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Abstract

Coding EMRs with diagnosis and procedure codes is an indispensable task for billing, secondary 

data analyses, and monitoring health trends. Both speed and accuracy of coding are critical. While 

coding errors could lead to more patient–side financial burden and mis–interpretation of a patient’s 

well–being, timely coding is also needed to avoid backlogs and additional costs for the healthcare 

facility. In this paper, we present a new neural network architecture that combines ideas from few–

shot learning matching networks, multi–label loss functions, and convolutional neural networks 

for text classification to significantly outperform other state–of–the–art models. Our evaluations 

are conducted using a well known deidentified EMR dataset (MIMIC) with a variety of multi–

label performance measures.

1 Introduction

Electronic medical record (EMR) coding is the process of extracting diagnosis and 

procedure codes from the digital record (the EMR) pertaining to a patient’s visit. The digital 

record is mostly composed of multiple textual narratives (e.g., discharge summaries, 

pathology reports, progress notes) authored by healthcare professionals, typically doctors, 

nurses, and lab technicians. Hospitals heavily invest in training and retaining professional 

EMR coders to manually annotate all patient visits by reviewing EMRs. Proprietary 

commercial software tools often termed as computer–assisted coding (CAC) systems are 

already in use in many healthcare facilities and were found to be helpful in increasing 

medical coder productivity (Dougherty et al., 2013). Thus progress in automated EMR 

coding methods is expected to directly impact real world operations.

In the US, the diagnosis and procedure codes used in EMR coding are from the Interna 

tional Classification of Diseases (ICD) terminology (specifically the ICD–10–CM variant) 

as required by the Health Insurance Portability and Accountability Act (HIPPA). ICD codes 

facilitate billing activities, retrospective epidemiological studies, and also enable researchers 

to aggregate health statistics and monitor health trends. To code EMRs effectively, medical 

coders are expected to have thorough knowledge of ICD–10–CM and follow a complex set 
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of guidelines to code EMRs. For example, if a coder accidentally uses the code “heart 

failure” (ICD–10–CM code I50) instead of “acute systolic (congestive) heart failure” (ICD–

10–CM code I50.21), then the patient may be charged substantially more1 causing 

significant unfair burden. Therefore, it is important for coders to have better tools at their 

disposal to find the most appropriate codes. Additionally, if coders become more efficient, 

hospitals may hire fewer coders to reduce their operating costs. Thus automated coding 

methods are expected to help with expedited coding, cost savings, and error control.

In this paper, we treat medical coding of EMR narratives as a multi–label text classification 

problem. Multi–label classification (MLC) is a machine learning task that assigns a set of 

labels (typically from a fixed terminology) to an instance. MLC is different from multi–class 

problems, which assign a single label to each example from a set of labels. Compared to 

general multi–label problems, EMR coding has three distinct challenges. First, with 

thousands of ICD codes, the label space is large and the label distribution is extremely 

unbalanced – most codes occur very infrequently with a few codes occurring several orders 

of magnitude more than others. Second and more importantly, a patient may have a large 

number of diagnoses and procedures. On average, coders annotate an EMR with more than 

20 such codes and hence predicting the top one or two codes is not sufficient for EMR 

coding. Third, EMR narratives may be very long (e.g., discharge summaries may have over 

1000 words), which may result in a needle in a haystack situation when attempting to seek 

evidence for particular codes.

Recent advances in extreme multi–label classification have proven to work well for large 

label spaces. Many of these methods (Yu et al., 2014; Bhatia et al., 2015; Liu et al., 2017) 

focus on creating efficient multi–label models that can handle 104 to 106 labels. While these 

models perform well in large label spaces, they don’t necessarily focus on improving 

prediction of infrequent labels. Typically, they optimize for the top 1, 3, or 5 ranked labels 

by focusing on the P@1, P@3, and P@5 evaluation measures. The labels ranked at the top 

usually occur frequently in the dataset and it is not obvious how to handle infrequent labels. 

One solution would be to ignore the rare labels. However, when the majority of medical 

codes are infrequent, this solution is unsatisfactory.

