described in7 while being on active surveillance. A floor-mounted, trans-perineal 

grid ultrasound (TRUS) platform (BK Medical, Herlev, Denmark) combined with BioJet 

rigid MRI/TRUS fusion software were utilized for all biopsies. Details of the patient cohort 

included in this study are listed in Table 1.

After excluding men who refused MRI scans or biopsies, declined an AS regimen, had no 

sufficient diffusion parameters on imaging, or were assigned PIRADS score 3, of the 344, 56 

remaining patients were considered for the study (Figure 1). All of these 56 patients, had 

previously undergone pre-biopsy 3 Tesla bi-parametric MRI (T2w, DW). Then, correlation 

of bi-parametric MRI with histopathological findings in TTMB was assessed. MRI-negative 
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cases were defined as men who were assigned low scores on PIRADS assessments (1 or 2), 

while MRI-positive cases were those who were assigned high PIRADS scores (4 or 5). 

Based on PIRADS and biopsy findings of absence or presence of clinically significant PCa, 

the cohort was segregated into four patient groups; MRI-negative-biopsy-negative (Group 1: 

True-Negatives, N=15), MRI-positive-biopsy-positive (Group 2: True-positives, N=16), 

MRI-negative-biopsy-positive (Group 3: False-Negatives, N=10), and MRI-positive-biopsy-

negative (Group 4: False-Positives, N=15). Table 2 summarizes the patient groups of this 

dataset.

Experimental Design

Our study design comprised two experiments. Experiment 1 focused on finding radiomic 

features that discriminate patients who had confirmed clinically significant disease from 

those who did not. Experiment 2 evaluated the ability of these radiomic features to identify 

the presence and absence of clinically significant disease in the more challenging cases with 

discordance between PIRADS assessment and biopsy findings (Groups 3 and 4). Figure 2 

shows the pipeline of modules that were developed and employed for addressing the 

aforementioned tasks. These individual modules are described in detail below.

Lesion Segmentation on MRI

All MRIs were manually annotated by an expert radiologist (R1: 7 years of experience) for 

regions suspicious for cancer (MRI-positive), then independently assessed by three more 

radiologists (R2, R3, and R4: 5, 9, and 11 years of experience, respectively) for all the 56 

cases according to PIRADS v2.0 scoring system. Radiologist R1 delineated lesions and 

normal regions using the 3D Slicer open-source software (Kitware Inc., Carrboro, NC). 

Although MRI-negative (normal) regions existed in both Groups 1 and 2, annotations used 

for further processing were taken only from cases within Group 1. To ensure unbiased 

assessment, all MRI annotations were performed blinded to the biopsy findings. 

Furthermore, core locations on biopsy reports were matched to those on PIRADS reports 

(matching), then to radiologist’s delineations of lesions (validation). Only cases with 

matched locations (Biopsy, PIRADS reports, and radiologist’s delineations) were considered 

for inclusion in this study.

Preprocessing

For each patient in our cohort, T2w volume images and ADC maps were resampled to a 

uniform pixel spacing of 0.5 × 0.5 × 3 mm. Then, they were cropped to the lesion region of 

interest as delineated by R2, with 5 pixels (2.5 mm) padding along the x and y coordinates.

Inhomogeneity correction15 was applied to T2w images to account for presence of bias field 

artifacts. Next, T2w images and ADC maps were corrected for inherent acquisition-to-

acquisition signal intensity variations (non-standardness) using scale-based 

standardization16. This procedure was applied to mitigate the inherent drift phenomenon that 

accompanies MRI intensities. This phenomenon results in MR intensities not having a 

tissue-specific numeric meaning, even within the same MRI protocol, for the same body 

region, and even for images of the same patient obtained on the same scanner16.
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Radiomic Feature Extraction

The prostate capsules were manually segmented to ensure only lesions completely localized 

within the prostate contours are included. On a per-voxel basis, a total of 308 two-

dimensional radiomic texture features (including gray-level statistical, steerable Gabor 

wavelets, Mean, Median, Sobel, Laws Energy, and Haralick) were extracted from within the 

prostate capsule regions on T2w images and ADC maps; 154 features from each sequence. 

