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Deep Learning and Radiomics 
predict complete response after 
neo-adjuvant chemoradiation for 
locally advanced rectal cancer
Jean-Emmanuel Bibault   1,2, Philippe Giraud1, Martin Housset1, Catherine Durdux1, 
Julien Taieb3, Anne Berger4, Romain Coriat5,6, Stanislas Chaussade5,6, Bertrand Dousset7, 
Bernard Nordlinger8 & Anita Burgun2,9

Treatment of locally advanced rectal cancer involves chemoradiation, followed by total mesorectum 
excision. Complete response after chemoradiation is an accurate surrogate for long-term local control. 
Predicting complete response from pre-treatment features could represent a major step towards 
conservative treatment. Patients with a T2-4 N0-1 rectal adenocarcinoma treated between June 2010 
and October 2016 with neo-adjuvant chemoradiation from three academic institutions were included. 
All clinical and treatment data was integrated in our clinical data warehouse, from which we extracted 
the features. Radiomics features were extracted from the tumor volume from the treatment planning 
CT Scan. A Deep Neural Network (DNN) was created to predict complete response, as a methodological 
proof-of-principle. The results were compared to a baseline Linear Regression model using only the 
TNM stage as a predictor and a second model created with Support Vector Machine on the same 
features used in the DNN. Ninety-five patients were included in the final analysis. There were 49 males 
(52%) and 46 females (48%). Median tumour size was 48 mm (15–130). Twenty-two patients (23%) had 
pathologic complete response after chemoradiation. One thousand six hundred eighty-three radiomics 
features were extracted. The DNN predicted complete response with an 80% accuracy, which was 
better than the Linear Regression model (69.5%) and the SVM model (71.58%). Our model correctly 
predicted complete response after neo-adjuvant rectal chemoradiotherapy in 80% of the patients of 
this multicenter cohort. Our results may help to identify patients who would benefit from a conservative 
treatment, rather than a radical resection.

The standard treatment for locally advanced rectal cancer is neoadjuvant chemoradiation followed by total 
mesorectal excision (TME) after a 6 to 10 week interval1. In 20% to 30% of the patients, no residual tumor is 
found at histopathology2. In this selected group of patients, it has been suggested that surgery could be omitted, 
since it did not improve outcome and was associated with a high rate of morbidity3. This strategy has initially been 
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met with significant skepticism, but organ preservation strategies with watch-and-wait or transanal endoscopic 
microsurgery have since shown good long-term results2,4–8.

Complete pathologic response (pCR) to neo-adjuvant chemoradiation is assessed during pathological exam-
ination after surgery. Identifying patients in pCR with a high rate of accuracy could lead to improved clinical 
outcome. Computational Imaging, also known as Radiomics, is the use of imaging data from routine clinical 
work-up to assess the tumor characteristics, such as spatial heterogeneity, texture or shape. This approach is 
transforming imaging into a high-throughput data mine that can be leveraged and analyzed with other clinical 
features for precision medicine and decision support. Its potential is currently being explored in several clinical 
setups9, including rectal cancer10.

Deep Learning (DL) is a subfield of machine learning and artificial intelligence that is increasingly used in 
medicine11–14 for diagnosis15, classification16, or prediction17,18. In this study, we present a novel approach combin-
ing Deep Learning with clinical and radiomics features to build a model predicting pCR in a multicenter cohort 
of patients with locally-advanced rectal cancer treated with neo-adjuvant chemoradiation, followed by surgery.

Results
Radiomics features.  One thousand six hundred eighty-three features were extracted from the two seg-
mentations of the tumor volume, for each patient (319770 features in total). One hundred and twenty-four 
features (7.3%) had an Intraclass Correlation Coefficient higher than 0.8 in the following categories: Texture 
(Grey-Level Co-Occurrence Matrix in 2D and 3D, Grey-Level Run Length Matrix, Intensity Direct and Intensity 
Histogram) and Shape. Out of these, 28 features (22%) were filtered on the basis that they were significantly cor-
related to pathological Complete Response (Wilcoxon Test p < 0.05) in three categories of features: Gray-Level 
Co-ocurrence Matrix 2D and 3D and IntensityDirect. The heatmap showed clustering of these features in two 
groups of patients (Fig. 1).

