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Precession-band variance missing from East Asian
monsoon runoff
S.C. Clemens 1, A. Holbourn2, Y. Kubota3, K.E. Lee4, Z. Liu5, G. Chen6, A. Nelson1 & B. Fox-Kemper 1

Speleothem CaCO3 δ18O is a commonly employed paleomonsoon proxy. However, inferring

local rainfall amount from speleothem δ18O can be complicated due to changing source water

δ18O, temperature effects, and rainout over the moisture transport path. These complications

are addressed using δ18O of planktonic foraminiferal CaCO3, offshore from the Yangtze

River Valley (YRV). The advantage is that the effects of global seawater δ18O and local

temperature changes can be quantitatively removed, yielding a record of local seawater δ18O,
a proxy that responds primarily to dilution by local precipitation and runoff. Whereas YRV

speleothem δ18O is dominated by precession-band (23 ky) cyclicity, local seawater δ18O
is dominated by eccentricity (100 ky) and obliquity (41 ky) cycles, with almost no precession-

scale variance. These results, consistent with records outside the YRV, suggest that East

Asian monsoon rainfall is more sensitive to greenhouse gas and high-latitude ice sheet

forcing than to direct insolation forcing.
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The study of orbital-scale climate change during the late
Pleistocene is unique in that the signal-to-noise ratio is
large, the external forcing (insolation) is known, and the

critical internal forcings (greenhouse gases and terrestrial ice
volume) are extremely well constrained. As such, it should
be possible to assess the underlying mechanisms driving climate
change at this time scale, as well as the relative sensitivity to these
forcings. The orbital time scale (104 to 105 yr) is also important
because the frequency and amplitude of abrupt, centennial, and
millennial-scale events may vary with changes in the longer-term
mean state1,2. Here the focus is on orbital-scale variability in the
East Asian Monsoon (EAM), defined as variance concentrated at
periods (period= 1/frequency) associated with the eccentricity
(~100 ky), obliquity (~41 ky), and precession (~23 and ~19 ky)
characteristics of the Earth–Sun orbital geometry3,4. Under-
standing changes in monsoon precipitation as function of
changing insolation, global ice-volume, and greenhouse gases is
a primary goal of paleoclimate research given the prospect of
climate-induced changes in summer-season rainfall impacting
agriculture, and food production.

An extensive array of paleomonsoon proxies has been devel-
oped and applied throughout the Indian Monsoon and EAM
regions in an effort to reconstruct and understand the mechan-
isms driving changes in rainfall as recorded in loess, lake, cave,
and marine archives5–9. Most EAM proxy records contain var-
iance associated with eccentricity, obliquity, precession, and
heterodynes thereof; usually with the largest concentrations of
variance at eccentricity, obliquity, or orbital-associated hetero-
dynes10–12. This indicates that the EAM responds strongly to
global ice volume and greenhouse gasses9–12 (also dominated by
eccentricity-band and obliquity-band variance), as well as inso-
lation forcing (dominated by precession-band variance). Het-
erodyne variance in EAM and other records10 arises from
incorporation of variance from climatic processes operating at
different primary orbital periods13 and can be calculated by
adding and subtracting primary orbital frequencies (frequency=
1/period). For example, the interaction of variance at eccentricity
periods of 130.6, 123.8, 98.7, and 94.7 ky with obliquity at
41.1 ky yields heterodyne spectral peaks at periods ranging from
28.7 to 31.3 ky and from 60 to 72.6 ky (e.g., 1/98.7 ± 1/41.1= 1/29
and 1/70.4).

A primary exception is the composite speleothem δ18O record
from the Yangtze River Valley (YRV), characterized by a spec-
trum almost exclusively dominated by precession-band
variance14,15. This unique, exceptionally well-dated record and
associated spectrum have been interpreted as reflecting East
Asian summer-monsoon rainfall, varying dominantly and
directly in response to changes in northern hemisphere summer
insolation14–16, with little influence from global ice volume and
greenhouse gasses. A great deal of effort has been spent testing
this hypothesis, with a particular focus on the extent to which the
YRV speleothem δ18O record (δ18Ocave) should be interpreted as
East Asian rainfall amount17–19, upstream changes in evaporative
source regions, moisture transport paths, and evaporation and
condensation processes along the transport path8,9,20–26, or
changes in seasonality and frontal position27–29. Beyond large-
scale ocean and atmospheric processes, cave ventilation season-
ality30 and soil zone and epikarst dynamics31,32 have been dis-
cussed as well, including threshold processes associated with
abrupt changes in soil evaporation and water flow through the
soil horizon25,33.

Here four new highly-resolved records from International
Ocean Discovery Program (IODP) Site U1429 in the East China
Sea (ECS) are presented and used to reconstruct local seawater
δ18O (δ18Osw), a parameter known to vary linearly with salinity;
in this case varying as a function of YRV runoff and direct

precipitation to the ECS. The ECS planktonic foraminifer δ18O
record replicates, to an extraordinary degree, the precession- and
sub-orbital-scale variance found in onshore δ18Ocave. However,
when corrected for the effects of changing local temperature
and global seawater δ18O, the resulting local δ18Osw record
lacks significant precession-band variance, in contrast to the
precession-dominated YRV δ18Ocave spectrum. Instead, local
δ18Osw is dominated by eccentricity- and obliquity-band variance
as well as two heterodynes predicted by interaction of processes
operating at these bands. The δ18Osw spectrum is consistent with
records across the EAM region9–12,34 that are also dominated by
100-, 41-, and heterodyne-derived variance, indicating that EAM
variability is not driven dominantly and directly by insolation
forcing, but is sensitive to internal forcing associated with changes
in global-scale ice volume and greenhouse gas forcing10,11,34.

