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ABSTRACT The observed MIC may depend on the number of bacteria initially inoc-
ulated into the assay. This phenomenon is termed the inoculum effect (IE) and is of-
ten most pronounced for �-lactams in strains expressing �-lactamase enzymes. The
Clinical and Laboratory Standards Institute (CLSI)-recommended inoculum is 5 � 105

CFU ml�1 with an acceptable range of 2 � 105 to 8 � 105 CFU ml�1. IE testing is
typically performed using an inoculum 100-fold greater than the CLSI-recommended
inoculum. Therefore, it remains unknown whether the IE influences MICs during test-
ing performed according to CLSI guidelines. Here, we utilized inkjet printing technol-
ogy to test the IE on cefepime, meropenem, and ceftazidime-avibactam. First, we
determined that the inkjet dispense volume correlated well with the number of bac-
teria delivered to microwells in 2-fold (R2 � 0.99) or 1.1-fold (R2 � 0.98) serial dilu-
tions. We then quantified the IE by dispensing orthogonal titrations of bacterial cells
and antibiotics. For cefepime-resistant and susceptible dose-dependent strains, a
2-fold increase in inoculum resulted in a 1.6 log2-fold increase in MIC. For
carbapenemase-producing strains, each 2-fold reduction in inoculum resulted in a
1.26 log2-fold reduction in meropenem MIC. At the lower end of the CLSI-allowable
inoculum range, minor error rates of 34.8% were observed for meropenem when
testing a resistant-strain set. Ceftazidime-avibactam was not subject to an apprecia-
ble IE. Our results suggest that IE is sufficiently pronounced for meropenem and
cefepime in multidrug-resistant Gram-negative pathogens to affect categorical inter-
pretations during standard laboratory testing.
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The observed MIC of a bacterial isolate may depend on the initial inoculum used in
an antimicrobial susceptibility testing (AST) assay, a phenomenon termed the

inoculum effect (IE) (1). This effect is most pronounced for bacteria exposed to �-lactam
antibiotics, especially strains containing �-lactamases (2, 3). However, it also has been
observed for other classes of antimicrobials, including glycopeptides (4), macrolides (5),
aminoglycosides (6), fluoroquinolones (7), daptomycin (4), and folate pathway inhibi-
tors (7). Further, IE has been observed for azoles (8), echinocandins (9), amphotericin
(10), and 5-fluorocytosine with pathogenic fungi (11).

For reference broth microdilution (BMD) AST, the Clinical and Laboratory Standards
Institute (CLSI) requires a standardized inoculum density of 5 � 105 CFU ml�1 with an
allowable range of 2 � 105 to 8 � 105 CFU ml�1 (12). Traditionally, an IE has been
defined as a �8-fold change in MIC when an inoculum 100-fold greater than the CLSI
recommendation is used, and most prior experiments evaluated IE at the standard and
high inoculum levels only (3, 13–15). A small number of studies also evaluated IE at low
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inocula, typically 10-fold below the CLSI target inoculum (16), and rarely using finer
gradations (17).

The relevance of IE in vivo has been debated. There are some types of infections with
high bacterial burdens in which IE may come into play (18, 19). Alternatively, factors
such as released �-lactamase, which contribute to IE through antibiotic degradation
in vitro, may become diluted in bodily fluids in vivo and therefore may not undermine
antibiotic potency to the same degree. Regardless of the impact on antimicrobial
efficacy in vivo, it remains largely unexplored whether IEs are detectable at bacterial
inoculum densities close to the CLSI-recommended inoculum and could thereby
influence reproducibility of AST performed in accordance with recommended guide-
lines.

We hypothesized that IE would manifest even within the CLSI-allowable inoculum
range and serve as a source of error and inconsistency in AST determinations. To enable
the exploration of effects of subtle differences in inoculum, we used inkjet printing
technology, previously validated in our laboratory (20–24), to prepare orthogonal
titrations of bacterial inoculum and antibiotics to investigate IE with a fine granularity
to an extent not previously possible.