While neural networks have shown great promise for text classification (Kim, 2014; Yang et 

al., 2016; Johnson and Zhang, 2017), the label imbalances associated with EMR coding 

hinder their performance. Imagine if a dataset contains only one training example for every 

class leading to one–shot learning, a subtask of few–shot learning. How can we classify a 

new instance? A trivial solution would be to use a non–parametric 1–NN (1 nearest 

neighbor) classifier. 1–NN does not require learning any label specific parameters and we 

only need to define features to represent our data and a distance metric. Unfortunately, 

defining good features and picking the best distance metric is nontrivial. Instead of manually 

defining the feature set and distance metric, neural network training procedures have been 

developed to learn them automatically (Koch et al., 2015). For example, matching networks 

(Vinyals et al., 2016) can automatically learn discriminative feature representations and a 

useful distance metric. Therefore, using a 1–NN prediction method, matching networks 

work well for infrequent labels. However, researchers typically evaluate matching networks 

on multi–class problems without label imbalance. For EMR coding with extreme label 
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imbalance with several labels occurring thousands of times, traditional parametric neural 

networks (Kim, 2014) should work very well on the frequent labels. In this paper, we 

introduce a new variant of matching networks (Vinyals et al., 2016; Snell et al., 2017) to 

address the EMR coding problem. Specifically, we combine the non–parametric idea of k–

NN and matching networks with traditional neural network text classification methods to 

handle both frequent and infrequent labels encountered in EMR coding.

Overall, we make the following contributions in this paper:

• We propose a novel semi–parametric neural matching network for diagnosis/

procedure code prediction from EMR narratives. Our architecture employs ideas 

from matching networks (Vinyals et al., 2016), multiple attention (Lin et al., 

2017), multi–label loss functions (Nam et al., 2014a), and convolutional neural 

networks (CNNs) for text classification (Kim, 2014) to produce a state–ofthe–art 

EMR coding model.

• We evaluate our model on publicly available EMR datasets to ensure 

reproducibility and benchmarking; we also compare against prior state–of–the–

art methods in EMR coding and demonstrate robustness across multiple standard 

evaluation measures.

• We analyze and measure how each compo nent of our model affects the 

performance using ablation experiments.

2 Related Work

In this section we cover recent methodologies that are either relevant to our approach and 

problem or form the main ingredients of our contribution.

2.1 Extreme Multi–label Classification

Current methods for extreme MLC fall into two categories: embedding and tree–based 

methods. Embedding–based methods aim to reduce the training complexity. They effectively 

reduce the label space by assuming the training label matrix is low rank. Intuitively, rather 

than learning independent classifiers for each label (binary relevance) (Tsoumakas et al., 

2010), classifiers are learned in a reduced label space L ≪ L where L is the total number of 

labels. Likewise, a projection matrix is learned to convert predictions from the reduced label 

space back to the original label space. In general, embedding methods vary based on how 

they reduce the label space and how the projection operation is optimized. Tai and Lin 

(2012) use principal component analysis (PCA) to reduce the label space. Low–rank 

Empirical risk minimization for Multi–Label Learning (LEML) (Yu et al., 2014) jointly 

optimizes the label space reduction and the projection processes. RobustXML (Xu et al., 

2016) is similar to LEML but it treats infrequent labels as outliers and models them 

separately. Liu et al. (2017) employ neural networks for extreme multi–label problems using 

a funnel–like architecture that reduces the label vector dimensionality. Tree–based multi–

label methods work by recursively splitting the feature space. These methods usually differ 

based on the node splitting criterion. FastXML (Prabhu and Varma, 2014) partitions the 

feature space using the nDCG measure as the splitting criterion. PfastreXML (Jain et al., 
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2016) improves on FastXML by using a propensity scored nDCG splitting criterion and re–

ranking the predicted labels to optimize various ranking measures.

2.2 Memory Augmented Neural Networks

Memory networks (Weston et al., 2014) have access to external memory, typically consisting 

of information the model may use to make predictions. Intuitively, informative memories 

concerning a given instance are found by the memory network to improve its predictive 

power. Kamra et al. (2017) use memory networks to fix issues of catastrophic forgetting. 

They show that external memory can be used to learn new tasks without forgetting previous 

tasks. Memory networks are now applied to a wide variety of natural language processing 

tasks, including question answering and language modeling (Sukhbaatar et al., 2015; Bordes 

et al., 2015; Miller et al., 2016).