A summary of these radiomic features and their relevance to PCa characterization is 

provided in Table 3. First order statistics (mean, median, standard deviation, skewness, and 

kurtosis) of each radiomic feature were calculated for each annotated lesion, and then 

feature values were normalized to values between 0 and 1. All features were implemented in 

MATLAB (R2017a, Mathworks, Natick, MA).

Experiment 1: Radiomic Features that Discriminate Group 1 (PIRADS-/Bx-) from Group 2 
(PIRADS+/Bx+)

Minimum redundancy, maximum relevance algorithm (MRMR)17 was used to identify and 

rank the top 10 features that could discriminate between the clinically significant lesions in 

Group 2 from normal regions in Group 1, using the studies within the training set. MRMR is 

a feature selection scheme that selects the most relevant features for prediction by 

maximizing the mutual information (MI) between the selected features and the lesions in 

Group 2. To minimize bias and ensure balanced sampling of tumor and normal regions, the 

ratio of the number voxels from the tumor to that of normal regions was maintained at 1:1 

before invoking MRMR. Following MRMR, the top 10 most relevant features were 

identified.

In order to evaluate, the selected features, unsupervised hierarchical clustering of the top 10 

selected features18 was performed within the training set to assess how well a selected set of 

features inherently clusters the patients into distinct groups without a priori knowledge of 

the corresponding class labels.

Experiment 2: Evaluating Ability of Radiomic Features Identified in Experiment 1 to 
Identify PCa Biopsy-Positive Cases in Group 3 and PCa Biopsy-Negative Cases in Group 4

Radiomic features identified in Experiment 1 were used to train three machine learning 

classifiers, Quadratic Discriminant Analysis (QDA), Random Forests (RF), and Support 

Vector Machine (SVM), to associate voxel-wise presence of clinically significant PCa. 

Output of the classification process was voxel-based probability maps reflecting the 

likelihood of clinically significant disease occurrence at every spatial location on the MR 

images.

Post-processing was applied to the probability maps in order to convert the continuous-

valued image into a tri-level map representing areas of high, low, and very-low likelihood 

regions of clinically significant PCa. This was accomplished via Markov Random Fields 

(MRF)19,20 algorithm which provides tractable means for incorporating contextual 

information into a Bayesian framework. This contextual information is modeled using local 

conditional probability density functions which the MRF framework implicitly combines 

into a single joint probability density function. In our approach, MRF was employed in 
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conjunction with the PCa probability maps obtained from the machine learning classifiers, 

providing a smoothed, filtered version of the original PCa likelihood maps. Recalling the 

PIRADS21,9,22 definition of clinically significant cancer (GS ≥ 7, and/or volume ≥ 0.5 cm3, 

and/or is or has an extra prostatic extension), all lesions with volume < 0.5 cm3 (lesion 

volume was calculated by multiplying the number of voxels comprising its voxel cluster by 

the voxel size) were considered clinically insignificant and filtered out.

The three machine learning classifiers were trained on data only from Groups 1 & 2. This 

involved a randomized, patient-stratified (to ensure patients in training are separated from 

those in testing folds i.e. voxels from one case would only be used either for training or 

testing models), 3-fold-100-run cross-validation scheme. For each cross-validation run, the 

31 studies within Groups 1 and 2 were divided into three randomized subsets; two of which 

were used for training machine learning classifiers while the third subset was used for 

testing.

Then, classification was performed and the process was repeated until all of the patients 

within each of the three subsets had been classified. Each cross validation run was evaluated 

via AUC to identify the best performing classifier. This was then independently applied to 

every dataset in Groups 3 and 4 for voxel-wise identification of presence or absence of 

clinically significant disease. The resulting probability maps for Groups 3 and 4 were then 

denoised via MRF as described above. Finally, for every dataset in Groups 3 & 4, we 

assigned a label of clinically significant disease (PCa-positive or PCa-negative) based on the 

presence of any high-likelihood voxel clusters in the denoised MRF maps.