Deep Learning network training and testing.  As a baseline, another model created with Linear 
Regression, using only the TNM stage, showed a lower accuracy of 69,5% (95% CI = 59,2% to 78,51%). Sensitivity 
was 34,78% (95%CI = 16,38% to 57.27%), specificity was 80,56% (95% CI = 69.53% to 88.94%). Mean area under 
the curve (AUC) for the LR model was 0.59 (95% CI = 0.46 to 0.69). In the DNN, 29 variables (T stage and the 
robust, filtered 28 radiomics features) were included. The DNNClassifier predicted pCR with an 80% accuracy 
(95% CI = 70.54% to 87.51%). Sensitivity was 68.2% (95%CI = 45.13% to 86.14%), specificity was 83.56% (95% 
CI = 73.05% to 91.21%). Mean AUC for the DNN model was 0.72 (95% CI = 0.65 to 0.87). A comparison of the 
main metrics of the model (accuracy, AUC, false and true positives and negatives rates) did not reveal any signif-
icant differences in the results between the folds (Chi-Squared test, p > 0.05). Increasing the number of hidden 
layers or the neurons in each layer did not improve performance: accuracy dropped to 70% when ten hidden 
layers where used with 100 neurons in each layer. A ten-fold increase of the number of learning steps (n = 30,000) 
or epochs (n = 10) for network training did not improve accuracy (80%).

As a comparison, a Support Vector Machine (SVM) model was created. The accuracy of this model, trained on 
the same features with a 5-fold cross validation, was 71.58% (95% CI = 61.40% to 80.36%). Sensitivity was 45.45% 
(95% CI = 24,39% to 67,79%), specificity was 79.45% (95% CI = 68.38% to 88.02%). Mean AUC for the SVM model 
was 0.62 (95% CI = 0.51 to 0.74). Confusion matrices for the LR, DNN and SVM models are shown in Table 1. There 
was no statistical difference for the metrics of the model between the fold (Chi-Squared test, p > 0.05).

There was no statistical correlation between pCR and overall survival (log-rank test, p = 0.258), but none of 
the patients in pCR died during the study (Fig. 2).

Discussion
This is the first study that used Deep Learning to predict pCR after neo-adjuvant chemoradiation in locally 
advanced rectal cancer. Routine care data were extracted from our CDW to create a profile of the patients. T stage 
was the only variable significantly correlated to pCR. It was combined with a high-dimensional radiomics pheno-
type, extracted from CT scans, in a Deep Neural Network to predict pCR after neoadjuvant chemoradiation. The 

Figure 1.  Heatmap of radiomics features correlated to complete response.
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DNN predicted pCR correctly in 80% of the cases. Creating a profile of each patient was made possible through 
the use of our CDW, in which medical records of all our patients are prospectively and automatically stored. Data 
from 750,000 patients are stored in the HEGP CDW, including 14,000 cancer patients treated with radiation. A 
request can easily be created in i2b2 to identify cohorts of patients that can later be used to extract structured and 
unstructured data from the CDW, using custom-made software19. In the field of radiation oncology, data from 
treatment planning and delivery can also be easily extracted from the Treatment Planning and Record-and-Verify 
systems.

Computational Imaging consists in extracting quantitative features from CT scan, MRI or PET/CT20. Medical 
images are no longer simple pictures to interpret visually; they are now treated as data. These analyses are intended 
to be conducted with routine care images and could be used like any other data for target volume delineation or 
decision-making21. However, there are several tools available and no standard way to extract radiomics features, 
meaning that reproducibility is a key challenge in this field22. We used an open and free tool that was designed for 
collaboration23. We provide the parameters we used for feature extraction and selection in Supplementary File 1 
and online24. Robustness of the extracted features was assessed with ICC computation, and only features with a 
high ICC (>0.8) were kept.

