
Activity of RX-04 Pyrrolocytosine Protein Synthesis Inhibitors
against Multidrug-Resistant Gram-Negative Bacteria

Anna Vickers,a Shazad Mushtaq,a Neil Woodford,a Michel Doumith,a David M. Livermorea,b

aAntimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection
Service, Public Health England, London, United Kingdom

bNorwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom

ABSTRACT Pyrrolocytosines RX-04A to -D are designed to bind to the bacterial 50S
ribosomal subunit differently from currently used antibiotics. The four analogs had
broad anti-Gram-negative activity: RX-04A—the most active analog—inhibited 94.7%
of clinical Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa
at 0.5 to 4 �g/ml, with no MICs of �8 �g/ml. MICs for multidrug-resistant (MDR)
carbapenemase producers were up to 2-fold higher than those for control strains;
values were highest for one Serratia isolate with porin and efflux lesions. mcr-1 did
not affect MICs.
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One approach in the search for new antibacterial agents is to model the target
interactions of natural antibiotics that are unsuitable for pharmaceutical develop-

ment, due to toxicity or instability, and to use this information to design synthetic
molecules that achieve similar binding without the unfavorable traits of the original
compounds.

Melinta Pharmaceuticals has applied this strategy to blasticidin S, a natural product
of Streptomyces griseochromogenes that inhibits both eukaryotic and prokaryotic ribo-
somes but which has proved useful only as a fungicide, deployed to control rice blast
disease in Japan (1). Modeling of the ribosomal interactions of blasticidin (2), TAB-
1057A/B (3), and amecitin (4)—which have overlapping targets that are distinct from
those of clinically used bacterial protein synthesis inhibitors— has led to several new
antibacterial scaffolds, including pyrrolocytosines (5, 6). These are chemically unrelated
to blasticidin, but mimic its principal interactions with the bacterial 50S subunit (6). In
vitro antibacterial activity indicates that the pyrrolocytosines penetrate bacterial cells,
and further development has sought to optimize this penetration for Gram-negative
bacteria while reducing vulnerability to efflux (5). Chemical properties of the pyrrolo-
cytosine derivatives, along with synthetic methods, are outlined in the relevant patents
(7–9).

We evaluated four pyrrolocytosine derivatives, RX-04A to -D (Fig. 1), against a panel
of 96 Gram-negative clinical isolates, biased to overrepresent carbapenemase produc-
ers, Enterobacteriaceae with mcr-1, and Pseudomonas aeruginosa with upregulated
efflux. We additionally tested Escherichia coli HB10B and its transformant, carrying
plasmid p594, which encodes expression of mcr-1 (10). The mcr-1 and carbapenemase
genes were detected by PCR or sequencing (10, 11), while efflux levels in P. aeruginosa
isolates were inferred by interpretive reading of antibiogram data, which predict
mechanisms from phenotypes (12). MICs of the four RX-04 analogs and comparators
(amikacin, cefepime, colistin, meropenem, and tigecycline) were determined by CLSI
broth microdilution (13) using preprepared plates (Trek Diagnostic Systems, Thermo
Fisher, Oakwood, OH). DNA from four Serratia isolates differing in susceptibility to the
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pyrrolocytosines was extracted using a QIAsymphony automated instrument. Sequenc-
ing libraries were prepared using the Nextera XT DNA library preparation kit and
sequenced on the Illumina HiSeq 2500 system using the 2 � 100-bp paired-end mode.
Genomes were assembled de novo with VelvetOptimiser 2.1.9 software (http://
bioinformatics.net.au/software.velvetoptimiser.shtml) and then compared with each
other to seek genetic modifications that were specific to the Serratia isolate with the
highest pyrrolocytosine MICs, particularly in genes encoding porins, efflux pumps, and
the rRNA targets of these antimicrobial agents.

MICs by species, irrespective of resistance mechanism, are shown in Table 1, while
Table 2 shows geometric mean MICs for major resistance types represented in the test
panels. Nonsusceptibility rates to comparators for the Enterobacteriaceae isolates (n �

66) at CLSI breakpoints were as follows: amikacin, 14%; cefepime, 50%; colistin, 33% (2
�g/ml EUCAST breakpoint); meropenem, 47%; and tigecycline, 15% (1-�g/ml EUCAST
breakpoint); those for the same agents against the A. baumannii isolates (n � 10) were
as follows: amikacin, 40%; cefepime, 50%; colistin, 0%; meropenem, 50%; and tigecy-
cline, 50%, respectively. Nonsusceptibility rates for the P. aeruginosa isolates (n � 20)
were as follows: amikacin, 15%; cefepime, 45%; colistin, 25%; and meropenem, 45%.

