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Handwritten-Digit Recognition 
by Hybrid Convolutional Neural 
Network based on HfO2 Memristive 
Spiking-Neuron
J. J. Wang1, S. G. Hu1, X. T. Zhan1, Q. Yu1, Z. Liu2, T. P. Chen3, Y. Yin4, Sumio Hosaka4 & Y. Liu1

Although there is a huge progress in complementary-metal-oxide-semiconductor (CMOS) technology, 
construction of an artificial neural network using CMOS technology to realize the functionality 
comparable with that of human cerebral cortex containing 1010–1011 neurons is still of great challenge. 
Recently, phase change memristor neuron has been proposed to realize a human-brain level neural 
network operating at a high speed while consuming a small amount of power and having a high 
integration density. Although memristor neuron can be scaled down to nanometer, integration of 1010–
1011 neurons still faces many problems in circuit complexity, chip area, power consumption, etc. In this 
work, we propose a CMOS compatible HfO2 memristor neuron that can be well integrated with silicon 
circuits. A hybrid Convolutional Neural Network (CNN) based on the HfO2 memristor neuron is proposed 
and constructed. In the hybrid CNN, one memristive neuron can behave as multiple physical neurons 
based on the Time Division Multiplexing Access (TDMA) technique. Handwritten digit recognition 
is demonstrated in the hybrid CNN with a memristive neuron acting as 784 physical neurons. This 
work paves the way towards substantially shrinking the amount of neurons required in hardware and 
realization of more complex or even human cerebral cortex level memristive neural networks.

The human brain, consisting of 1010–1011 neurons and 1014–1015 synapses, has powerful cognitive capability while 
consuming low power (~15 watts)1. Inspired by the advanced information processing scheme in the brain, neuro-
morphic hardware using artificial neurons and synapses has aroused extensive concern in recent years2. Although 
improvements in CMOS device integration have been achieved by periodic doubling transistor density over the 
past half century3, it is still challenging to implement a neuromorphic hardware based on the standard CMOS 
technology to achieve the functionality comparable to the human brain. For example, the TrueNorth neuromor-
phic chip with 5.4 × 109 transistors can realize 1 × 106 spiking neurons and 2.56 × 108 synapses only4. In order 
to construct a brain-level neuromorphic hardware, it is inevitable to develop nanometer-scale neuromorphic 
devices and the Time Division Multiplexing Access (TDMA) technique may be a possible pathway for shrinking 
the amount of physical neurons.

Recently, great effort has been made to develop neuromorphic devices that can emulate the behaviors of 
neuronal systems. Among the emerging neuromorphic devices (e.g., neuron transistor5, phase-change device6, 
ferroelectric device7, magnetic device8), memristors whose resistance can be quasi-continuously adjusted by 
electrical stimuli, have attracted the most attention9,10. After Williams et al. announced the discovery of mem-
ristor in 200811–13, it has been demonstrated that memristors can effectively emulate synaptic plasticity, such 
as the long-term potentiation/depression14,15 and spike-timing dependent plasticity16,17, as well as brain-like 
behaviors, such as learning and forgetting functions18,19. More recently, small scale neuromorphic hardware 
using memristors as synapses have been demonstrated to realize brain-like behaviors. M. Ziegler et al. and Y. V. 
Pershin et al. respectively reported a simple neural network consisting of three electronic neurons connected by 
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memristor-based synapses for implementing associative learning like the Pavlov’s dog20,21. S. B. Eryilmaz et al. 
and S. G. Hu et al. respectively realized associative memory in Hopfield neural networks based on memristor 
synapses22,23. D. B. Strukov et al. realized 33-pixel pattern classification in memristive crossbar circuits via ex 
situ or in situ training24–26. A. Serb et al. demonstrated pattern classification through unsupervised learning in a 
winner-take-all neural network based on multi-state memristive synapses27. P. Yao implemented 3-class face clas-
sification in a 1024-cell one transistor and one memristor (1T1R) synapse array28. W. D. Lu et al. demonstrated 
image reconstruction in a 32 × 32 memristor crossbar hardware through sparse coding29.