Other studies have already been published, using MRI25 or PET/CT26 with logistic regression or simpler 
Artificial Neural Network (ANN) to predict treatment response, with correct accuracy (AUC = 0.71–0.79 for 
the MRI model, data not provided for the PET/CT model). The latest study included 222 patients to build a radi-
omics signature with 30 MRI features25. The model was created with Support Vector Machine, another Machine 
Learning approach13, and found an area under the receiver operating characteristic curve of 0.9756 (95% con-
fidence interval, 0.9185–0.9711) in the validation cohort. However, feature extraction from MRI is even more 
complex and less reproducible than CT Scan, meaning that these results cannot be easily reproduced on another 
cohort27. Another frequent limit of radiomics studies is that they often explore the prognostic relevance of 
imaging features, without using any clinical, biological or treatment delivery data. This was not the case in our 
study since we used several other inputs beyond radiomics into our DNN. Our study has some limitations. First, 
the sample size is limited with a large number of predictors. In our cohort, patients were referred from three 
different hospitals for neoadjuvant chemoradiation and were then treated in their respective institution, which 
limits the risk of overfitting (i.e. when a neural network has been trained on a dataset and is unable to accurately 
predict the outcome on another unknown dataset). A 5-fold cross validation was performed. The feature selec-
tion performed before training could have caused some test-set leakage. To limit this, we selected features from 
4 of the 5 partitioned datasets, leaving the validation set from the first validation. Since the accuracy and AUC 
of the model is consistent across all five cross-validations, we do not believe leakage had a significant effect on 
the model.

Physicians cannot intuitively understand the results given by the model we created: Deep Learning essen-
tially remains a black box. With the use of a large number of variables and second order statistical data, such as 
radiomics, we believe this cannot be avoided. Visualization techniques such as a radiomics heatmap can only 
give a high-level representation of the data. These publications are hypothesis-generating studies and can help 
in identifying relevant prognostic or predictive factors, but their level of evidence is still low, no matter how 
innovative their approach is. It is considered that a human brain can only integrate up to 5 variables in order 
to make an adequate decision28,29. Since oncology is relying on an increasing amount of data of different types, 
using computers as Clinical Decision Support Systems (CDSS) could become mandatory. Deep Learning, and 
Artificial Intelligence in a broader sense, will eventually disrupt the way we practice medicine in positive11,30,31 
and negative32 ways. Among the disciplines poised to be radically changed, is medical imaging. Several studies 
have recently been published predicting longevity from routine CT-Scans18 or detecting pneumonia from chest 
X-Ray33. The development of Deep Learning will transform the way we use imaging for diagnosis, treatment 
planning and decision making. It is not clear yet if these methods should be assessed as any other medical device 
in a randomized trial or if new approaches are needed.

Predicted class

pCR: n (% of actual class) Non pCR: n (% of actual class) Total

Actual class

pCR

Baseline LR: 8 (36%) Baseline LR: 14 (64%)

22DNN: 15 (68%) DNN: 7 (32%)

SVM: 10 (45,4%) SVM: 12 (54,5%)

Non pCR

Baseline LR: 15 (21%) Baseline LR: 58 (79%)

73DNN: 12 (16%) DNN: 61 (84%)

SVM: 15 20%) SVM: 62 (80%)

Total

LR: 23 LR: 72

95DNN: 27 DNN: 68

SVM: 25 SVM: 70

Table 1.  Confusion matrices: Baseline LR: Linear Regression model with T stage; DNN: Deep Neural Network 
model with 29 variables); SVM: Support Vector Machine Model with the same 29 variables.
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Conclusion
In this proof-of-concept study, we show that using a DNNClassifier on heterogeneous data combining clinical and 
radiomics features is feasible and can accurately predict patients who will have a complete pathological response 
after neo-adjuvant chemoradiotherapy for locally-advanced rectal cancer. For this subset of patients, conservative 
treatments could be a valid approach, with less long-term side effects. After careful prospective evaluation of this 
approach in a randomized clinical trial, this kind of methods could be directly implemented within the treatment 
planning systems used in radiation oncology to better personalize treatments.