Matching networks (Vinyals et al., 2016; Snell et al., 2017) have recently been developed for 

few/one–shot learning problems. We can interpret matching networks as a key–value 

memory network (Miller et al., 2016). The “keys” are training instances, while the “values” 

are the labels associated with each training example. Intuitively, the concept is similar to a 

hashmap. The model will search for the most similar training instance to find its respective 

“value”. Also, matching networks can be interpreted as a k–NN based model that 

automatically learns an informative distance metric. Finally, Altae–Tran et al. (2017) used 

matching networks for drug discovery, a problem where data is limited.

2.3 Diagnosis Code Prediction

The 2007 shared task on coding radiology reports (Pestian et al., 2007) was the first effort 

that popularized automated EMR coding. Traditionally, linear methods have been used for 

diagnosis code prediction. Perotte et al. (2013) developed a hierarchical support vector 

machine (SVM) model that takes advantage of the ICD–9–CM hierarchy. In our prior work, 

we train a linear model for every label (Rios and Kavuluru, 2013) and re–rank the labels 

using a learning–to–rank procedure (Kavuluru et al., 2015). Zhang et al. (2017) supplement 

the diagnosis code training data with data from PubMed (biomedical article corpus and 

search system) to train linear models using both the original training data and the PubMed 

data.

Recent advances in neural networks have also been put to use for EMR coding: Baumel et 

al. (2018) trained a CNN with multiple sigmoid outputs using binary cross–entropy. Duarte 

et al. (2017) use hierarchical recurrent neural networks (RNNs) to annotate death reports 

with ICD–10 codes. Vani et al. (2017) introduced grounded RNNs for EMR coding. They 

found that iteratively updating their predictions at each time step significantly improved the 

performance. Finally, similar to our work, memory networks (Prakash et al., 2017) have 

recently been used for diagnosis coding. However, we would like to note two significant 

differences between the memory network from Prakash et al. (2017) and our model. First, 

they don’t use a matching network and their memories rely on extracting information about 

each label from Wikipedia. In contrast, our model does not use any auxiliary information. 

Second, they only evaluate on the 50 most frequent labels, while we evaluate on all the 

labels in the dataset.
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3 Our Architecture

An overview of our model is shown in Figure 1. Our model architecture has two main 

components.

1. We augment a CNN with external memory over a support set S, which consists 

of a small subset of the training dataset. The model searches the support set to 

find similar examples with respect to the input instance. We make use of the 

homophily assumption that similar instances in the support set are coded with 

similar labels. Therefore, we use the related support set examples as auxiliary 

features. The similar instances are chosen automatically by combining ideas 

from metric learning and neural attention. We emphasize that unlike in a 

traditional k–NN setup, we do NOT explicitly use the labels of the support set 

instances. The support set essentially enriches and complements the features 

derived from the input instance.

2. Rather than predicting labels by thresholding, we rank them and select the top k 
labels specific to each instance where k is predicted using an additional output 

unit (termed MetaL–abeler). We train the MetaLabeler along with the 

classification loss using a multi–task training scheme.

Before we go into more specific details of our architecture, we introduce some notation. Let 

X represent the set of all training documents and x be an instance of X. Likewise, let S 
represent the set of support instances and s be an instance of S. We let L be the total number 

of unique labels. Our full model is described in following subsections.

3.1 Convolutional Neural Networks

We use a CNN to encode each document following what is now a fairly standard approach 

consisting of an embedding layer, a convolution layer, a max–pooling layer, and an output 

layer (Collobert et al., 2011; Kim, 2014). However, in our architecture, the CNN additionally 

aids in getting intermediate representations for the multi–head matching network component 

(Section 3.2).

Intuitively, CNNs make use of the sequential nature of text, where a non–linear function is 

applied to region vectors formed from vectors of words in short adjacent word sequences. 

Formally, we represent each document as a sequence of word vectors, [w1, w2, . . . , wn], 

where wi ∈ ℝd represents the vector of the i–th word in the document. The region vectors are 

formed by concatenating each window of s words, wi − s + 1 ... wi into a local region vector 

c j ∈ ℝsd. Next, cj is passed to a non-linear function

c j = ReLU Wc j + b ,

where W ∈ ℝv × sd,b ∈ ℝv, and ReLU is a recti fied linear unit (Glorot et al., 2011; Nair and 

Hinton, 2010). Each row of W represents a convolutional filter; so v is the total number of 

filters.
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After processing each successive region vector, we obtain a document representation 

D = c1, c2, …, cn + s − 1  by concatenating each c j forming a matrix D ∈ ℝv × n + s − 1 . Each 

row of D is referred to as a feature map, formed by different convolutional filters. 