In the year of 2016, researchers from IBM reported a stochastic neuron with neuronal state directly stored in 
a phase-change device30; subsequently they presented neuromorphic architectures comprising neurons and syn-
apses based on phase-change devices in the tasks of correlation detection31–33, pattern learning and feature extrac-
tion34. Although the phase change spiking neuron shows good neuromorphic properties, the memristor using 
CMOS-compatible materials is more promising and competitive for constructing spiking neuron because of its 
simple structure, excellent scalability, low cost, and good compatibility with standard CMOS processes35,36. On 
the other hand, in order to implement memristive neural network, building important types of artificial neural 
networks based on memristive neurons is necessary. Convolutional neural network (CNN) is a variant of multi-
layer perceptron (MLP) inspired by the organization of the animal visual cortex37, which has been widely applied 
in many artificial intelligent fields, such as handwritten numeral recognition38, object detection39, video classi-
fication40, and etc. Demonstration of building CNN based on memristive neuron may pave the way for further 
extensive use of memristive neural network in artificial intelligence. Most recently, fully integrated memristive 
neural networks were realized, which provide a more efficient approach to implementing neural network algo-
rithms than traditional hardware41. L. Ni et al. achieved high energy efficiency and throughput in a ReRAM-based 
binary CNN accelerator42 and proposed an area-saving matrix-vector multiplication accelerator based on binary 
RRAM crossbar, which exhibits superior performance and low power consumption on machine learning43.

In this work, a CMOS-compatible HfO2 memristor neuron, which has the ability to mimic the integration of 
pre-synapse current in membrane of biological neuron, is designed and implemented. A hybrid CNN based on 
the HfO2 memristor neuron has been constructed. In the network, one memristive neuron can behave as 784 
physical neurons based on the Time Division Multiplexing Access (TDMA) technique. Handwritten digits can be 
recognized by using the CNN. This study provides the possibility of both a substantial reduction of the amount of 
physical neurons required in the hardware and realization of more complex or even human brain level memristive 
neural network.

Materials and Methods
The memristor used as neuron is based on a metal-insulator-metal (MIM) structure with a thin HfO2 layer as the 
insulator. The device fabrication details were described in our previous work23. Dies with different electrode areas 
were cut from the wafer and packaged in standard 28-pin dual in-line package (DIP) for constructing the mem-
ristive neuron. The hybrid Convolutional Neural Network (CNN) based on the memristive neuron was realized 
on a printed circuit board (PCB) (see Supplementary Figure 1). The CNN consists of one memristive neuron, four 
transmission-gate chips (Maxim MAX313), seven operational amplifiers (Texas Instruments OPA4322AIPWR), 
and one comparator chip (Texas Instruments LM339). Electrical characteristics of the memristor were meas-
ured with a Keithley 4200 semiconductor characterization system at room temperature. In the measurement of 
the CNN, “Raspberry PI” PAD minicomputer was used to generate the clock signals, and the waveforms of the 
clock signals and outputs were recorded with a RIGOL oscilloscope (model No. DS4024) and was analyzed by 
“Respberry PI” PAD minicomputer. Details of TDMA is provided in Supplementary Note 2.

Results
In conventional artificial neuron, capacitors are normally used as the neural membrane. However, capacitors 
occupy a large area, resulting in impossibility to integrate a large amount of neurons in a chip. Memristors have 
much higher integration density and consume less energy. Besides, they are compatible with CMOS technology 
and have higher speed than capacitor-based neuron. In addition, although the phase-change memristive neuron 
shows good neuronal properties30, neuron based on the fully CMOS-compatible material HfO2 is still preferred 
considering the integration and process compatibility. HfO2 is a high-k material which has been widely used to 
replace SiO2 as the gate dielectric in CMOS technology (i.e., 28 nm CMOS technology44). And thus, the memris-
tor based on HfO2 thin film is completely compatible with the standard CMOS technology. Besides, memristor 
based on HfO2 shows superior performances45, such as excellent radiation resistance, endurance and retention 
characteristics. Last but not least, the neuron based on the HfO2 exhibits similar properties of uncertainty analo-
gous to biological neuron, which plays a key role in signal encoding and transmission46. The memristor having the 
hafnium oxide sandwiched between two metal electrodes is illustrated in Figure 1. The conductive filament model 
can be used to explain the change of resistance/conductance in the HfO2 memristor. Detailed device structure 
and conductive switching mechanism were described in our previous work23. As shown in Figure 1, an artificial 
spike-based neuron based on the HfO2 memristor containing dendrites (inputs), soma, and axon (output) has 
been designed and implemented in this work. The dendrite is connected to synapse for communication with 
other neurons. The soma comprises the neuronal membrane and the spike generation module. In a nonlinear 
integrate-and-fire neuron model, the membrane potential y can be expressed as

= − + ⋅
dy
dt

L y g y t u( ) ( , ) (1)

where L(y) is the leaky term, reflecting the imperfections in membrane; g(y, t) is the conductance of the ion 
channel representing the synaptic weight; and u denotes the voltage due to the arrival of the pre-synapse spike. 
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The artificial neuron follows equation (1) until the membrane potential increases beyond a threshold. Then the 
soma fires a spike and resets the neuron to the initial state. More information about the memristive neuron circuit 
design and typical waveforms are provided in Supplementary Note 3.