RESULTS
Extended-range quantification of inoculum effect. Detailed assessment of IE has

been limited by the technical challenge of manual preparation of orthogonal dilution
series of antibiotic and organism. We therefore considered the use of HP D300 inkjet
printing technology as a way to facilely prepare such combinatorial titrations. We
previously validated use of this inkjet printing technology for single-agent MIC testing
(20, 21) and multiple-agent synergy testing (22, 23) in a 384-well format with results as
accurate as, and more precise than, reference BMD. We also validated use of the same
inkjet technology for quantitative addition of bacteria in a 384-well plate format across
a narrow (�10-fold) dynamic range (24). Prior to use of inkjet printing for IE testing, we
first investigated the utility of this technology for dispensing of bacterial cells across an
extended inoculum range and for delivering fine, reproducible gradations of inoculum.

We selected Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and
Klebsiella pneumoniae BIDMC 40 as representative Gram-negative strains for this initial
evaluation due to their potentially different behavior within inkjet dispensing channels.
For example, P. aeruginosa cells are often longer than E. coli cells, while K. pneumoniae
produces abundant capsular polysaccharide, attributes that could potentially affect the
accuracy of inkjet dispensing. Across this test set, we were able to dispense viable
bacteria over a wide range of final inoculum concentrations in a 384-well format,
ranging from 9.2 � 101 to 3.7 � 107 CFU ml�1 (linear dynamic range, 4.0 � 105) (Fig.
1A). Furthermore, there was excellent correlation between inkjet dispense volume and
organism number for all species (R2 � 0.99). These results indicated that accurate and
precise inocula can be delivered for multiple types of organisms based on dispense
volume.

We next combined inkjet dispensing of 2-fold orthogonal titrations of bacteria
and antibiotics to perform IE studies with meropenem, cefepime, and ceftazidime-
avibactam. For meropenem experiments, we first examined 25 strains of carbapenem-
resistant Enterobacteriaceae (CRE) with meropenem MICs ranging from 4 to 1,024 �g
ml�1 (median, 32 �g ml�1). As expected, a pronounced IE was observed. The average
MIC difference between the lowest and highest inocula of 9.2 � 101 and 3.7 � 107 CFU
ml�1 was 8.3 � 1.8 log2 dilutions (range, 3 to 12) (Fig. 2A), corresponding to an
�315-fold difference in MIC.

Interestingly, the IE was most pronounced for inocula immediately below the CLSI
target inoculum of 5 � 105 CFU ml�1. In this range, each 2-fold reduction in inoculum
resulted in a corresponding 1.26 log2-fold reduction in MIC. Fascinatingly, despite a
very wide range in intrinsic meropenem MICs for the CRE strains examined, the IE
remained similar relative to the MIC obtained at the CLSI target inoculum. This
inference was suggested by the relatively small error bars in Fig. 2A, where each data
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point represents the log2 difference between the MICs at the indicated inoculum and
the CLSI target inoculum, averaged across the entire CRE strain set. As expected, IE for
5 strains of non-carbapenemase-producing clinical isolates and E. coli ATCC 25922, all
with MICs of �0.0625 �g ml�1, was essentially nonexistent, with elevated MICs
observed only at �10-fold the CLSI-recommended inoculum.

We next evaluated cefepime IE by testing presumptive (based on ceftriaxone
nonsusceptibility), extended-spectrum �-lactamase-producing (ESBL) Escherichia coli
and Klebsiella spp. (Fig. 2B). For this analysis, we tested 13 cefepime-resistant (MIC �

16 �g ml�1) and susceptible dose-dependent (SDD) strains (MIC � 4 to 8 �g ml�1)
with MICs ranging from 4 to 32 �g ml�1 (25). We also tested 11 cefepime-
susceptible (MIC � 2 �g ml�1), presumptive ESBL strains with MICs ranging from 0.25
to 2 �g ml�1 (21). The cefepime-resistant and SDD strains showed a pronounced IE,
especially with inocula above the CLSI target, for example, between 1 � 106 and 1 �

107 CFU ml�1, where a 2-fold increase in inoculum resulted in a 1.6 log2-fold increase
in MIC. Cefepime-susceptible (MIC � 2), presumptive ESBL showed a similar pattern at
inocula above 1 � 106, with each 2-fold increase corresponding to a 1.0 log2 increase
in MIC. In contrast, a total of 6 cefepime-susceptible, presumptively non-ESBL-
producing (based on susceptibility to cefazolin) clinical strains (20) and E. coli ATCC
25922 showed only a minor IE at very high inocula (�107 CFU ml�1).