Both experiments were performed using in-house developed MATLAB (R2017a, 

MathWorks, Natick, MA) routines on a standard 3.4 GHz Intel Core i7-3770 (Quad-core 

processor with 8MB of on-chip L2 cache memory) Windows-based computer with 32 GB 

RAM. Average processing times broken down for individual modules are listed in Table 4.

RESULTS

Experiment 1: Radiomic Features that Discriminate Group 1 from Group 2

The top ten radiomic features obtained by using MRMR for the primary PCa cohort (i.e 

discriminating Group 1 from Group 2) are shown in Table 5 and are qualitatively represented 

in Figures 3 and 4. These features include Gabor, first-order statistics, and grey-level co-

occurrence-based texture features. Average feature values for features found to be the most 

relevant in identifying clinically significant disease exhibited statistically significant 

differences across MRI-negative-biopsy-negative and MRI-positive-biopsy-positive cases (p 

< 0.01). Of the ten selected features found to exhibit differential expression between biopsy-

positive and biopsy-negative cases, three were extracted from DW ADC maps (First-order 

statistics and Laws) and seven were extracted from T2w MR images (Gabor, Haralick, and 

First-order statistics). Original intensities on T2w images or values on ADC maps were not 

picked by MRMR in the top set of features.

Figure 3 illustrates an MRI-negative-biopsy-positive (PIRADS 2, GS 4+3) case where a 

radiomic feature showed differential expression of texture appearance within biopsy-positive 
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regions. Similarly, Figure 4 illustrates an MRI-positive-biopsy-negative case for which a 

radiomic feature was identified that was under-expressing (or muted) for the biopsy-negative 

region despite that region have been assigned a PIRADS score of 4. Table 5 shows the top 

ten radiomic features found to be most relevant to identifying clinically significant disease.

Figure 5 shows an unsupervised hierarchical clustering dendrogram of the top ten radiomic 

features. Each unit is the mean absolute deviation of a radiomic feature extracted for a single 

patient. Patients are displayed across rows and features are displayed across columns. In this 

dendrogram, the Gabor feature was identified as the one exhibiting the most differential 

expression between the PCa-positive and PCa-negative regions (clusters) compared to the 

rest of features.

Experiment 2: Evaluating Ability of Radiomic Features Identified in Experiment 1 to 
Identify Bx+ Cases in Group 3 and Bx- Cases in Group 4

Table 6 shows the results of each machine learning classifier for the patients in Groups 3 and 

4. Among all the trained classifiers, QDA yielded the highest accuracy, correctly identifying 

11 out of 15 cases in Group 3 as having a clinically significant and 7 out of 10 in Group 4 as 

not having clinically significant PCa. For the three machine learning models used (QDA, 

SVM, and RFs), an overall accuracy improvement of 80, 60, 33 % and 60, 40, 30 % for 

Groups 3 and 4, respectively, was observed when compared to PIRADS alone.

The top radiomic features identified to be associated with clinically significant disease on 

MRI were Gabor, Haralick and first-order statistic features, all of which showed differential 

expression between the biopsy-positive and biopsy-negative regions in Groups 3 and 4.

Figure 6 shows the output probability maps of the QDA classifier before and after de-noising 

using MRF for patients in Groups 3 and 4. Detection accuracy for the MRI-negative-biopsy-

positive patients was not largely different between classifiers, between 9 to 11 out of the 15 

cases of Group 3 were correctly identified. However, only between 4 to 7 out of 10 cases of 

Group 4 were correctly identified by the radiomic classifiers (Table 6).

DISCUSSION

In this study, we identified and evaluated the role of Radiomics on biparametric-MRI 

(bpMRI) for prostate cancer (PCa) characterization in patients on active surveillance (AS). 

Previous studies, which focused on Radiomics-based characterization of PCa, have typically 

employed cases where men were either sent to surgery (i.e. higher grade and higher stage 

disease) or where the histopathologic findings have been concordant with the imaging 

interpretations (i.e. PIRADS scores)6,12–14. Our work, on the other hand, focuses on the 

more radiographically confounding cases in patients undergoing AS where there 

was discordance between PIRADS and histopathology assessments of tumors.