Unfortunately, this representation is dependent on the length of the document and we cannot 

pass it to an output layer. We use max–over–time pooling to create a fixed size vector

g s = cmax
1 , cmax

2 , …, cmax
q ,

where cmax
j = max c1

j , c2
j , …cn+s − 1

j .

3.2 Multi–Head Matching Network

Using the support set and the input instance, our goal is to estimate P y x, S . The support set 

S is chosen based on nearest neighbors and its selection process is discussed in Section 3.4. 

Among instances in S, our model finds informative support instances with respect to x and 

creates a feature vector using them. This feature vector is combined with the input instance 

to make predictions.

First, each support instance sk ∈ S is projected into the support space using a simple single–

layer feed forward NN as

h g sk = ReLU Wsg sk + bs ,

where Ws ∈ ℝz × v and bsℝ
z. Likewise, we project each input instance x into the input space 

using a different feed forward neural network,

pi g x = ReLU Wα
i g x + bα

i ,

where Wα
i ∈ ℝz × v and bα

i ∈ ℝz Compared to the support set neural network where we use 

only a single network, for the input instance we have u projection neural networks. This 

means we have u versions of x, an idea that is similar to self–attention (Lin et al., 2017), 

where the model learns multiple representations of an instance. Here each pi(g(x)) represents 

a single “head” or representation of the input x. Using different weight matrices, 

Wα
1, …, Wα

u  and bα
1, …, bα

u , we create different representations of x (multiple heads). For 

both the input multi–heads and the support instance projection, we note that the same CNN 

is used (also indicated in Figure 1) whose output is subject to the feed forward neural nets 

outlined thus far in this section.

Rather than searching for a single informative support instance, we search for multiple 

relevant support instances. For each of the u input instance representations, we calculate a 

normalized attention score
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Ai, k =
exp −d pig x ,  h g sk

∑sk′ ∈ S exp −d pig x ,  h g sk′

where Ai,k represents the score of the k–th support example with respect to the i–th input 

representation pi(g(x)) and

d xi, x j = xi − x j 2
2,

is the square of the Euclidean distance between the input and support representations.

Next, the normalized scores are aggregated into a matrix A ∈ ℝu × S . Then, we create a 

feature vector

q = vec AS (1)

where q ∈ ℝuz, vec is the matrix vectorization operator, and S ∈ ℝ S × z is the support 

instance CNN feature matrix whose i–th row is h(g(si)) for i = 1, …, S . Intuitively, multiple 

weighted averages of the support instances are created, one for each of the u input 

representations. The final feature vector,

h = q g x , (2)

is formed by concatenating the CNN representation of the input instance x and the support 

set feature vector q.

Finally, the output layer for L labels involves computing

y = P y x, S = σ Wch + bc (3)

where Wc ∈ ℝL × uz × v ,bc ∈ ℝL, and σ is the sigmoid function. Because we use a sigmoid 

activation function, each label prediction (ŷi) is in the range from 0 to 1.

3.3 MetaLabeler

The easiest method to convert ŷ into label predictions is to simply threshold each element at 

0.5. However, most large–scale multi–label problems are highly imbalanced. When training 

using binary cross–entropy, the threshold 0.5 is optimized for accuracy. Therefore, our 

predictions will be biased towards 0. A simple way to fix this problem is to optimize the 

threshold value for each label. Unfortunately, searching for the optimal threshold of each 

label is computational expensive in large label spaces. Here we train a regression based 

output layer
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r = ReLU Wrg x + br

where r  estimates the number of labels x should be annotated with. At test time, we rank 

each label by its score in ŷ. Next, r  is rounded to the nearest integer and we predict the top r
ranked labels.