Methods
Ethical statement.  This study was approved by the IRB and ethics committee CPP Ile-de-France II: IRB 
Committee # 00001072, study reference # CDW_2015_0024. All experiments were carried out in accordance with 
relevant guidelines and regulations.

The study used only pre-existing medical data, therefore patient consent was not required by the ethics 
committee.

Dataset description.  Patients with a T2-4 N0-1 rectal adenocarcinoma treated between June 2010 and 
October 2016 with neo-adjuvant chemoradiation (4 to 50.4 Gy) with Capecitabine (800 mg/m2 twice a day) were 
included in the study. The patient recruitment originated from three academic institutions: Hôpital Européen 
Georges Pompidou (HEGP), Hôpital Cochin (HC) and Hôpital Ambroise Paré (HAP), belonging to the 
Assistance Publique – Hôpitaux de Paris. All patients had a pelvic MRI and PET-CT for staging. Chemoradiation 
was performed in our department and surgery was performed later 6 to 10 weeks by the surgery department in 
each recruiting institution. Ninety-five patients from three different institutions (HEGP: n = 35, 37%; HC: n = 23, 
24%; HAP: n = 37, 39%) were included in the final analysis. Median follow-up was 16 months (range: 3–65). 
There were 49 males (52%) and 46 females (48%). Median age was 66 years old (32–84). Median tumor size was 
48 mm (15–130). There were 9 T2 (9%), 75 T3 (79%) and 11 T4 (12%) tumors. Nineteen patients (20%) had no 
lymph node metastasis on pelvic MRI and there were 76 N+ patients (80%). Median baseline hemoglobin, neu-
trophils and lymphocytes counts were 13.6 g/dl (9.7–17.5), 1734/mm3 (336–3760) and 4050/mm3 (1100–11160) 
respectively. Delivered median doses were 50.4 Gy (45–50.4) to the GTVp and 45 Gy to the CTV. Median dose per 
fraction was 2 Gy (1.8–2.25 Gy). Median treatment length was 39 days (32–69). Average time between chemoradi-
ation and surgery was 9 weeks (min = 4; max = 11). Twenty-two patients (23%) had pathologic complete response 
after chemoradiation. Forty-two patients received adjuvant chemotherapy. Patients’ characteristics from each 
institution are shown in Table 2. Two patients had a local relapse (2.1%, none in the pCR group) and 7 a distant 
relapse (7.3%, none in the pCR group) during follow-up. Disease-free and overall survival rates at follow-up were 
90.53% and 96.85% respectively. Among the variables extracted from our CDW, T stage was the only feature sig-
nificantly correlated with pCR (Chi-Squared test, p = 0.036).

Clinical, pathological, biological features extraction.  All features were extracted from our clinical 
data warehouse (CDW), that relies on the Informatics for Integrating Biology and the Bedside (i2b2) model - 
an open source infrastructure developed by Harvard Medical School and adopted by more than 130 academic 

Figure 2.  Kaplan-Meier curves for overall survival stratified on pathological complete response.
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hospitals around the world34,35. The i2b2 warehouse uses an Entity-Attribute-Value (EAV) data model for its 
adaptability and dynamic nature. Concepts are stored separately in a hierarchical data model. The following fea-
tures were extracted: age, sex, smoking status, tumor differentiation and size, T and N stages, baseline hemoglo-
bin, neutrophils and lymphocytes counts.

Treatment planning and delivery features extraction.  Data on treatment planning and delivery in 
our institution (2001–2016) were extracted from the ARIA system using reverse engineering and the VARIAN 
ESAPI36 for dose-volume histograms (DVH). Structures labels were sorted and filtered by number of occurrences. 
Each of them was then matched to the ROS ontology before integration into the CDW37–39. Delivered total dose to 
the GTVp and CTV, dose per fraction and treatment length were then extracted for modeling.