Despite this heavy loading with isolates resistant to established agents, MIC distri-
butions of RX-04A to -D were all unimodal and tightly clustered. MICs were lowest for
RX-04A, where 94.7% of values for all species pooled lay between 0.5 and 4 �g/ml, with
no values greater than 8 �g/ml. MICs were highest for analogs RX-04C and RX-04D,
particularly for P. aeruginosa. Irrespective of the analog, the general pattern was for
MICs to be lowest for E. coli, slightly higher for other Enterobacteriaceae, particularly
Serratia spp., and highest for P. aeruginosa.

MICs for a single Serratia marcescens isolate, which also had OXA-48 carbapenemase,
were raised markedly, at 8, 16, �16, and �16 �g/ml for molecules RX-04A, -B, -C, and
-D, respectively, compared with 1 to 2, 1 to 4, 2 to 4, and 2 to 4 �g/ml, respectively, for
the remaining three Serratia isolates tested. Comparison of the four sequenced ge-
nomes revealed the high-MIC Serratia isolate to have both (i) a premature stop codon
(Tyr211) in omp2, which is an ompC/F homolog, and (ii) multiple unique changes
(compared with all three low-MIC Serratia isolates) in the sdeCDE operon, encoding an
RND pump system (14), specifically, Asn407Ser, Ser432Asn, Glu433Ala, Ala437Thr,
Ala438Asn, Asn439Lys, Ala440Thr, Glu443Gln, and ArgR448Gly in sdeC, Glu111Asp and
Thr363Met in sdeD, and Glu240Asp in sdeE. None of these changes was observed in the
three low-MIC Serratia genomes. No lesions specific to the high-MIC isolate were found

FIG 1 RX-04 pyrrolocytosine structures.
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(i) in other recognized porin genes (omp1 and omp3), (ii) in porin regulatory genes
(ompR and envZ), (iii) in efflux pump genes (smdAB, sdeXY, smfY, and ssmE), or (iv) in
genes encoding the 16S or 23S rRNA targets of the RX-04A-D molecules. Inactivation of
omp2 seems likely to reduce pyrrolocytosine uptake, and the sdeCDE lesions may
increase efflux, explaining the phenotype of the high-MIC Serratia isolate. These uptake
and efflux lesions also are congruent with an observed meropenem MIC of 32 �g/ml,
which is unusually high for an Enterobacteriaceae strain with an OXA-48 �-lactamase.

Geometric mean MICs of the four analogs for carbapenemase-producing Enterobacte-
riaceae were slightly above those for the susceptible control strains, although the differ-
entials never exceeded 1 doubling dilution (Table 2). These small rises again probably
reflected widespread reductions in permeability or upregulations in efflux among the
carbapenemase-producing Enterobacteriaceae. The MIC differential for carbapenemase-
producing versus nonproducing A. baumannii was larger, exceeding 2-fold for analogs
RX-04B to -D, although not for RX-04A; however, the numbers were small, and 3/5
OXA-23-producing isolates belonged to the same lineage (international clone II [15]), raising
the possibility that the mean was skewed by overrepresentation of this lineage.

The effect of mcr-1 was of interest because the pyrrolocytosines are polybasic (Fig. 1),

TABLE 1 Pyrrolocytosine MIC distributions by species, irrespective of resistance
mechanism

Analog and
speciesa

No. of isolates with MIC (�g/ml) of:

0.25 0.5 1 2 4 8 16 >16

RX-04A
E. coli 1 8 14
S. enterica 11
K. pneumoniae 2 14 4
E. cloacae 1 5 2
Serratia spp. 1 2 1
P. aeruginosa 1 4 4 10 1
A. baumannii 3 4 1 2
All 1 12 52 16 11 4

RX-04B
E. coli 1 6 15 1
S. enterica 10 1
K. pneumoniae 1 14 5
E. cloacae 5 3
Serratia spp. 1 2 1
P. aeruginosa 1 3 4 7 2 2 1
A. baumannii 2 4 3 1
All 1 8 50 18 12 3 3 1

RX-04C
E. coli 1 12 10
S. enterica 11
K. pneumoniae 1 8 6 5
E. cloacae 1 6 1
Serratia spp. 1 2 1
P. aeruginosa 1 4 3 3 6 3
A. baumannii 3 1 2 4
All 1 2 24 39 13 7 6 4

RX-04D
E. coli 1 2 18 2
S. enterica 11
K. pneumoniae 2 11 5 2
E. cloacae 1 5 2
Serratia spp. 1 2 1
P. aeruginosa 4 6 7 3
A. baumannii 2 1 3 4
All 1 5 47 15 13 11 4

aThe species included are Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, Enterobacter cloacae,
Serratia spp., Pseudomonas aeruginosa, and Acinetobacter baumannii.