3.4 Training

To train our model, we need to define two loss functions. First, following recent working on 

multi–label classification with neural networks (Nam et al., 2014b), we train using a multi–

label cross–entropy loss. The loss is defined as

ℒc = ∑
i = 1

L
−yilog yi − 1 − yi log 1 − yi ,

which sums the binary cross–entropy loss for each label. The second loss is used to train the 

MetaL–abeler for which we use the mean squared error

ℒr = r − r 2
2

where r is the vector of correct numbers of labels and r is our estimate. We train these two 

losses using a multi–task learning paradigm (Collobert et al., 2011)

Similar to previous work with matching networks (Vinyals et al., 2016; Snell et al., 2017), 

“episode” or mini–batch construction can have an impact on performance. In the multi–label 

setting, episode construction is non–trivial. We propose a simple strategy for choosing the 

support set S which we find works well in practice. First, at the beginning of the training 

process we loop over all training examples and store g(x) for every training instance. We 

will refer to this set of vectors as T. Next, for every step of the training process (for every 

mini–batch M), we search T \ M to find the e nearest neighbors (using Euclidean distance) 

per instance to form our support set S. Likewise, we add e random examples from T \ M to 

the support set. Therefore, our support set S contains up to M e + e instances. The purpose of 

the random examples is to ensure the distance metric learned during training (captured by 

improving representations of documents as influenced by all network parameters) is robust 

to noisy examples.

3.5 Matching Network Interpretation

If we do not use the support set label vectors, then what is our network learning? To answer 

this question we directly compare the matching network formulation to our method. 

Matching networks can be expressed as

y = ∑
sk ∈ S

a x, sk ysk
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where a(,) is the attention/distance learned between two instances, k indexes each support 

instance, and yk is a one–hot encoded vector. a(,) is equivalent to A1,k assuming we use a 

single head. Traditional matching networks use onehot encoded vectors because they are 

evaluated on multi–class problems. EMR coding is a multi–label problem. Hence, yk is a 

multi–hot encoded vector. Moreover, with thousands of labels, it is unlikely even for 

neighboring instance pairs to share many labels; this problem is not encountered in the 

multi–class setting. We overcome this issue by learning new output label vectors for each 

support set instance. Assuming a single head, our method can be re–written as

y = σ Wc
1g x + bc + ∑

sk ∈ S
a x, sk ysk

, (4)

where yk is the learned label vector for support instance s. Next, we define yk, the learned 

support set vectors, as

ysk
= Wc

2h g sk (5)

where both Wc
1 and Wc

2 are submatrices of Wc.Using this reformulation, we can now see that 

our method’s main components (equations (1)–(3)) are equivalent to this more explicit 

matching network formulation (equations (4)–(5)). Intuitively, our method combines a 

traditional output layer – the first half of equation 4 – with a matching network where the 

support set label vectors are learned to better match the labels of their nearest neighbors.

4 Experiments

In this section we compare our work with prior state–of–the–art medical coding methods. In 

Section 4.1 we discuss the two publicly available datasets we use. Next, Section 4.2 

describes the implementation details of our model. We summarize the various baselines and 

models we compare against in Section 4.3. The evaluation metrics are described in Section 

4.4. Finally, we discuss how our method performs in Section 4.5.

4.1 Datasets

EMR data is generally not available for public use especially if it involves textual notes. 

Therefore, we focus on the publicly available Medical Information Mart for Intensive Care 

(MIMIC) datasets for benchmarking purposes. We evaluate using two versions of MIMIC: 

MIMIC II (Lee et al., 2011) and MIMIC III (Johnson et al., 2016), where the former is a 

relatively smaller and older dataset and the latter is the most recent version. Following prior 

work (Perotte et al., 2013; Vani et al., 2017), we use the free text discharge summaries in 

MIMIC to predict the ICD–9–CM2 codes. The dataset statistics are shown in Table 1.

For comparison purposes, we use the same MIMIC II train/test splits as Perotte et al. (2013). 

Specifically, we use discharge reports collected from 2001 to 2008 from the intensive care 
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unit (ICU) of the Beth Israel Deaconess Medical Center. Following Perotte et al. (2013), the 

labels for each discharge summary are extended using the parent of each label in label set. 

The parents are based on the ICD–9–CM hierarchy. We use the hierarchical label expansion 

to maximize the prior work we can compare against.