Interestingly, in contrast to meropenem and cefepime, ceftazidime-avibactam (CZA)
was subject to only a modest IE in strains resistant to this antibiotic (Fig. 2C). For CZA
analysis, we tested 7 strains of carbapenem and CZA-resistant Enterobacteriaceae with
CZA MICs ranging from 16/4 to �2,048/4 �g ml�1 and 6 strains of CZA-resistant
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FIG 1 Inkjet dispensing precision. (A) Extended-dynamic-range dispensing. Bacteria were dispensed by
inkjet printing in a 2-fold dilution series and enumerated by plate count. Each data point is the mean
from three independent experiments performed on separate days, with error bars representing 1
standard deviation. There was a strong linear correlation (dashed line) between volume dispensed and
CFU per milliliter (R2 � 0.99). (B) High-resolution dispensing. Bacteria were dispensed using inkjet
technology in a �7 2(	1.10-fold) dilution series and enumerated by plate count. Data points represent the
averages from 3 independent experiments performed on separate days using 4 Enterobacteriaceae
strains each, with error bars corresponding to 1 standard deviation from the mean. There was a strong
linear correlation (dashed line) between dispense volume and CFU per milliliter delivered to wells (R2 �
0.98). Dotted lines indicate the CLSI-recommended inoculum range (2 � 105 to 8 � 105 CFU ml�1).
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Pseudomonas with CZA MICs ranging from 16/4 to �2,048/4 �g ml�1. The two strains
expressing NDM-1 carbapenemase (one E. coli strain and one P. aeruginosa strain)
exhibited off-scale MICs at all inocula tested (MIC �2,048/4 �g ml�1), and therefore,
IE could not be evaluated. For non-NDM-1-producing, CZA-resistant strains, the
difference in MIC between the highest and lowest inoculum tested was 2.9 � 2 log2

dilutions, a 7.5-fold change in MIC. At inocula 2-fold below the CLSI-recommended
level, there was only a relatively minor 0.73 � 0.9 log2 reduction in MICs, which did
not change with further reduction in inoculum, while with an inoculum 2-fold
above the CLSI-recommended level there was no detectable log2 increase in MIC,
and there was no substantial increase in MIC until an inoculum of �107 CFU ml�1

was used. We also tested clinical strains of CZA-susceptible Enterobacteriaceae (14
strains; MIC range � 0.5/4 to 8/4 �g ml�1) and Pseudomonas aeruginosa (4 strains;
MIC range � 2/4 to 8/4 �g ml�1), all of which were ceftazidime and carbapenem
resistant. E. coli ATCC 25922 and P. aeruginosa ATCC 27853 were used as broadly
susceptible control strains. We observed a minor IE similar to that seen with the
resistant strains.

High-resolution testing of inoculum effect. Based on our observations that
meropenem MICs in CRE strains are highly subject to IE, we reasoned that gradations
of IE for CRE would be detectable using subdoubling dilutions of bacterial inoculum
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FIG 2 Extended-range and high-resolution quantification of the inoculum effect. (A to C) Bacteria and antibiotics meropenem (A), cefepime (B),
and ceftazidime-avibactam (C) were dispensed in orthogonal 2-fold dilution series. Each data point represents the log2 difference between the
MIC at the indicated inoculum and the corresponding MIC at the CLSI target inoculum averaged across all strains within each category indicated.
Error bars represent 1 standard deviation from the mean. Dotted lines demarcate the CLSI-recommended inoculum range. Carbapenem-resistant
strains showed a pronounced reduction in meropenem MIC at inocula below the CLSI-recommended inoculum. Cefepime-resistant and
-susceptible dose-dependent (SDD) strains showed a rapid increase in cefepime MIC at inocula above the CLSI-recommended inoculum. In
contrast, a pronounced inoculum effect was not observed for ceftazidime-avibactam. (D) Bacteria and meropenem were dispensed using inkjet
technology in �7 2 (	1.10-fold) and �4 2 (	1.19-fold) orthogonal dilution series, respectively. Each data point represents the log2 difference
between the MIC determined at the indicated inoculum and the MIC at the CLSI target inoculum averaged across triplicate experiments
performed on separate days using 8 CRE strains. Dotted lines demarcate the CLSI-recommended inoculum range.
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and may be observable within the allowable CLSI inoculum range. To test this idea, we
validated the ability of inkjet printing technology to accurately deliver bacteria to wells
using a �7 2 (	1.10-fold) dilution series in which every 7th well in the dilution series
contains a 2-fold dilution of bacteria. As with our extended-range, bacterial-doubling-
dilution series testing, we found that dispense volume and CFU count were highly
correlated (R2 � 0.98) (Fig. 1B). Then, to investigate IE for meropenem at high resolution
within the CLSI-allowable inoculum range, we performed orthogonal titrations using a
�7 2 (	1.10-fold) dilution series of bacteria and a �4 2 (	1.19-fold) dilution series of
meropenem. In this way, every 7th well in the dilution series contains a 2-fold dilution
of bacteria and every 4th well contains a 2-fold dilution of antibiotic.