Results
Oceanography and climatology. Site U1429 (31.62°N, 129°E,
732 mbsl)35 is located at the north end of the Okinawa
Trough (Fig. 1). Winters are characterized by cool sea surface
temperature (SST) and strong winds (~18 °C, 5–7 ms−1) while
summers are characterized by warm SST and weak winds
(~28 °C, 1–2 ms−1)36. The surface moisture balance (precipita-
tion minus evaporation; P− E) is positive in the summer and
negative in the winter, consistent with seasonal differences in
insolation, winds, and precipitation. Surface water salinity is also
seasonal, due to increased P− E and YRV summer runoff.
Modern salinity at Site U1429 ranges from 33.5 in the summer to
34.7 in the winter37 and is very highly correlated with rainfall
over the YRV (Fig. 1). This strong correlation extends to the
interannual scale as well; YRV flood and drought conditions
related to El Niño and La Niña variability can alter salinity by +1
and −6 psu (respectively) out to 500 km offshore38 and are
accompanied by interannual variability in chororphyll-a39. These
observations are consistent with strong correlation (r > 0.97) of
seawater δ18O with chlorinity and salinity, which indicate near-
complete mixing of Yangtze River outflow and ocean waters in
the estuary40 and in the eastern ECS41.

The strong link between modern YRV rainfall and offshore
salinity extends into the geological past as well. Kubota et al.42

reconstructed the mid-Holocene (7 Ka BP) to present freshwater
budget for the U1429 region, employing Heshang cave δ18O
as a proxy for the isotopic composition of the freshwater end
member. They found that local seawater δ18O and river discharge
have similar responses (no change in the mean) from 7 Ka
to present whereas Heshang δ18O indicates a 2.5‰ increase,
a trend previously interpreted to represent decreased rainfall43.
This finding, no systematic reduction in monsoon rainfall from
the mid-Holocene to present, is consistent with a range of
independent and diverse rainfall proxies from the EAM region26

and indicates a decoupling of YRV precipitation amount and
precipitation δ18O in the past.

Air mass backtrack trajectory analysis indicates both con-
tinental and marine moisture sources to the YRV during the
modern summer and winter seasons, with 59% of precipitation
falling during the summer monsoon months (June through
September; Supplementary Fig. 1)27. Detailed analysis of YRV
moisture sources44 indicates that the contribution of moisture
from land roughly equals that from the Pacific and Indian
Oceans combined during both summer (May–September) and
winter (October–April). The relative contributions of modern
continental and marine moisture sources over the course of
the seasonal cycle, weighted by their isotopic composition,
successfully replicates modern cave calcite δ18O in the EAM
region27.
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Precipitation δ18O (δ18Oprecip) values reflect the origin,
temperature, humidity and transport history of the water
vapor31. These factors are significantly different for terrestrial
and marine air masses contributing to modern EAM rainfall
during summer and winter40,45. Analysis of cave drip water32

indicates that δ18Oprecip variability in the modern monsoon
region of China cannot be explained by either temperature or
precipitation alone, likely due to the multiple interacting vapor
sources. In addition, Liu et al.46 examined the Global
and Chinese Network of Isotopes in Precipitation (GNIP
and CHNIP) finding that δ18Oprecip in the YRV region is
best related to water vapor content of the atmosphere;
the amount effect is minor. Hence, there is little evidence,
at least from modern data, that EAM water-isotope proxies
can be interpreted directly as indicators of local rainfall
amount. For these reasons, reconstructing ECS local δ18Osw is
important, providing an independent proxy indicator of
changes in ECS salinity, varying as a function of precipitation
and runoff.