Our experiments were designed to determine if radiomic features could be beneficial in 

identifying clinically significant disease, in cases where there was ambiguity between 

PIRADS scores and biopsy findings of clinically significant PCa. Specifically, we sought to 

identify the added contribution of radiomic features in the context of those MRI scans where 
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(a) there was clinically significant disease and PIRADS scores were low (MRI-negative-

biopsy-positive), and where (b) there was no clinically significant disease and PIRADS 

scores were high (MRI-positive-biopsy-negative).

According to PIRADS v2 guidelines9, scores of 4 or 5 are assigned to circumscribed, 

homogenous, moderately hypointense focuses/masses. However, a mixture of signal 

intensities may occur due to benign prostatic hyperplasia (BPH) nodules; predominantly 

stromal nodules that exhibit hypointensity on T2w images, especially if they are not clearly 

encapsulated. Decreased signals can also result from prostatitis, which is a known 

confounder for low grade PCa13. Radiology-based interpretation is known to be severely 

affected in scenarios where these benign confounders are not well circumscribed, or they 

exhibit hypointensity either on T2w images or ADC maps. Although this work focused only 

on clinically significant PCa, we posit that cases incorrectly identified by PIRADS as 

clinically significant disease in Group 4 appeared to have been on account of the presence of 

benign confounders (i.e. benign hyperplasia (BPH)).

We identified a set of ten radiomic features that had statistically significant differential 

expression between normal and clinically significant PCa regions for AS patients. These 

features were primarily steerable Gabor and co-occurrence Haralick texture features. By 

modeling localized frequency characteristics, Gabor wavelets appeared to capture 

differences between homogeneous texture of tumors and normal tissue when both 

pathologies were hypointense on T2w images. On the other hand, Haralick features 

appeared to pick the heterogeneity within lesions and differentiate normal hyper- from 

cancer hypointense regions when lesions were not clearly encapsulated. Interestingly, 

Ginsburg et al14 identified similar features in distinguishing PCa from benign prostate tissue, 

in patients who underwent radical prostatectomy.

Out of the 10 identified radiomic features, only three were extracted from ADC maps, while 

seven were extracted from T2w images. T2w signal intensity and ADC values were not 

highly ranked. All the 7 T2w-extracted radiomic features were highly ranked (1-7) by 

MRMR when compared to the ADC-extracted attributes (8-10). Although a substantial 

number of recent publications reference the value of diffusion weighted imaging for PCa 

grading23–25, our findings might be explained by the lower initial resolution of the available 

ADC maps compared to the corresponding T2w scans.

From among the three machine learning classifiers employed, QDA was identified as the 

best performing. QDA identified 80 % of the cases in Group 3 as having clinically 

significant PCa. Similarly, for cases in Group 4, QDA correctly identified 60 % of the 

patients as not having a focus of clinically significant disease. The classifier in conjunction 

with the Gabor and Haralick features appeared to distinguish benign tumor confounders 

from PCa, better than radiologic interpretations based off PIRADS v2 for patients in Group 

4. We do acknowledge that this suggestion is somewhat speculative, since histopathologic 

confirmation for the false positive errors on account of PIRADS v2 was not available.

It was also found that the larger the tumor volume, the more likely it was to be identified on 

MRI. As 75 % of tumors in our cohort were < 1 cm3 in volume, most of them were missed 
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on PIRADS assessment despite being clinically significant. Nevertheless, 70% of them were 

detected by the Radiomics-based QDA classifier. In terms of tumor locations, only 3 cases in 

Group 3 had tumors in the transition zone while the rest were in the peripheral zone of the 

prostate. Our QDA classifier correctly identified 100% of the tumors in the peripheral zone 

and 67% of the tumors in the transition zone. Transition zone tumors are notoriously more 

difficult to identify compared to peripheral zone tumors26. Additionally, the transition zone 

tumors in our study had an average volume of 1.1 cm3 compared to 1.4 cm3 for the 

peripheral zone tumors.