Radiomics features extraction, quality control and filtering.  All included patients’ treatment plan-
ning CT-Scans were extracted from the institution PACS and reused. CT-Scan were performed on scanned on 
a General Electric Light Speed scanner (Boston, Massachusetts, USA) as follow: helical acquisition, contiguous 
slices of 1.25 mm, 512 × 512 × 512 matrix, 120 kV, mAs > 350, speed: 3.75, mode: 0.75, with contrast injection, 
software version 0.7MW11.10. The rectal Primary Gross Tumor Volume (GTVp) was manually segmented by 
two expert gastrointestinal radiation oncologists on Eclipse V.13 (Varian, Palo Alto, California, USA) before 
being exported for radiomics features extraction. All DICOM and RT-STRUCT data were imported into IBEX 
(MD Anderson, Texas, USA), an open infrastructure platform dedicated to radiomics features extraction23. Each 
patient was segmented twice. Shape, Intensity Direct, Gray Level Co-Ocurrence Matrix (GLCM) 25 (computed 
from all 2D image slices) and 3 (computed from all 3D image matrices), Neighbor Intensity Difference (NID) 3 
and 25, Gray Level Run Length Matrix 25 were extracted without pre-processing on each segmentation. In all, 319 
770 features were extracted (1683 features extracted for each segmentation on each 95 patients). All extraction 
categories are provided (Supplementary File 1). To estimate the robustness of the tumor features, the intra-class 
correlation coefficient (ICC) was calculated)40,41. ICC can be used when quantitative measurements are made on 
units that are organized into groups42. It ranges between 0 and 1, indicating null and perfect reproducibility. In 
order to determine the ICC (equation 1) for inter-observer segmentations, variance estimates were obtained from 
two-way mixed effect model of analysis of variance (ANOVA):

=
−

+ −
ICC MSr MSw

MSr k MSw( 1) (1)

Characteristics HEGP (n = 35–37%) HC (n = 23–24%) HAP (n = 37–39%)
Chi-Squared 
Test (p)

Sex

Male 18 (51.4%) 14 (61%) 17 (54%)
0.603

Female 17 (48.6%) 9 (39%) 20 (46%)

Median age (range) 65 (34–79) 61 (37–84) 70 (32–84) 0.768

T stage

2 2 (5.7%) 0 (0%) 7 (19%)

0.5873 27 (77.2%) 20 (87%) 28 (75.6%)

4 6 (17.1%) 3 (13%) 2 (5.4%)

N stage

0 9 (25.4%) 4 (17.4%) 6 (16%)
0.588

1 26 (74.6%) 19 (82.6%) 31 (84%)

Median tumor size in mm (range) 50 (15–130) 48 (30–65) 45 (20–99) 0.954

Tumor differentiation

Grade 1 0 (0%)` 0 (0%) 0 (0%)

0.118
Grade 2 0 (0%) 2 (8.7%) 1 (2%)

Grade 3 16 12 (52.2%) 16 (44%)

Grade 4 19 9 (39.1%) 20 (54%)

Median baseline hemoglobin in g/dl (range) 13.3 (9.7–15.5) 13.6 (11.3–17.5) 13.5 (10.3–17) 0.220

Median baseline neutrophils in /mm3 (range) 3659 (1100–9380) 3879 (1820–10925) 3796 (1740–11160) 0.405

Median baseline lymphocytes in /mm3 (range) 1638 (336–3504) 1740 (1159–3240) 1844 (520–3760) 0.327

Median dose to GTVp in Gy (range) 50.4 (45–50.4) 50 (45–50.4) 50 (45–50.4) 0.127

Median dose to CTV in Gy (range) 45 (45–46) 46 (45–49.5) 46 (45–46) 0.204

Median dose per fraction in Gy (range) 1.8 (1.8–2) 2 (1.8–2.25) 2 (1.8–2) 0.001

Median treatment length in days (range) 48 (32–54) 37 (32–69) 37 (32–113) 0.181

Pathological complete response rate (n - %) 9 (25.7%) 3 (12.5%) 10 (27%) 0.387

Table 2.  Patient characteristics.
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where MSR = mean square for rows, MSW = mean square for residual source of variance, k = number of observ-
ers involved and n = number of subjects. R version 3.4.2 with the ICC package was used for computation43.