Water-isotope proxy drivers. The oxygen isotopic composition
of ECS planktonic foraminifer (δ18Opf) and YRV δ18Ocave have a
number of drivers in common as well as a number of drivers that
influence each independently (Supplementary Fig. 2). Both
records reflect global-scale changes in source water δ18O as well
as local δ18Oprecip since both are under the influence of the EAM,
and linked by YRV runoff. Changes in surface temperature, in
contrast, may be expressed differently in these two proxies. The
dominant impact on δ18Opf will be changes in the temperature of
calcite precipitation; the impact of evaporation will be minimal
because precipitation plus runoff dominates over evaporation in
the ECS, where annual average salinity values range between 30
near the coast and 34.5 offshore, out to 130°E47. Changes in
temperature affect δ18Oprecip and can also be propagated into the
cave environment, influencing the temperature of calcite pre-
cipitation. Temperature may also have a significant influence
through changes in soil zone evaporation and evaporation in the
cave atmosphere itself30,31. Duan et al.32. monitored monthly to
bi-monthly δ18Oprecip and cave drip water δ18O (δ18Odw) at
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Fig. 1 Modern precipitation and salinity climatologies, rivers, and surface currents. a Locations of IODP Site U1429 and sediment trap site JAST-0148 in the
East China Sea. δ2Hwax records precipitation isotopes from the Pearl River Valley34 and the Loess Plateau10, deposited at IODP Site 1146 and Weinan,
respectively. Boxes are area averages for CCSM3 model results. Kuroshio current (KC) and Tsushima warm current (TsWC) split south of U142990, 91.
Taiwan warm current (TWC) enters from the south. Sanbao, Linzhu, and Hulu caves are the locations from which the composite δ18Ocave record was
constructed15. b Modern rainfall in the Yangtze River Valley (brown) is highly correlated to salinity at East China Sea Site U1429 (green). At the annual
cycle with the lag removed, r= 0.89 and the result is significant at p < 0.01. c Monthly climatology from b. Salinity from ORAS492. Rainfall from GPCC93.
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34 sites in the cave region of China to evaluate the impact of
processes in the soil, epikarst, and cave environment. They found
that 82% of the drip sites showed little variation in δ18Odw

throughout the 3-year study, indicating that δ18Ocave incorporates
multi-year average signals modulated by seasonally changing
recharge and evaporation regimes. Twelve percent of the drip
sites recorded damped seasonal to monthly δ18Odw, compared to
δ18Oprecip. Six percent fell between the two extremes, with con-
stant, low δ18Odw during the wet season and variable, relatively
high δ18Odw in the dry season, thought to result from flow
switching in the karst or evaporation within the cave. James
et al.30 made the case that seasonal cave ventilation is an
important driver of cave-air CO2 and hence calcite precipitation;
the result being that speleothems from temperate and boreal
regions, for example, can be biased toward cool-season calcite
precipitation. None of these factors impact δ18Opf, calcite pre-
cipitated by planktonic foraminifers in the offshore surface
environment.

Similarly, biases independent of those impacting δ18Ocave can
impact ECS δ18Opf. Sediment trap results from the Okinawa

Trough indicate that Globigerinoides ruber specimens in the size
fraction used for this study (Methods) are reduced in abundance
between December and March, potentially introducing a seasonal
bias48. Site U1429 is located at the bifurcation point of the
Kuroshio Current and Tsushima Warm Current49,50; variability
in these current regimes could impact δ18Opf, although the path
of the Kuroshio appears stable with regard to glacial sea level
changes51. Migration of the shoreline closer to Site U1429 during
glacial-age sea level low stands (120 m isobath, Supplementary
Fig. 3) may alter the delivery and extent of mixing between 18O-
enriched seawater from the Kuroshio Current with 18O-depleted
river water at Site U1429. The relative influences of these various
independent δ18Opf and δ18Ocave drivers may vary at different
time scales.

Foraminifera δ18O. The U1429 benthic foraminifer δ18O
(δ18Obf) record was mapped to the global benthic isotope stack52

to produce a traditional benthic age model (Methods, Fig. 2a).
Cross-spectral analysis indicates high coherence and near-zero
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phase across the Earth-orbital eccentricity, obliquity, and pre-
cession bands, verifying the U1429 chronostratigraphy (Supple-
mentary Fig. 4).

The U1429 δ18Opf time series is dominated by eccentricity with
lesser, sub-equal variance in the obliquity bands and precession
bands (Fig. 2b). In contrast, YRV δ18Ocave

15 is dominated by
precession-band variance (Fig. 2c), a primary reason why the
EAM has been interpreted as a system responding dominantly
and directly to northern hemisphere summer-insolation
forcing5,14. The very strong degree to which δ18Ocave variance
is also embedded in offshore δ18Opf is illustrated by notch
filtering δ18Opf (removing eccentricity- and obliquity-band
variance) and then mapping the sub-orbital structure to δ18Ocave,
creating a cave-based age model (Methods); all further analyses
use the cave-based age model. Notched δ18Opf (Fig. 2d)

demonstrates that the precession-band structure in YRV δ18Ocave

resides in δ18Opf as well; the spectra are nearly indistinguishable.
This strong orbital-scale correspondence is not due to fine-tuning
the benthic age model by correlating the notched δ18Opf to
δ18Ocave; the cave-based age model is spectrally indistinguishable
from the benthic age model (Supplementary Fig. 4). δ18Obf on the
two age models is highly coherent (0.99 CI) with near-zero phase
at the eccentricity (0.08 ± 0.35 ky), obliquity (−0.23 ± 0.29 ky)
and precession (0.23 ± 0.17 ky) bands.

The strong similarities extend to the sub-orbital scale as well.
δ18Opf and δ18Ocave have the same millennial-scale structure
during both glacial and interglacial intervals (Fig. 3b, c), including
Heinrich and Dansgaard–Oeschger events. Finally, U1429 δ18Opf

has enhanced resolution of sub-orbital-scale structure within the
interval 250 to 340 ka where δ18Ocave is less resolved or smoothly
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varying (Fig. 3d). Strong similarities at the orbital (precession)
and sub-orbital (millennial) scales confirm that δ18Opf and
δ18Ocave share common drivers at these time scales, both likely
monitoring the δ18O of local precipitation; potential biases that
impact each of the two proxies independently are not apparent in
these records.