We found that IE was apparent for CRE strains even within the CLSI-recommended
inoculum density range (Fig. 2D). Despite the fact that their meropenem MICs ranged
from 8 to 32 �g ml�1, all 8 CRE strains tested showed reproducible changes in MICs
using lower or higher inoculum than the CLSI target inoculum, consistent with obser-
vations using extended-range doubling dilution testing (Fig. 2A). In this experiment, we
used a very fine meropenem dilution series. However, when values lying between log2

dilution series are tested, MICs are reported per CLSI guidelines as the next highest log2

dilution (26). Therefore, for each inoculum we rounded the MIC to the next-highest
doubling dilution and tabulated the log2 difference from the MIC at the CLSI target
inoculum (Table 1). In the completely resistant strain set of CRE tested (MIC range, 8 to
32 �g ml�1; resistance is defined as MIC of �4 �g ml�1), we found that the lowest
inoculum tested within the CLSI-allowable inoculum range resulted in a 34.8% minor
error rate. These data suggest that even small deviations from the CLSI inoculum may
lead to an MIC discrepancy.

DISCUSSION

The inoculum effect (IE) has traditionally been examined at very coarse intervals.
Here we took advantage of the exceptionally accurate, precise, and quantitative
capabilities afforded by inkjet printing technology to facilitate a detailed exploration of
the IE for three �-lactam-based agents used to treat multidrug-resistant, Gram-negative
pathogens: meropenem, cefepime, and the �-lactam and serine �-lactamase inhibitor
combination, ceftazidime-avibactam.

TABLE 1 Quantification of the inoculum effect on meropenem MIC within the CLSI allowable inoculum rangea

Inoculum density
(CFU ml�1 � 105)

Fold CLSI
inoculum

% Log2 difference from MIC at CLSI inoculum (95% CI)b
% Minor errorsc

(95% CI)�3 �2 �1 0 1 2

9.6 1.93 50 (30.0–70.0) 45.8 (25.9–65.8) 4.2 (0–12.2)
8.8 1.76 62.5 (43.1–81.9) 33.3 (14.5–52.2) 4.2 (0–12.2)
8.1 1.61 70.8 (52.6–89) 25 (7.7–42.3) 4.2 (0–12.2)
7.4 1.48 75 (57.7–92.3) 20.8 (4.6–37.1) 4.2 (0–12.2)
6.8 1.36 75 (57.7–92.3) 20.8 (4.6–37.1) 4.2 (0–12.2)
6.2 1.25 91.7 (80.6–100) 8.3 (0–19.4)
5.7 1.15 87.5 (74.3–100) 12.5 (0–25.7)
5.3 1.05 4.2 (0–12.2) 91.7 (80.6–100) 4.2 (0–12.2)
4.9 0.97 100
4.5 0.90 16.7 (1.8–31.6) 83.3 (68.4–98.2)
4.2 0.83 40.9 (21.2–60.6) 59.1 (39.4–78.8)
3.8 0.77 58.3 (38.6–78.1) 41.7 (21.9–61.4)
3.6 0.71 8.7 (0–20.0) 73.9 (56.3–91.5) 17.4 (2.2–32.6) 4.3 (0–12.5)
3.3 0.66 8.3 (0–19.4) 79.2 (62.9–95.4) 12.5 (0–25.7) 4.2 (0–12.2)
3.1 0.62 4.5 (0–12.9) 40.9 (21.2–60.6) 50 (30.0–70.0) 4.5 (0–12.9) 27.3 (9.5–45.1)
2.9 0.58 43.5 (23.6–63.3) 52.2 (32.2–72.2) 4.3 (0–12.5) 34.8 (15.7–53.8)
aAll 8 strains tested were resistant to meropenem with MICs ranging from 8 to 32 �g ml�1 at the target CLSI inoculum: 4 strains had an MIC of 8; 3 had an MIC of
16; and 1 had an MIC of 32 �g ml�1. Notably, relative changes in MIC appeared to be independent of the original MIC, as also observed in results shown in Fig. 1.
The shaded region represents inocula within the CLSI allowable inoculum range of 2 � 105 to 8 � 105 CFU ml�1.