Statistical analysis.  Chi-squared tests were performed to evaluate differences in patients’ characteris-
tics between institutions and to select categorical variables correlated to pCR (p < 0.05). Wilcoxon tests were 
performed to filter features significantly correlated (p < 0.05) with pCR. As Parmar et al. showed, Wilcoxon 
test-based feature selection has the highest prognostic performance with high stability against data perturba-
tion44. A heatmap showing radiomics features clustering and correlations to pCR was generated. Survival rates 
were calculated from the date of surgery to create a Kaplan-Meier curve for overall survival. All statistical analysis 
were performed with R version 3.4.245 with the ggplot246, survival47 and survminer48 packages.

A 5-fold cross validation was performed: the original dataset was randomly partitioned into 5 equal sized 
subsamples. Of the 5 subsamples, a single subsample was retained as the validation data for testing the model, and 
the remaining 4 subsamples were used as training data. The cross-validation process was then repeated 5 times, 
with each of the 5 subsamples used once as the validation data. Values are reported as a mean of the 5 models. To 
limit test-set leakage, we calculated the ICC and the Wilcoxon correlation in 4 of the 5 partitioned datasets (that 
were created for the 5-fold cross-validation), leaving out the validation set from the first validation.

Deep learning training and validation.  Robust features significantly correlated to pCR were used as 
inputs to a Deep Neural Network (DNN) created using the DNNClassifier Custom Estimator from the 
TensorFlow open-source framework (v1.3, Google, Mountain View, California, USA)49. We explored a range of 
combinations of batch size, layer depth and layer size. We determined the optimal architecture for this deep learn-
ing model empirically, testing numerous variants. Changing the depth of the network reduced performance. We 
did not increase our model depth beyond 10,000 hidden units due to computational constraints. The resulting 
DNN was a compromise between performance and computational cost and included three hidden layers with 10, 
20 and 10 neurons respectively. A Rectified Linear Unit (ReLu) function50 was used for activation in the hidden 
layers because it resulted in a faster training: =F x x( ) max( , 0), where x is the input to a neuron. Gradient 
descent was performed with the Adagrad Optimizer (equation 2)51:

η
ε

Θ + = Θ −
+

⁎t t
Gt

gt1
(2)

where Θ are parameters, t is the time-step, η is the learning rate, gt is the gradient, Gt is a matrix of the sum of the 
squares of gradients up to time step t, and ε is a smoothing term that avoids division by zero. Adagrad adapts the 
learning rate to the parameters, performing larger updates for infrequent and smaller updates for frequent param-
eters. For this reason, it is well-suited for sparse data. The output of the network was binary (pCR or no pCR).

To avoid overfitting, a low number of epoch was chosen (3000 steps, 1 epoch). Training and validation 
was performed on a Linux Ubuntu 17.04 workstation with a Quad Core 2.8 Ghz Intel Core i7-770HQ and a 
GeForce GTX1060 Graphics Processing Unit (GPU). Results were visualized with the TensorBoard suite (Google, 
Mountain View, California, USA).

A logistic regression model was built from the same training and testing datasets using only the TNM stage 
as a baseline comparison, with the glmnet R package52. A Support Vector Machine model was created with the 
same variables as the DNNClassifier with Sci-Kit Learn53. AUCs were calculated with the pROC R package39,54.

The global analysis pipeline is shown in Fig. 3.

Data Availability.  The datasets generated during and/or analyzed during the current study are not publicly 
available due to the clinical and confidential nature of the material but can be made available from the corre-
sponding author on reasonable request.

Figure 3.  Global analysis pipeline.
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