Seawater δ18O. From a climate change standpoint, however,
reconstruction of rainfall amount is an important goal. Inter-
pretation of water-isotope proxies as rainfall amount has been a
point of contention given that modern data, described above,
show that δ18Oprecip and rainfall amount are uncorrelated in the
YRV region. This is addressed by quantitatively removing the
effects of changing sea surface temperature (SST) and global
seawater δ18O from δ18Opf (Methods, Supplementary Note 1).
This yields a record of local δ18Osw, a proxy that is linearly related

to salinity42,53,54, responding strongly to YRV runoff as well as
direct precipitation to the ECS41.

Removing the SST signal from δ18Opf (Fig. 4a) yields the total
δ18Osw (Fig. 4b). Removing global seawater δ18O from total
δ18Osw (Fig. 4b) yields local δ18Osw (Fig. 4c). In contrast to
δ18Ocave, local δ18Osw has almost no precession-band variance.
Instead, it is dominated by variance at primary orbital periods,
including 100 ky (eccentricity), 41 ky (obliquity), and both
heterodynes thereof (29 and 69 ky). While this spectral structure
is very different from that of YRV δ18Ocave, it shares strong
similarities with precipitation-isotope records to the north and
south as well as with global-scale changes in CO2, CH4, and
terrestrial ice volume (Fig. 5a–c).

The eccentricity-band (100 ky) variance in local δ18Osw is
coherent (0.92 CI) and near-zero phase (4 ± 2 ky) with the Site 1146
(Pearl River) δ2Hwax record34 located ~1000 km south of the YRV;
both are dominated by 100 ky eccentricity-band variance with little
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to no precession-band variance (Fig. 4d). The Site 1146 record
dominantly reflects input from the Pearl River but has contributions
from Taiwan and Luzon as well10,55. The heterodyne periods (29
and 69 ky) are consistent as well with the 31- and 72-ky
heterodynes that dominate variance in the Lantian–Weinan loess
δ2Hwax record10 ~300 km north of the YRV.

Transient model simulations. Seasonality and the extent to
which the local δ18Osw proxy is consistent with model rainfall
simulations is assessed by comparison with results from a 300,000
year long accelerated transient climate simulation using the Com-
munity Climate Systems Model version 3.5 (CCSM3)56. The
CCSM3 simulation (Methods, Supplementary Note 2) was run with
varying orbital insolation, greenhouse gasses, ice volume, and sea
level, following methods and boundary conditions detailed in Chen
et al.57, in order to capture the climate response to transient
forcing57,58. EOF comparison of the model and modern EAM
precipitation fields for summer and winter seasons are consistent
with one another (Supplementary Fig. 5). These simulation result-
s have been previously used in the EAM region to assess the
transient response to changing surface temperature and monsoon
precipitation10,59.

Having removed the effects of surface temperature and global
seawater δ18O from δ18Opf, the result (local δ18Osw) is compared
to model precipitation. Both the YRV and ECS regions (Fig. 1)
were evaluated for monthly maximum (summer), minimum
(winter), and annual average precipitation in order to assess spatial
and seasonal variability. The local δ18Osw heterodyne variance
at the 29- and 69-ky periods is unique to the YRV annual
average model precipitation field (Fig. 6), suggesting it is
transmitted to the ECS via runoff. The 100-ky variance is found
in all three (maximum, annual average, and minimum) ECS
precipitation records, indicating decreased precipitation during
glacial intervals. The same set of proxy-model comparisons was
conducted for YRV δ18Ocave, including model temperature since
the impact of changing local temperature is unknown. δ18Ocave

is well matched to model YRV surface temperature maximum
and precipitation maximum (Supplementary Fig. 6). Hence, the
degree to which changes in local temperature or precipitation
drive YRV δ18Ocave cannot be differentiated with these data. More
in-depth interpretation of δ18Ocave and local δ18Osw would benefit
from isotope-enabled transient model simulations that incorporate
realistic greenhouse gas, ice volume, and sea level boundary
conditions.
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Discussion
At the eccentricity band, light U1429 δ18Osw and Pearl River
Valley δ2Hwax occur during glacial intervals (Fig. 4d). Light
glacial-age δ2Hwax may result from rainout over the emergent
continental shelf resulting in lighter inland precipitation isotopes,
increased rainout along the moisture transport path (including
the emergent Sunda Shelf)60, changes in glacial-age source water
locations, or cooler local precipitation condensation tempera-
tures. Differentiation among these possible mechanisms, or some
combination thereof, is not possible at this time but will benefit
from rapidly evolving isotope-enabled simulations that incorpo-
rate realistic changes in boundary conditions, including ice-
volume and sea level. Interpreted in the context of salinity
(rainfall and YRV runoff), the 100-ky variance in the local δ18Osw

signal is likely influenced by shoreline migration, bringing the
YRV freshwater source closer to the site during glacial sea level
low stands61, counteracting the effect of decreased precipitation
indicated by an array of independent proxy records of EAM
rainfall11,26,62 and model simulations63–65.