bMICs between 2-fold dilutions were rounded to the next-highest dilution per CLSI guidelines (26). The MIC at 4.9 � 105 CFU ml�1 was defined as the CLSI inoculum.
CI, confidence interval.

cMinor errors are the percentages of tests resulting in categorical misclassification as intermediate at the indicated inoculum density. All minor errors occurred in
strains whose MIC at the target inoculum was 8 �g ml�1.
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For meropenem and cefepime, a pronounced IE for CRE and ESBL strains, respec-
tively, was observed, with the largest changes in MIC centered on the CLSI-
recommended inoculum. We examined meropenem IE within the CLSI-allowable inoc-
ulum range in detail and found substantial deviation in MIC results as the inoculum
increased from 2 � 105 to 8 � 105 CFU ml�1 such that an 8-fold difference in MIC
within this allowable inoculum range would not be uncommon. These results have
important implications for the reliability of clinical laboratory data.

More specifically, CLSI advocates reporting categorical interpretation of cephalo-
sporin and carbapenem MIC results based solely on the MIC obtained, regardless of the
underlying resistance mechanism (25). In addition, more recently, CLSI introduced a
new cefepime, susceptible dose-dependent category with recommendations to treat
isolates with higher MIC values with more-intensive dosing regimens. Specifically, the
CLSI recommends incremental dosing exposure for isolates with cefepime MICs of 2, 4,
or 8 �g ml�1, respectively (25). Underpinning these recommendations is the assump-
tion that routine testing will yield accurate MIC results and categorical interpretation.
Yet, here we demonstrate that minor, allowable deviations in inoculum for isolates with
ESBL phenotype or carbapenemases, respectively, can change the MIC and thereby
potentially affect therapeutic decision points.

We note several limitations in our study. The CRE strain collection used in our
high-resolution IE study had a meropenem MIC distribution of 8 to 32 �g ml�1.
Therefore, we did not test strains whose MICs fell on the breakpoints for susceptible,
intermediate, and resistant categories. As such, we could not evaluate major errors and
did not expect to observe very major errors. However, a consistent observation in our
studies was that the MIC was driven up or down the same degree by inoculum changes,
regardless of the underlying MIC at the target CLSI inoculum. Therefore, we predict that
testing of strains whose MIC values fall on categorical breakpoints would be error
prone. For meropenem in particular, IE was more pronounced with lower inocula, and
as such, very major errors would likely predominate over major errors for borderline
resistant strains. Even with the resistant strain set examined, 34% of isolates would have
been assigned an intermediate category when the lowest allowable CLSI inoculum
tested was used. Such results in themselves might lead to erroneous decisions about
the use or suitability of more-intensive or continuous-infusion carbapenem therapy to
treat infections by organisms with borderline MIC values (27, 28).

We also do not know a priori how often the boundaries of the inoculum range
would be breached or exceeded in a fast-paced clinical laboratory setting. Our predic-
tion is that such deviations in inoculum would occur with some frequency using either
manual or automated turbidimetric inoculum preparation with additional variability
introduced during dilution to the final inoculum used in reference MIC or commercial
susceptibility testing panels (29). Unfortunately, standard laboratory quality control
testing (determining the MIC of strains such as E. coli ATCC 25922, not subject to IE)
provides no feedback on inoculum consistency. Use of ESBL and CRE quality control
organisms with well-defined IE would provide a more informative alternative. Should
laboratories not have the appropriate procedures and quality control to ensure highly
accurate inocula, we suggest two potential strategies for addressing IE testing issues: (i)
conservative categorization of ESBL and CRE pathogens as cefepime and carbapenem
resistant, respectively, regardless of their MIC, or (ii) repeat testing to ensure reproduc-
ibility of MIC results close to categorical breakpoints.

Our data support additional utility of inkjet technology in clinical microbiology
testing beyond our previous description of at-will and accelerated, dilution-based
testing (20–24). From a research perspective, it allowed us to examine the IE to an
extent not previously possible with minimal labor. Specifically, high-resolution orthog-
onal bacterial/antibiotic synergy grids can be set up in seconds. In this work, a single
individual was able to evaluate 99 bacterial strains at 16 different inocula each
containing 16 to 24 concentrations of antimicrobial, an overwhelming task to perform
manually.