Our study did have its limitations. Firstly, we deliberately excluded cases with PIRADS 

score 3, since a consensus of interpretation could not be established between readers for 

these cases. Lesions assigned PIRADS score of 3 (indeterminate) pose a major clinical 

management challenge5,7,27,28. An additional improvement would also be to turn our 

Radiomics-based classifier into a spatially-aware one. Previous studies have shown that 

radiomic features used for prostate cancer detection differ between transition (TZ) and 

peripheral zones (PZ)29,30.

However, for this study we found that the majority of cases comprised PZ lesions (only 3 TZ 

were found out of 56 cases (5 %)), and since they were only in the test set, we had no 

training data to construct spatially-aware machine learning classifiers on. One of our future 

directions is training spatially-aware classifiers once we acquire balanced cohorts with 

lesions in both PZ and TZ.

A second limitation of this study was the limited cohort size (N = 56) and the fact that all the 

cases came from a single healthcare institution. In future work we will seek to further 

validate our findings and conclusions from this preliminary study on a larger population 

drawn within a multi-site setting with different scanners and vendor platforms.

A bottleneck for this procedure was the manual segmentation of the prostate capsules and 

benign lesions on MR images by the expert radiologist. There has been a lot of published 

work on automated segmentation of prostate capsule31–34, prostate zones35–38 and the 

individual lesions39. One of the avenues for future work will be to automate the entire 

processing pipeline. Another possible future direction will be to investigate correlations 

between the radiomic findings on the biopsy-naïve MRI with histopathologic findings on the 

surgical specimens; since it is well known that stage and Gleason scores can be substantially 

discordant between the initial diagnostic biopsy and surgically resected specimens27,40.

In conclusion, radiomic features were identified on biopsy-naïve T2w and DW MRI that 

were found to be associated with the presence of clinically important PCa. On a limited 

number of patients, these features appeared to be more relevant compared to the PIRADS v2 

assessment of the tumors. Our findings appear to suggest a role for Radiomics-based 

assessment of clinically significant prostate cancer for patients on active surveillance and 

being followed via MRI. Employing Radiomics with MRI in patient management could 

potentially (1) improve risk stratification which could help in identifying which patients are 

candidates for active surveillance and (2) could allow for non-invasive monitoring of disease 
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grade and stage for patients already on active surveillance, obviating the need for annual 

biopsies.
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Figure 1. 
Dataset description and experimental design. 56-case dataset was divided to 4 groups. Cases 

from Groups 1 and 2 (true-negatives and true-positives, respectively) were used to train 

machine learning classifiers. Cases from Groups 3 and 4 (false-negatives and false-positives, 

respectively) were used as independent testing sets (for correctly identifying false-negatives 

identifying false-positives independently of histopathology findings). All cases with 

PIRADS 3 score were excluded from training and independent test sets.
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Figure 2. 
Radiomic analysis pipeline. a,b) Lesions on T2w images (top) and ADC maps (bottom) are 

manually annotated by an expert radiologist. c) 308 radiomic texture features are extracted 

from MRI. d) MRMR technique with feature voting is utilized for selecting the most 

relevant features. e) Validation strategies are applied to ensure robustness of the selected 

features.
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Figure 3. 
Low- and high-performing features for MRI-negative-biopsy-positive (PIRADS 2, GS 4+3) 

case. a) T2w MRI, b) Low-performance feature, c) High-performance feature, d) Markedly 

different texture appearance within biopsy-positive regions, not picked up via PIRADS.
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Figure 4. 
Low- and high-performing features for a MRI-positive-biopsy-negative (PIRADS 4) case: a) 

T2w MRI, b) Low-performance radiomic feature with the red region denoting “erroneous” 

PIRADS-based annotation, c) High-performance radiomic feature which demonstrates no 

clear signature for prostate cancer in this region (agreeing with biopsy findings).
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Figure 5. 
Unsupervised hierarchical clustering of mean absolute deviation of selected radiomic feature 

parameters (i.e. each feature was reduced to one value using a first order statistic). The x-

axis corresponds to the individual patients and features are displayed across columns. 