Heterodyne variance in U1429 and in the Lantian–Weinan
section to the north likely reflect interactions of variance asso-
ciated with eccentricity and obliquity forcing as described in
Thomas et al.10. Thomas et al. note a significant difference in the
spectral structure of East Asian water-isotope proxy records
(δ18Ocave and δ2Hwax) relative to those of loess-based summer
monsoon (magnetic susceptibility) and winter monsoon (grain
size) proxy records26. The loess-based records, also including
δ13C of inorganic carbonate11 and an array of isotopic12 and
magnetic property proxies9,26,62 for summer monsoon pre-
cipitation are dominated by primary orbital periodicity (eccen-
tricity, obliquity, and precession). The water-isotope proxies, in
contrast, contain large amounts of variance at heterodyne periods,
the concentration of which increases from south to north. Tho-
mas et al.10 attribute the northward increase in heterodyne var-
iance (spectral complexity) to the increasing influence of multiple
environmental parameters contributing to the water-isotope sig-
nal; records in the south are primarily dominated by summer
monsoon variance with simple spectra, composed mostly of
primary orbital-scale variance peaks, whereas water-isotope

records further north are influenced by both summer- and
winter-monsoon variability (i.e., temperature, winter- and
summer-monsoon precipitation) resulting in more complex
spectra that include heterodyne variance. Our δ18Osw record is
consistent with this interpretation, having a combination of pri-
mary and heterodyne variance.

The spectral signatures of most EAM proxies are not dominated
by 23-ky variance but, rather, by spectral variance at the 100- and
41-ky periods more characteristic of late Pleistocene global ice
volume and greenhouse gas forcing9–12,26,34. The spectral signature
of ECS local δ18Osw, a record for which the impact of temperature
and seawater δ18O have been removed, is also well matched to
that of CH4

66, CO2
67, and the global benthic δ18O stack52

(Fig. 5a–c). All are dominated by eccentricity-band variance
with lesser amounts of obliquity-band variance. With the
exception of CH4, all have the least amount of variance in the
precession-band. The precession-band variance in CH4 (co-
equal with obliquity-band variance) has been attributed, in part,
to tropical wetland sources66. In any case, these records, and
their spectral signatures, bear little resemblance to that of direct
local or high-latitude summer-insolation forcing (Fig. 5d, e).
These findings indicate that the EAM does not respond dominantly
and directly to external insolation forcing but, rather, is strongly
sensitive to the internal redistribution of this energy, resulting in
spectral signatures more similar to those of greenhouse gasses and
global ice volume.

In summary, the precession- and millennial-band structure
characteristic of YRV δ18Ocave is also found offshore in ECS
δ18Opf. However, after quantitative removal of the local tem-
perature and global seawater δ18O signals, the resulting local
δ18Osw record (a proxy for rainfall and YRV runoff) no longer
matches δ18Ocave. Local δ18Osw is dominated by eccentricity- and
obliquity-band variance as well as heterodynes thereof, not by
precession-band variance as in δ18Ocave. The local δ18Osw spec-
trum, similar to an array of other proxies across the EAM region,
is consistent with that of CO2, CH4, and global ice volume.
This indicates that EAM rainfall variability is more sensitive to
internal forcing mechanisms related to high-latitude ice sheet and
greenhouse gas variability, and less sensitive to direct insolation
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forcing, as is commonly inferred on the basis of the precession-
dominated YRV δ18Ocave spectrum.

Methods
Planktonic oxygen and carbon stable isotopes. U1429 was sampled at 5 cm
resolution from 0 to 25 m below sea floor (mbsf), at 5 or 10 cm resolution from 25
to 35 mbsf, and at 5, 10, or 15 cm resolution from 35 to 181 mbsf. Samples were
freeze-dried, wet-sieved at 63 μm, and dried in an oven at 50 °C. The >63 μm
fraction was then sieved into four size fractions, 63–150, 150–250, 250–355, and
>355 μm. Approximately 50 individual G. ruber (white, sensu stricto) were picked
from the 250–355 μm size fraction for both stable isotope (δ18O, δ13C) and Mg/Ca
analysis. Approximately 30 and 20 individuals were used for Mg/Ca and stable
isotope analyses respectively. Samples for stable isotope analyses were sonified in
ethanol to remove fine clays, homogenized, and subsampled (~80 μg CaCO3) for
analysis on the Brown University MAT252 IRMS coupled to a Kiel III carbonate
device. Samples were reacted by individual acid addition (99% H3PO4 at 70 °C). A
total of 2031 G. ruber samples and a total of 314 standards (BYM and Carrara)
were analyzed. Repeated analyses of Brown Yule Marble (n= 116, 1σ) yields −2.27
± 0.03 for δ13C and −6.48 ± 0.07 for δ18O. Carrara Marble (n= 198, 1σ) yield 2.03
± 0.03 for δ13C and −1.89 ± 0.05 for δ18O. Replicate analysis of homogenized
foraminifera samples (n= 42, 1σ) yields ± 0.05 for δ18O and ± 0.03 for δ13C. All
results were calibrated to National Institute of Standards and Technology (Gai-
thersburg, Maryland) carbonate isotope standard NBS 19 and are reported as ‰
VPDB.