Translational diagnostic implications are also of interest. Currently, carbapenemase
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and ESBL producers are identified using a two-step procedure involving identification
of an elevated MIC followed by use of a second follow-up test of several different types:
e.g., modified Hodge test, modified carbapenem inactivation method (mCIM), double-
disk diffusion, or molecular tests to identify the category of resistance mechanism. The
requirement for follow-up testing may delay optimal therapeutic intervention. In our
studies, a marked IE was present in strains with carbapenemase (meropenem) or
ESBL (cefepime) resistance mechanisms. Notably, detection of a 2 log2-fold change
in MIC (compared to the CLSI inoculum) at 8-fold above or below the CLSI-
recommended inoculum distinguishes between isolates with or without carbapen-
emases and extended-spectrum �-lactamases, respectively. Deployment of inkjet
printing technology (or alternative liquid handling capabilities) would make applica-
tion of tailored inocula for this one-step discrimination possible.

The relevance of IE itself to infection is not completely clear. Experimental evidence
in mice suggests that IE plays a role in bloodstream (30), peritoneal (31), and lung (2)
infections. However, in humans, there is currently significant debate about whether
piperacillin-tazobactam and cefepime, for example, based on known IE, are appropriate
therapeutic options for serious ESBL infections that test susceptible to these agents
(32–34). Recent evidence suggests that patients treated with piperacillin-tazobactam or
cefepime had lower survival during high-burden infection and bloodstream infection
than those treated with meropenem (35). It should be noted that IE profiles of
individual strains were not determined in these studies, and differential responses to
piperacillin-tazobactam and cefepime could not therefore be directly linked to IE
profile. We expect that the combination of the ability to perform IE testing with high
granularity and use of tight inoculum control for accurate MIC determination, under-
scored by our studies, will help support rigorous pharmacokinetics/pharmacodynamics
(PK/PD) investigation of IE and further elucidate the importance of IE in diagnosis and
treatment.

MATERIALS AND METHODS
Bacterial strains and antibiotics. We used previously characterized clinical strains of carbapenem-

resistant (36), presumptive ESBL-producing (21), and broadly antibiotic-susceptible (20) Enterobacteria-
ceae collected from the clinical laboratory at our institution under an IRB-approved protocol. Our
collection was supplemented by Enterobacteriaceae and Pseudomonas aeruginosa strains obtained from
the FDA-CDC Antimicrobial Resistance Isolate Bank (CDC, Atlanta, GA). Escherichia coli ATCC 25922 and
Pseudomonas aeruginosa ATCC 27853 were from the American Type Culture Collection (Manassas, VA).

Avibactam was purchased from Medchem Express (Monmouth Junction, NJ). Cefepime and ceftazi-
dime were purchased from Chem-Impex International (Wood Dale, IL). Meropenem was purchased from
Ark-Pharm (Arlington Heights, IL). Antibiotic stocks were prepared fresh daily. Avibactam was stored as
aliquots for �1 week at �20°C and discarded after a single use.

Extended-range inkjet dispensing of bacteria. E. coli ATCC 25922, P. aeruginosa ATCC 27853, and
K. pneumoniae BIDMC 40 were recovered from stocks frozen at �80°C and grown for 16 to 20 h on tryptic
soy agar containing 5% sheep’s blood (Remel, Lenexa, KS) at 35°C in ambient air. Colonies were
suspended in sterile 0.9% NaCl (Thermo Fisher Scientific, Waltham, MA) containing 0.3% polysorbate-20
(Sigma-Aldrich, St. Louis, MO) as required for liquid handling by the HP D300 Digital Dispenser (HP Inc.,
Palo Alto, CA). Cell density was adjusted using a Vitek DensiChek Plus handheld colorimeter (bioMérieux,
Durham, NC). For each experiment, 0.5 and 2 McFarland standard suspensions were directly loaded into
T8
 and D4
 cassettes, respectively (HP Inc.) and bacteria were dispensed into wells of a 384-well plate
containing 50 �l of sterile, cation-adjusted Mueller-Hinton broth (CAMHB; BD Diagnostics, Franklin Lakes,
NJ) using an HP D300 digital dispenser as previously described (24). Dispense volumes ranged from 5 �l
to 1.22 nl in a 2-fold dilution series followed by a final 20-fold dilution (0.06-nl dispense volume).