The MIMIC III dataset has been extended to include health records of patients admitted to 

the Beth Israel Deaconess Medical Center from 2001 to 2012 and hence provides a test bed 

for more advanced learning methods. Unfortunately, it does not have a standard train/test 

split to compare against prior work given we believe we are the first to look at it for this 

purpose. Hence, we use both MIMIC II and MIMIC III for comparison purposes. 

Furthermore, we do not use the hierarchical label expansion on the MIMIC III dataset.

Before we present our results, we discuss an essential distinction between the MIMIC II and 

MIMIC III datasets. Particularly, we are interested in the differences concerning label 

imbalance. From Table 1, we find that MIMIC III has almost twice as many examples 

compared to MIMIC II in the dataset. However, MIMIC II on average has more instances 

per label. Thus, although MIMIC III has more examples, each label is used fewer times on 

average compared to MIMIC II. The reason for this is because of how the label sets for each 

instance were extended using the ICD–9 hierarchy in MIMIC II.

4.2 Implementation Details

Preprocessing: Each discharge summary was tokenized using a simple regex tokenization 

scheme (\w\w+). Also, each word/token that occurs less than five times in the training 

dataset was replaced with the UNK token.

Model Details: For our CNN, we used convolution filters of size 3, 4 and 5 with 300 filters 

for each filter size. We used 300 dimensional skip–gram (Mikolov et al., 2013) word 

embeddings pre–trained on PubMed. The Adam optimizer (Kingma and Ba, 2015) was used 

for training with the learning rate 0.0001. The mini–batch size was set to 4, e – the number 

of nearest neighbors per instance – was set to 16, and the number of heads (u) is set to 8. 

Our code is available at: https://github.com/bionlproc/med-match-cnn

4.3 Baseline Methods

In this paper, we focused on comparing our method to state–of–the–art methods for 

diagnosis code prediction such as grounded recurrent neural networks (Vani et al., 2017) 

(GRNN) and multi–label CNNs (Baumel et al., 2018). We also compare against traditional 

binary relevance methods where independent binary classifiers (L1–regularized linear 

models) are trained for each label. Next, we compare against hierarchical SVM (Perotte et 

al., 2013), which incorporates the ICD–9–CM label hierarchy. Finally, we also report the 

results of the traditional matching network with one modification: We train the matching 

network with the multi–label loss presented in Section 3.4 and threshold using the 

MetaLabeler described in Section 3.3.

We also present two versions of our model: Match–CNN and Match–CNN Ens. Match–

CNN is the multi–head matching network introduced in Section 3. Match–CNN Ens is an 
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ensemble that averages three Match–CNN models, each initialized using a different random 

seed.

4.4 Evaluation Metrics

We evaluate our method using a wide variety of standard multi–label evaluation metrics. We 

use the popular micro and macro averaged F1 measures to assess how our model (with the 

MetaL–abeler) performs when thresholding predictions. For problems with large labels 

spaces that suffer from significant imbalances in label distributions, the default threshold of 

0.5 generally performs poorly (hence our use of MetaLabeler). To remove the thresholding 

effect bias, we also report different versions of the area under the precision–recall (PR) and 

receiver operating characteristic (ROC) curves. Finally, in a real–world setting, our system 

would not be expected to replace medical coders. We would expect medical coders to use 

our system to become more efficient in coding EMRs. Therefore, we would rank the labels 

based on model confidence and medical coders would choose the correct labels from the top 

few. To understand if our system would be useful in a real–world setting, we evaluate with 

precision at k (P@k) and recall at k (R@k). Having high P@k and R@k are critical to 

effectively encourage the human coders to use and benefit from the system.

4.5 Results

We show experimental results on MIMIC II in Table 2. Overall, our method improves on 

prior work across a variety of metrics. With respect to micro F1, we improve upon GRNN–

128 by over 1%. Also, while macro–F1 is still low in general, we also improve macro F1 

compared to state–of–theart neural methods by more than 1%. In general, both micro and 

macro F1 are highly dependent on the thresholding methodology. Rather than thresholding 

at 0.5, we rank the labels and pick the top k based on a trained regression output layer. Can 

we do better than using a MetaLabeler? To measure this, we look at the areas under PR/ROC 

curves. Regarding micro and macro PR–AUC, we improve on prior work by ≈ 2.5%. This 

suggests that via better thresholding, the chances of improving both micro and macro F1 are 

higher for Match–CNN compared to other methods. Finally, we are also interested in metrics 

that evaluate how this model would be used in practice. We perform comparably with prior 

work on P@k. We show strong improvements in R@k with over a 4% improvement in 

R@40 compared to grounded RNNs and over 1% improvement when compared with 

Baumel et al. (2018). Our method also outperforms matching networks across every 

evaluation measure.