Benthic oxygen and carbon stable isotopes. U1429 was sampled at 10, 15, 25, or
30 cm. Samples were dried in an oven at 40 °C, wet-sieved at 63 μm, and dried in an
oven at 40 °C. Three to ten well-preserved tests (Uvigerina spp, C. wuellerstorfi
depending on availability) were broken into large fragments, cleaned in alcohol in
an ultrasonic bath, then dried at 40 °C. In a few samples, where foraminiferal
density was low, only 1–2 specimens were analyzed. Measurements were made with
the Finnigan MAT 251 mass spectrometer at the Leibniz Laboratory, Kiel Uni-
versity. The instrument is coupled on-line to a Carbo-Kiel Device (Type I). Samples
were reacted by individual acid addition (99% H3PO4 at 73 °C). Standard external
error is better than ±0.07‰ and ±0.05% for δ18O and δ13C, respectively. Replicate
measurements on ~5% of samples indicate mean reproducibility better than
±0.11‰ and ±0.13‰ for δ18O and δ13C, respectively. Results were calibrated using
the National Institute of Standards and Technology (Gaithersburg, Maryland)
carbonate isotope standard NBS 19 along with three internal standards, and are
reported on the PeeDee belemnite (VPDB) scale.

SST and δ18Osw reconstruction. Mg/Ca analysis of G. ruber sensu stricto (ss) was
carried out for U1429 at intervals of approximately 10, 15, 25, or 30 cm, using splits
of the same G. ruber fraction used to measure planktonic δ18O. Prior to mea-
surement, foraminiferal tests were cleaned following the reductive approach,
modified from Boyle and Keigwin68, as detailed in refs.41 and 42. The metal/Ca
ratios of most of samples were determined with a Thermo Scientific ELEMENT
XR, a double focusing sector field inductively coupled plasma mass spectrometer
(ICP–MS) at the Mutsu Institute for Oceanography (MIO); 87 samples in MIS 5
were determined with an ELEMENT 2 at the University of Toyama41. The ele-
ments 24Mg and 44Ca, measured in a middle resolution mode, were used to
determine Mg/Ca for the samples analyzed at the MIO. The precision of the
measurement was checked by replicate measurement (every five to six samples) of
working standards produced at MIO from high purity standards (1000 ± 3mg/L)
SPEX Claritas PPT. Relative standard deviation (RSD) of the working standards
was <2.6% at MIO. The CaCO3 reference material CRM was used as a working
standard and RSD of its replicate analyses was 1.1% at the University of Toyama.
The accuracy of Mg/Ca ratios were confirmed by analyses of a CaCO3 reference
standard, coral Porites standard material JCp-1, whose Mg/Ca values was inter-
nationally determined (4.199 ± 0.065 mmol/mol69,). The measured Mg/Ca of JCp-1
was 4.161 ± 0.064 (1σ, N= 24) mmol/mol at MIO and 4.148 ± 0.055 (1σ, N= 11)
mmol/mol at the University of Toyama. Based on the difference of Mg/Ca between
two laboratories, 0.0131 mmol/mol was added for the Mg/Ca data measured at
the University of Toyama. In addition to Mg/Ca, Mn/Ca were measured to monitor
the contamination by diagenetic coating. Mn/Ca of 99% of the samples were less
than 0.5 mmol/mol. As there was no positive relationship between Mg/Ca and Mn/
Ca (>0.5 mmol/mol), we did not eliminate high Mn/Ca samples.

Sixteen samples were repicked and rerun for duplication test for Mg/Ca in MIO.
The average of the difference of Mg/Ca between duplicates was 0.086 ± 0.149 (1σ)
mmol/mol, which was equivalent to 0.48 ± 0.36 °C. The effect of preferential
removal of Mg2+ from foraminiferal calcite on Mg/Ca values due to dissolution on
the sea floor (e.g., ref.70 and references therein) is likely negligible because the water
depth of the core site (732 m) is well above the modern lysocline (~1600 m) in the
ECS and over 800 m above the depth at which dissolution impacts the Mg/Ca
temperature estimation in this region41.

Seawater δ18O is derived using Paleo-Seawater Uncertainty Solver (PSU
Solver71) No regional Mg/Ca calibration exists for the East China Sea. We employ
the Mg/Ca calibration of Tierney et al.72 that utilizes all available culture data in a
multivariate calibration that accounts for both salinity and temperature. This

calibration has an exponential slope of 8.4 ± 1.5%/°C, consistent with that
previously used in the East China Sea41 which has an exponential slope of 8.9%/°C
but does not account for salinity. We utilize the seawater δ18O-temperature
relationship (low light) of Bemis et al.73, the ECS G. ruber core top seawater δ18O-
salinity relationship of Horikawa et al.41, and the global sea level curve of
Waelbroeck et al.74. Instead of using the Waelbroeck curve directly, the U1429
benthic δ18O record was scaled to match the Waelbroeck curve such that the age
model and high-resolution sampling at U1429 remains intact. Scaling is
accomplished by normalizing the U1429 benthic δ18O record followed by
multiplication of each sample by 0.313 (the standard deviation of the Waelbroeck
curve) and addition of 0.364 to align the core top to a value of 0.27‰. Propagated
uncertainty (1σ) in δ18Osw is assessed using the following error estimates on the
underlying parameters (δ 18Opf ± 0.1‰, Mg/Ca ± 0.2 mmol/mol, and age ± 2 ky).
The resulting time series and spectra are shown in Supplementary Figure 8a.