The integration functionality of neuron can be realized by applying successive pulses to the memristor. The 
signals of dendrites (inputs), axon (output) and somas (membrane potential) are shown in Figure 2. The electri-
cal potential of the memristor increases step by step until a dendrite spike occurs, which reflects the integration 
functionality in membrane. When there is no dendrite spike applying to the memristor, a fixed current is applied 
to the memristor for sensing the resistance of the memristor. After several pulses, the resistance of the memris-
tor increases beyond the threshold analogous to the threshold potential in a biological neuron. Then an axon 
spike is fired by the neuron. At the same time, a pulse is applied to the memristor to reset the memristor to the 
low-resistance state.

Figure 2a, 2b and 2c show the neuron firing properties for different thresholds of 0.5 V, 0.8 V and 1.0 V, respec-
tively. As can be observed, a higher threshold leads to less axon spikes occurrence. The input spiking frequency 
also takes effect on the integration in the memristive neuron. Figure 2d, 2e and 2f show the neuron firing prop-
erties for different input spiking frequencies of 10 Hz, 100 Hz and 1 kHz, respectively. Higher input frequency of 
spikes causes more output spikes. On the other hand, real biological neural activity may show significant irregu-
larities due to intrinsic and extrinsic neural noise that originates from the biochemical processes of the individual 
neuron in network. The memristive neuron implemented in this work also exhibits similar properties of uncer-
tainty analogous to biological neurons. In some circumstances, the resistance of the memristor is unchanged for 
most spikes; while it suddenly approaches the high-resistance state for some spikes. The randomness of neuron 
firing is shown in Figure 2g. The Monte-Carlo simulation is carried out to fit the experimental result of the 
memristive neuron firing. As can be seen in Figure 2g, the Monte-Carlo fitting result is close to the actual his-
togram obtained from the memristive neuron firing experiments. The random integration-and-fire behavior of 
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Figure 1.  An artificial neuron based on a HfO2 memristor. Schematic of an artificial neuron that consists of the 
dendrites (inputs), the soma (which comprises the neuronal membrane and the spike event generation) and the 
axon (output). The dendrites may be connected to synapses in a network. The input spikes are modulated by 
synapse in frequency domain having the same amplitude.
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memristive neuron is caused by the random resetting event of memristor instead of the real integration. Figure 2g 
indicates that the designed memristive neuron can emulate real biological neurons well in uncertainty. More 
information about neuron firing properties is presented in Supplementary Note 4.

Using the memristive neuron, a hybrid convolutional neural network was constructed to demonstrate digit 
recognition. More CNN design information is provided in Supplementary Note 5. A “Raspberry PI” minicom-
puter was used to generate dendrite spikes and receive output axon spikes from neurons. In the hybrid neu-
ral network, neurons can either be the memristive neurons or software-based. The two types of neurons are 
exchangeable to verify the amount of neurons that the memristive neuron can behave as based on TDMA. It is 
should be noted that by using TDMA technique the speed of CNN is reduced as the network must spend time 
in accessing the same memristive neuron in series. Trade-off between the CNN speed and the number of the 
memristive neuron required should be considered. On the other hand, in the hybrid network synapses, maximum 
function and activation function are implemented in software domain by “Raspberry PI” minicomputer. The 
system photograph is presented in Supplementary Figure 1. As shown in Figure 3a, 5 × 5 synapses are connected 
to a neuron in the convolutional layer, and all of the neurons share the same synaptic weight in a certain layer due 
to the CNN inherent characteristics. Due to the shared synaptic weight, a single memristive neuron can behave 
as many neurons based on TDMA technique as shown in Figure 3b. The neural network was trained on Graphic 
Processing Unit (GPU) computing platform with Tensorflow47. After training, the convolutional kernels and 
weight matrixes are transferred into the hybrid CNN synaptic matrix. The information about training of the CNN 
is provided in Supplementary Note 6.