Radiomic features separate patients into two distinct clusters: true-positives (red) and true-

negatives (blue). Labels on the right indicate the group to which each individual case 

belongs. Shading indicates expression of the radiomic feature, where red and blue represent 

high and low expression, respectively.

Algohary et al. Page 18

J Magn Reson Imaging. Author manuscript; available in PMC 2019 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Top: MRI-negative-biopsy-positive case indicating correctly detected tumor presence: (a) 

PCa-positive region reported from biopsy indicated by red arrow on T2w image, (b) ADC 

map, (c) Gabor feature showing no differential expression within the prostate region (d) 

Computed heatmap with red representing high PCa probability and blue representing low 

PCa probability, (e) Denoised PCa heatmap segmented by Markov random fields with red 

for high, yellow for low, and cyan for very-low likelihood of disease occurrence, 

respectively. Bottom: MRI-positive-biopsy-negative case indicating correctly detected tumor 

absence: (f) T2w image with red region denoting the “erroneous” PIRADS-based 

annotation, (g) ADC map, (h) Haralick feature showing a high PCa probability spot although 

bright on ADC (i) Computed heatmap of PCa probability, (j) Denoised PCa heatmap with 

cyan representing low significance which shows no clear signature for PCa in this region 

(agreeing with biopsy).
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Table 1

Description of Study

St Vincent’s Medical Center

Number of Subjects 56

Age (mean ± SD) 65.1 ± 6.4

PSA (mean ± SD) 6.9 ± 5.8 ng/ml

Lesion size (mean ± SD) 1.30 ± 0.79 cm3

Scanner

Brand Philips Achieva

Magnet strength 3T

Coil type Body coil

T2-weighted MRI

Field-of-view 220 × 220 mm2

Matrix size 444 × 332

Slice thickness 3 mm

Diffusion-Weighted MRI

Field-of-view 180 × 180 mm2

Matrix size 128 × 128

Slice thickness 3 mm

b-values 0, 1500 s/mm2

Gleason Scores

Low (= 6) 25

High (7-9) 26
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Table 2

Description of the patient groups

Number of Patient Group Number of Patients
Prostate Cancer-positive on

MRI-positive (PIRADS score = 4-5) Biopsy-positive (Gleason score 7-9)

1 15 No No

2 16 Yes Yes

3 10 No Yes

4 15 Yes No
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Table 3

Description of Radiomic features extracted

Radiomic Feature Category Radiomic Feature Type/Param Number of features extracted 
(total)

Relevance to PCa

Signal Intensity T2w images, ADC maps 1 × 2 (2) Cancers are usually hypo-intense on 
MRI

First Order Statistics Mean, Median, Sobel 9 × 2 (18) Intensity variability

Gabor Frequency, Orientation 80 × 2 (160) Low-level oriented edges

Gray-level co-occurrence Haralick 3 × 13 × 2 (78) Structural heterogeneity

Texture Energy Laws’ texture energy 25 × 2 (50) Appearance of ROI
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Table 4

Processing time break down for proposed Radiomic analysis pipeline

Pipeline Step Average Per-Study Processing Time

Image Preprocessing 14 min

Feature Extraction 17 min

Training Classifier 24 min

Post processing 1.7 min

J Magn Reson Imaging. Author manuscript; available in PMC 2019 August 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algohary et al. Page 24

Table 5

Top 10 radiomic features extracted from MRI that demonstrated better performance compared to PIRADS 

(Ranked according to relevance statistical significance of differential expression - p-value < 0.05 for all 

selected features)

Rank Feature (Parameters) Protocol

1 Gabor (λ-2, ϴ=0.5) T2w

2 Mean (win. size = 3) T2w

3 Median (win. size = 3) T2w

4 Std. Dev (win. size = 3) T2w

5 Sobel (direction: x) T2w

6 Laws (1) T2w

7 Haralick (Energy) T2w

8 Laws (8) ADC

9 Gradient (direction: y) ADC

10 Sobel (direction: y) ADC
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