We assess sensitivity to the temperature term and calibration approach by
comparing our Seawater δ18O result to that derived using SST from Eq. (3) of Gray
et al.75. Equation (3) from Grey et al. expresses Mg/Ca as a function of
temperature, salinity, and pH using calibration data from 440 globally distributed
plankton tow and sediment trap samples. The temperature sensitivity (6 ± 0.8%/°C)
is considerably smaller than that in the Tierney equation (8.4 ± 1.5%/°C). Sediment
trap and tow data use natural, open ocean conditions relative to laboratory-
controlled conditions. pH is derived using a simple linear regression of G. ruber
δ18O vs. pH from the ODP Site 999A data presented in Fig 9a of Foster et al.76:

pH ¼ 0:045� δ18Oþ 8:25 n ¼ 29; r2 ¼ 0:76; p>0:0001
� � ð1Þ

Equation 1, applied to U1429 G. ruber δ18O, yields a first-order estimate of
surface water pH for the past 400 kyrs, presuming the calibration from 999A
(Caribbean Sea) is appropriate for U1429 (East China Sea). PSU solver is used to
derive local seawater δ18O for comparison with results from the Tierney 2015
calibration equation. The result is shown in Supplementary Fig. 8b; despite the
differences in the temperature coefficients and underlying calibration approaches,
both results are dominated by 100-kyr variability with very little precession-scale
variance.

Quantitative reconstruction of salinity is not attempted, given the
unconstrained nature of the δ18Osw salinity relationship over time23,54,77. No
reliable information is available on the potentially variable slope of the δ18Osw-
salinity relationship in the ECS over the past 400,000 years. Such evaluation awaits
reliable, time-dependent isotope-enabled simulations with realistic boundary
conditions23.

SST was also reconstructed using the UK’
37 approach. Bulk sediment samples

(3 g) were taken from the core at 10 cm intervals for alkenone analysis. Long-chain
alkenones were extracted from freeze-dried sediment samples. Organic
compounds were extracted using an accelerated solvent extractor (ASE 200,
Dionex) with a solvent mixture (CH2Cl2:CH3OH, 99:1 v/v) at high
temperature (100 °C) and pressure (1500 psi). The extracts were cleaned by elution
(3 × 500 μl CH2Cl2) through a silica cartridge. Saponification was performed at
80 °C for 2 h with 300 μl of 0.1 M KOH in 90/10 CH3OH/H2O. The neutral
fraction, containing the alkenones, was obtained by partitioning into hexane. After
being concentrated under N2, the final extract was analyzed using a gas
chromatograph (Agilent 7890 A) equipped with a flame ionization detector and a
DB-1 column (60 m × 0.32 mm i.d.). Temperatures were calculated using the
alkenone unsaturation index (UK’

37) and the calibration equation of Prahl et al.78

(UK’
37= 0.034 T+ 0.039; Supplementary Fig. 7). Reproducibility of alkenone

temperatures for replicate samples of a homogeneous marine sediment lab
standard run during the project is better than ±0.2 °C (n= 124, 2σ). Duplicate
analyses from U1429 is ± 0.4 °C (n= 31 2σ). Supplementary Fig. 8c shows local
seawater δ18O reconstructed using the U1429 UK’

37 SST record instead of the
U1429 Mg/Ca record; the result is again a record dominated by 100-kyr variance
with very little 23-kyr variance, as expected on the basis of Supplemental Fig. 7
which shows the same precession-band variance is as in Mg/Ca-derived SST, but
greater 100-kyr variance.

U1429 age model. A traditional marine chronostratigraphy (benthic age model)
was established by mapping the U1429 benthic δ18O to the global benthic stack52

over the past 400 ky (Supplementary Table 1). This was accomplished by corre-
lation of structure in the two records using the Linage function in Analyseries79.
Cross-spectral analysis documents high coherence (>0.95CI) and near-zero phase
at the eccentricity (−2 ± 0.7 ky), obliquity (0.5 ± 0.5 ky) and precession bands
(−0.7 ± 0.3 ky) (Supplementary Fig. 4). The 100- and 41-ky variance was then
removed from planktonic δ18O (benthic age model) by notch filtering the 100- and
41-ky variance (Methods). The result was then mapped to the Cheng et al.15

composite cave δ18O record using the Analyseries Linage function (Supplementary
Table 1). This fine-tuning of the U1429 benthic age model (cave-based age model)
is justified on the basis that benthic δ18O on the two age models are highly
coherent (>0.99 CI) with near-zero phase at the eccentricity (0.08 ± 0.35 ky),
obliquity (−0.23 ± 0.29 ky) and precession (0.23 ± 0.17 ky) bands.
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CCSM3 simulations. Paleoclimate simulations were performed using the National
Center for Atmospheric Research (NCAR) Community Climate System Model
(CCSM) version 3.556,80 in the fully coupled configuration (active atmosphere,
ocean, land, and sea ice). The ocean model has a zonal resolution that varies from
340 km at the equator to 40 km around Greenland and 350 km in the Northern
Pacific. This spatially varying resolution is achieved by placing the north pole of the
grid over Greenland and reflects the different relevant length scales of the two
processes that are important in maintaining a stable global climate; deep convec-
tion around Greenland and in the Arctic as well as ocean heat uptake at the
equator. In the vertical there are 25 depth levels; the uppermost layer has a
thickness of 8 m and the deepest layer has a thickness of 500 m. This and the
atmospheric, land, and sea-ice models operate under the T31_3_3 setup80, which
have been developed specifically for long paleoclimate and biogeochemistry
applications.