We present MIMIC III results in Table 3. We reiterate that MIMIC III does not have a 

standard train/test split. Hence we compare our model to our implementations of methods 

from prior efforts. For MIMIC III also we show improvements in multiple evaluation 

metrics. Interestingly, our method performs much better than the standard CNN on MIMIC 

III, compared to the relative performances of the two methods on MIMICII. Match–CNN 

improves on CNN in R@40 by almost 5% on the MIMIC III dataset. The gain in R@40 is 

more than the 1% improvement found on MIMIC II. We hypothesize that the improvements 

on MIMIC III are because the label imbalance found in MIMIC III is higher than MIMIC II. 

Increased label imbalances mean more labels occur less often. Therefore, we believe our 
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model works better with less training examples per label compared to the standard CNN 

model.

In Table 4 we analyze each component of our model using an ablation analysis on the 

MIMIC III dataset. First, we find that removing the matching component significantly 

effects our performance by reducing micro PR–AUC by almost 5%. Regarding micro and 

macro F1, we also notice that the MetaLabeler heuristic substantially improves on default 

thresholding (0.5). Finally, we see that the multi–head matching component provides 

reasonable improvements to our model across multiple evaluation measures. For example, 

P@8 and P@40 decrease by around 1% when we use attention with a single input 

representation.

5 Conclusion

In this paper, we introduce a semi–parametric multi–head matching network with a specific 

application to EMR coding. We find that by combining the non–parametric properties of 

matching networks with a traditional classification output layer, we improve metrics for both 

frequent and infrequent labels in the dataset. In the future, we plan to investigate three 

limitations of our current model.

1. We currently use a naive approach to choose the support set. We believe that 

improving the support set sampling method could substantially improve 

performance.

2. We hypothesize that a more sophisticated thresholding method could have a 

significant impact on the micro and macro F1 measures. As we show in Table 4, 

MetaLabeler outperforms naive thresholding strategies. However, given our 

method shows non–trivial gains in PR–AUC compared to micro/macro F1, we 

believe better thresholding strategies are a worthy avenue to seek improvements.

3. Both the MIMIC II and MIMIC III datasets have around 7000 labels but ICD–9–

CM contains over 16000 labels and ICD–10–CM has nearly 70,000 labels. In 

future work, we believe significant attention should be given to zero–shot 

learning applied to EMR coding. To predict labels that have never occurred in 

the training dataset, we think it is vital to take advantage of the ICD hierarchy. 

Baker and Korhonen (2017) improve neural network training by incorporating 

hierarchical label information to create better weight initializations. However, 

this does not help with respect to zero–shot learning. If we can better incorporate 

expert knowledge about the label space, we may be able to infer labels we have 

not seen before.
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Figure 1: 
The matching CNN architecture. For each input instance, x, we search a support set using 

different representations of x and use the similar support instances and auxiliary features to 

the output layer.
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Table 1:

This table presents the number of training examples (# Train), the number of test examples (# Test), label 

cardinality (LC), and the average number of instances per label (AI/L) for the MIMIC II and MIMIC III 

datasets.

# Train # Test # Labels LC AI/L

MIMIC II 18822 2282 7042 36.7 118.8

MIMIC III 37016 2755 6932 13.6 80.8
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Table 4:

Ablation results for the MIMIC III dataset.

F1 P@k R@k AUC (PR)

Micro Macro 8 40 8 40 Micro Macro

Match-CNN 0.456 0.041 0.557 0.206 0.413 0.670 0.421 0.119

- Matching 0.429 0.034 0.534 0.196 0.395 0.636 0.376 0.095

- MetaLabler 0.391 0.026 0.557 0.206 0.413 0.670 0.421 0.119

- Multi-Head 0.450 0.034 0.548 0.202 0.403 0.656 0.417 0.113
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