RX-04 Pyrrolocytosines versus MDR Gram Negatives Antimicrobial Agents and Chemotherapy

August 2018 Volume 62 Issue 8 e00689-18 aac.asm.org 3

http://aac.asm.org


raising the hypothetical concern that MCR-1-mediated substitution of lipopolysaccha-
rides (LPSs) with positively charged phosphoethanolamine (16) might impede their
initial interaction with the cell surface, reducing uptake. MICs of the RX analogs for the
mcr-1-positive isolates were around 1 doubling dilution above those for control strains.
However, most (11/14) of these isolates were Salmonella enterica, being compared with
E. coli controls, and the differential may reflect species rather than mechanism. Cru-
cially, transformation of E. coli DH10B with the mcr-1-carrying plasmid p594 had no
effect on MICs of RX-04A, -B, -C, and -D, which remained at 0.25, 0.5, 0.5, and 1 �g/ml,
respectively, whereas the MIC of colistin was raised from 0.25 to 4 �g/ml. A caveat is
that we do not know the extent of LPS modification achieved by p594-mediated
carriage of mcr-1 nor the mode of expression, meaning that we cannot definitively
exclude the possibility that induction by the pyrrolocytosines was weaker than by
colistin. This seems unlikely, though: if LPS substitution with positively charged alcohols
and sugars compromised the pyrrolocytosines, then generalized resistance would be
expected in colistin-resistant genera such as Serratia, and this was not seen.

In the case of P. aeruginosa, geometric mean MICs of all analogs were ca. 1.5-fold
higher for the isolates with “normal” versus low efflux, but did not rise further for those
with elevated efflux-mediated resistance to �-lactams and fluoroquinolones (Table 2).

In conclusion, these data indicate that the four pyrrolocytosine molecules have
broad activity against Enterobacteriaceae and nonfermenters, with RX-04A the most
active analog. Near-full activity was retained against isolates with resistance mecha-
nisms of current concern, including against carbapenemase producers, those with
mcr-1-mediated colistin resistance, and (perhaps most surprisingly) P. aeruginosa with
upregulated efflux. A caveat is that the strain panel was small, and we cannot exclude

TABLE 2 Geometric mean MICs for different resistance groups

Resistance group by species (n)

Geometric mean MIC (�g/ml)

RX-04A RX-04B RX-04C RX-04D

E. coli
Wild type (5) 0.5 0.6 0.9 1.3
Carbapenemase (15)a 0.8 0.9 1.3 2.1

E. coli/Salmonella
mcr-1 (14)b 1.0 1.1 2.0 2.0

K. pneumoniae
Wild type (5) 1.0 1.0 1.0 2.0
Carbapenemase (15)a 1.1 1.2 2.0 2.8

E. cloacae
Wild type (4) 1.0 1.2 1.7 3.4
Carbapenemase (4)c 1.2 1.4 2.4 4.8

Serratia spp.
Wild type (2) 1, 2d 1, 4d 2, 4d 2, 4d

Carbapenemase (2)e 2, 8d 4, 16d 4, �16d 4, 16d

P. aeruginosa
Low efflux (5) 1.5 1.7 3.5 5.3
Normal efflux/wild type (5) 2.6 3.0 7.0 11.3
High efflux (5) 2.6 3.0 7.0 6.1
Carbapenemase (5)f 3.5 6.7 5.7 12.7

A. baumannii
Wild type (5) 1.7 1.7 2.0 4.6
OXA-23 positive (5) 3.0 3.5 5.3 12.1

aFive isolates each with KPC, NDM, and OXA-48-like enzymes.
bEleven S. enterica and 3 E. coli isolates.
cTwo isolates with KPC enzymes and single strains with OXA-48 and NDM.
dSingle isolates with SME and OXA-48-like enzymes.
eSince only two isolates were tested, actual MICs are shown, not the mean.
fTwo isolates with VIM, two with NDM carbapenemases, and one with an IMP enzyme.
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the possibility that resistance might arise from novel or unsuspected mechanisms only
detectable with a larger panel. Notably, raised MICs were seen for one Serratia isolate
with inactivated omp2 and upregulated sdeCDE efflux, suggesting that combinations of
impermeability and upregulated efflux can compromise activity, at least against this
species.

Given this spectrum, the new target, and demonstrable activity in experimental
infections (17), the pyrrolocytosine class warrants further evaluation with a view to
possible clinical development.
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