Insolation was calculated using orbital parameters from Berger and Loutre13.
Atmospheric CO2 and CH4 were prescribed (CO2, IGBP PAGES/WDCA
contribution series number: 2008–05581; CH4, IGBP PAGES/WDCA
contribution series number: 2008–05466.) Continental ice sheets and sea level
(i.e., land-ocean boundaries) were prescribed by scaling the ICE-5G ice
distribution for the LGM to present82 to the marine benthic δ18O record52and
saving these parameters as boundary conditions for the model. At the end of
each year of the simulation, the orbital parameters and the atmospheric
greenhouse gases were advanced by 100 years. When the model boundary
conditions changed (e.g., land-ocean boundaries changing due to sea level rise
or fall equivalent to 40 m), all the components of the model were
reconfigured manually and the model was restarted using the previous year as the
initial conditions. This acceleration technique, similar to those used in other
paleoclimatic modeling studies2,83–85, enables us to gain insight into the
temporal evolution of the climate system given restricted computer resources.
Several studies have shown that acceleration factors of 10 and 100 produced
similar results84. Jackson and Broccoli83, for example, used an acceleration
factor of 30 in a simulation of the past 165,000 years. The upper ocean and
the atmosphere reach quasi-equilibrium in this acceleration approach2. In
our acceleration approach, the change in insolation forcing is small (<0.5W/m)
from year to year at all latitudes in the shortest orbital cycle (precession)58.

The experiment consisted of three separate simulations, beginning with an
insolation only simulation, followed by addition of greenhouse gasses, followed by
addition of ice-volume and sea level (Fox-Kemper et al., manuscript in
preparation). Successively adding boundary conditions is a useful method for
understanding the sensitivity of the model response to these forcing mechanisms.
Results in this manuscript are from the simulation using the full set of boundary
conditions. Model precipitation data were averaged for the regions depicted in
Fig. 1. Monthly maximum, minimum, and annual average model output were used
in comparison with proxy data. Use of monthly maximum and minimum values
(as opposed JJA, DFJ) accounts for the fact that the timing of maximum insolation,
in the northern hemisphere (for example), can occur in May, June, or July
depending on the orbital configuration and is thus, not tied to any single orbital
configuration (e.g., June 21 Perihelion).

Currently, accelerated models assume that Earth’s orbit is fixed, meaning that
changes in the length and strength of Earth’s seasons due to changes in Earth’s
orbital parameters are not accounted for in the definition of the calendar upon
which monthly values are computed. While this is not a major issue for Holocene-
scale studies84,86, it becomes important for orbital-scale simulations2,57,58,83.
Therefore, it is important to identify and correct for this calendar effect if one
wishes to accurately relate paleoclimate model results to real-world paleoclimate
records. The calendar problem was corrected for (Nelson A.D. et al., manuscript in
preparation) by following the methodology of other works57,87,88.

Time series analysis. Cross-spectral analyses were performed with the
Blackman–Tukey approach using Analyseries software79. All spectra employed a
Bartlett window and a 30% (n/3) lag where n is the number of series data points.
For model-proxy comparisons, the bandwidth is 0.0167, non-zero coherence is
>0.3844, and the error estimation on the power spectrum is 0.6255. For
proxy–proxy comparisons, the bandwidth is 0.0127, non-zero coherence is
>0.3844, and the error estimation on the power spectrum is 0.6255.

Notching (removing) the 100-kyr (eccentricity) and 41-kyr (obliquity) variance
was accomplished by filtering (Gaussian) at a central frequency of 0.01 and a
bandwidth of 0.005 for eccentricity and a central frequency of 0.0245 and a
bandwidth of 0.0035 for obliquity.

Individual linear spectra were calculated using the Analyseries periodogram
function and a Bartlett window. The periodogram produces an unsmoothed
spectrum (equivalent to the Blackman–Tukey with a 100% lag). It is useful in that it
does not smooth away side lobes that may be present due to, for example, time
scale inaccuracies. Since Analyseries does not have a means of assessing confidence,
the Periodogram tool on the NASA Exoplanet Archive site (http://
exoplanetarchive.ipac.caltech.edu/cgi-bin/Pgram/nph-pgram) was used to assess
orbital-scale spectral peaks discussed in the manuscript for frequencies < 0.05
(periods greater than 20 ky) using the Lomb-Scargle algorithm89. Peaks discussed
in the manuscript at frequencies < 0.05 labeled with * do not meet the p= 0.05
threshold level for probability of chance occurrence.

Data availability. All data necessary to assess the validity of this research are
presented in the paper and Supplementary Materials. The paleoclimate proxy data
are archived at NOAA’s National Centers for Environmental Information (NCEI).
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