Immediately after dispensing, bacteria were enumerated by the drop plate method using 10-�l drops
(37). For wells containing the smallest dispense volume (0.06 nl), the entire 50-�l well volume was
enumerated in a single drop. To ensure rigor and reproducibility, experiments were repeated on three
separate days with independent inocula. A standard curve of dispense volume versus CFU per milliliter
was constructed using GraphPad Prism 7.

Extended-range quantification of inoculum effect. Bacterial strains were grown, adjusted to the
desired density of 0.5 and 2 McFarland standards, and inoculated into 384-well plates prefilled with 50
�l of CAMHB as described above. Doubling dilutions of antibiotic were dispensed orthogonally to the
bacterial dilution series. Meropenem was dissolved in dimethyl sulfoxide (DMSO). Final meropenem
concentrations after dispensing ranged from 0.008 to 2,048 �g ml�1 with DMSO at �1%. Cefepime,
ceftazidime, and avibactam stock solutions were dissolved in water containing 0.3% polysorbate-20
(Sigma-Aldrich) as required for liquid handling by the HP D300. Final cefepime concentrations after
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dispensing ranged from 0.008 to 256 �g ml�1. Final ceftazidime-avibactam concentrations after dis-
pensing ranged from 0.008/4 to 2,048/4 �g ml�1.

After dispensing, plates were incubated at 35°C in ambient air for 16 to 20 h (25). Growth was
quantified by optical density at 600 nm (OD600) using previously validated cutoffs for determination of
growth and inhibition (20) using a Tecan M1000 multimode plate reader (Tecan, Morrisville, NC). We
applied CLSI-recommended criteria to reject dilution series with �1 skipped well (26). Using these
criteria, 0.93% (16/1,728) were rejected and were excluded from subsequent analysis. For each inoculum
density, the MIC was determined, and log2-fold differences from the MIC at the CLSI-recommended
inoculum (5 � 105 CFU ml�1) were plotted using GraphPad Prism 7.

High-resolution inkjet dispensing of bacteria. Four representative clinical isolates (2 E. coli and 2
K. pneumoniae isolates) were selected to validate inkjet dispensing of bacteria using a fine (�2-fold)
dilution series. Bacteria were grown and suspended to a density of 2 McFarland standard in sterile 0.9%
NaCl containing 0.3% polysorbate-20 as described above. Cells were loaded into D4
 cassettes (HP, Inc.)
and dispensed into wells of a 384-well plate containing 50 �l of sterile CAMHB with the HP D300 using
a �7 2 (	1.10-fold) dilution series with volumes ranging from 35.4 to 156 nl. In this dilution series, every
7th well contains a 2-fold dilution of bacteria. Cell density was quantified by the drop plate method using
5 drops (10 �l) from each dilution series (37). Experiments were performed in triplicate on separate days.
We observed that 14.8% (57/384) of trials had at least one skipped well, potentially because the
variability in inkjet dispensing drop size was similar to the spacing of dilutions. As such, we allowed up
to two skipped wells while reading the highest MIC. In comparison to CLSI, which allows a single skipped
well in a 2-fold dilution series (26), our criteria are actually more stringent since two skipped wells in our
assay corresponded to less than 1 2-fold dilution difference. Application of our criteria resulted in 1.8%
(7/384) of MICs being uninterpretable. A standard curve relating dispense volume to bacterial density
was plotted using GraphPad Prism 7.

High-resolution quantification of inoculum effect. Bacteria were dispensed into wells of a 384-well
plate containing 50 �l of CAMHB using a �7 2 dilution series as described above. An orthogonal titration
of meropenem was prepared using a �4 2 (	1.19) dilution series such that every 4th well contained a
2-fold dilution of antibiotic. The concentration of meropenem ranged from �2 to 
2 log2 dilutions from
the expected MIC at the CLSI inoculum (as determined in the “extended-range quantification of the
inoculum effect” experiment) of the isolate being tested. After dispensing, cells were incubated and
growth was quantified as described above. For each inoculum density, the MIC was determined, with
MICs falling between 2-fold dilutions rounded to the nearest doubling dilution per CLSI recommenda-
tions (26). Log2-fold differences from the MIC at the CLSI-recommended inoculum were plotted using
GraphPad Prism 7. Experiments were performed using eight strains of CRE with meropenem MICs
ranging from 8 to 32 �g ml�1 and repeated on three separate days with independent inocula.
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