As shown in Figure 3a, the inference process is realized by the CNN with 6 layers including 2 convolutional 
layers, 2 maxpool layers and 2 fully connected layers. In the convolutional layers, the photographs of the hand-
written digits are divided into several overlapping grids. In the first convolutional layer the photograph is divided 
into 28 × 28 grids and each grid contains 5 × 5 pixels. Zeros are filled at photograph borders to make the amount 
of grids equaled to that of the original photograph. The output of a grid is the weighted sum of the pixels; and the 
network inputs the sum to the activation function of the rectified linear unit (ReLU function). The outputs of all 
grids are made of a transformed photograph containing abstracted information. For the first convolutional layer, 
32 convolutional kernels are used, and thus 32 different abstracted photographs (channels) of the handwritten 
digits are obtained. The convolutional layer is followed by a maxpool layer to reduce redundant information as 
well as the amount of pixels. The maxpool layer receives all pixels of one channel generated by the convolutional 
layer, and divides the pixels into several non-overlapping grids. In the first maxpool layer, the channel is divided 
into 14 × 14 grids; and each grid contains 2 × 2 pixels. The output of the first maxpool layer also contains 32 
channels, each of which has 14 × 14 pixels. The second convolutional layer is the same as the first one except 

Figure 2.  Characteristics of the spiking-neuron based on HfO2 memristor. Neuron response for input when 
Vth = 0.5 V (a), 0.8 V(b), and 1.0 V (c) at 100 Hz; neuron response for Vth = 0.7 V at 10 Hz (d), 100 Hz (e), and 
1 kHz (f); and (g) firing possibility for the number of spikes.
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that the amount of convolutional kernels is 64. Before the fully connected layer, the output of maxpool layer is 
reshaped into one dimensional array, whose amount of elements is 3136 (7 × 7 × 64). As shown in Figure 3a, the 
convolutional layers are followed by a 2 layers of fully connected perceptron, which contains 1024 neurons and 10 
neurons, respectively. Each neuron in perceptron receives the spikes, calculates the weighted sum of the spike and 
transfers the sum to the nonlinear activation function (ReLU function) to obtain the output. Handwritten digit 
recognition inference process is carried out according to:

f i j w f i k j k( , ) [ ( , ])]
(2)

out
k k

k k in i j
0

4

0

4

i j
i j∑ ∑= ⋅ + +

= =

f i j f p p( , ) max [ max ( , )]
(3)out i p i j p j in i j2 2 2 2 2 2i j

=
≤ ≤ + ≤ ≤ +

∑= ⋅
=

f i j w f i( , ) [ ( )]
(4)out

i

n

i in
0

Equation (2) presents convolution operation in convolutional layer, where wkikj is the convolutional kernel and 
fin(i, j) is the frequency of the input spike. Equation (3) presents the maxpool operation following the One-Hot 
rule (See Supplementary Note 5). The operation in fully connected layer follows equation (4), where wi is the 
ith weight of perceptron. Considering the characteristics of the memristive neuron, all signals received by neu-
rons are modulated by frequency. The gray scale of handwritten photograph is modulated to a fixed amplitude 
spike, and the frequency of spike is proportional to the gray scale level. Considering the connection between syn-
apses and neurons, the software-based synapse in the network is designed to be a frequency modulator. Synapses 
receive the spike sequence, and modify the frequency of the pulse sequence according to the pre-defined weight, 
and send out output spiking sequence. The calculation in the network follows equations (2–4). The detailed infor-
mation of the output of channels in each layer when recognizing handwritten “9” is presented in Supplementary 
Note 7.

In the inference process, considering the time domain delay factor, the memristive neuron behaves as 784 
neurons in first convolutional layer based on TDMA technique, as shown in Figure 3b. Neurons in other layers are 
software-based and they are replicable by the memristive neuron. The photographs of the handwritten of digits in 
the test set of MNIST database48 were used to examine the hybrid CNN. Ten thousand different photographs were 
examined through this CNN, and the accuracy rate is round 97.1% which approaches the rate of a pure software 

Figure 3.  Convolutional neural network based on memristive neuron. (a) Illustration of the CNN when 
recognizing digit “9”; (b) illustration of one memristive neuron working as 784 neurons in the first 
convolutional layer in the CNN based on TDMA.
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based network through GPU. More information about the CNN recognition of handwritten “9” is provided in 
Supplementary Note 8.

Figure 4a shows examples of noisy photographs for the digits “0” to “9”. Noises are added by randomly choos-
ing pixels and assigning them to zero. Figure 4b shows the accuracy rate on ten thousand of test images with a 
certain proportion of noise. The average accuracy rate is more than 90% for the image which is distorted by add-
ing 40% noise. In this work, all weights in convolutional layers and fully connection layers are positive for easy 
application in hardware.

Discussion
In summary, CMOS compatible neuron has been realized based on HfO2 memristor. We have demonstrated a 
hybrid CNN based on the HfO2 memristive neuron. One memristive neuron is used behaving as 784 neurons 
in the convolutional layer in the neural network based on the TDMA technique. Handwritten digits can be rec-
ognized through this memristive CNN. This study provides the possibility to reduce the number of neurons 
required by more than two orders as well as to realize hardware implementation of brain-level artificial neuro-
morphic networks.
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