
EMR Coding with Semi–Parametric Multi–Head Matching
Networks

Anthony Rios and
Department of Computer Science, University of Kentucky, Lexington, KY, anthony.rios1@uky.edu

Ramakanth Kavuluru
Division of Biomedical Informatics, University of Kentucky, Lexington, KY,
ramakanth.kavuluru@uky.edu

Abstract

Coding EMRs with diagnosis and procedure codes is an indispensable task for billing, secondary

data analyses, and monitoring health trends. Both speed and accuracy of coding are critical. While

coding errors could lead to more patient–side financial burden and mis–interpretation of a patient’s

well–being, timely coding is also needed to avoid backlogs and additional costs for the healthcare

facility. In this paper, we present a new neural network architecture that combines ideas from few–

shot learning matching networks, multi–label loss functions, and convolutional neural networks

for text classification to significantly outperform other state–of–the–art models. Our evaluations

are conducted using a well known deidentified EMR dataset (MIMIC) with a variety of multi–

label performance measures.

1 Introduction

Electronic medical record (EMR) coding is the process of extracting diagnosis and

procedure codes from the digital record (the EMR) pertaining to a patient’s visit. The digital

record is mostly composed of multiple textual narratives (e.g., discharge summaries,

pathology reports, progress notes) authored by healthcare professionals, typically doctors,

nurses, and lab technicians. Hospitals heavily invest in training and retaining professional

EMR coders to manually annotate all patient visits by reviewing EMRs. Proprietary

commercial software tools often termed as computer–assisted coding (CAC) systems are

already in use in many healthcare facilities and were found to be helpful in increasing

medical coder productivity (Dougherty et al., 2013). Thus progress in automated EMR

coding methods is expected to directly impact real world operations.

In the US, the diagnosis and procedure codes used in EMR coding are from the Interna

tional Classification of Diseases (ICD) terminology (specifically the ICD–10–CM variant)

as required by the Health Insurance Portability and Accountability Act (HIPPA). ICD codes

facilitate billing activities, retrospective epidemiological studies, and also enable researchers

to aggregate health statistics and monitor health trends. To code EMRs effectively, medical

coders are expected to have thorough knowledge of ICD–10–CM and follow a complex set

HHS Public Access
Author manuscript
Proc Conf. Author manuscript; available in PMC 2018 August 23.

Published in final edited form as:
Proc Conf. 2018 June ; 2018: 2081–2091. doi:10.18653/v1/N18-1189.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of guidelines to code EMRs. For example, if a coder accidentally uses the code “heart

failure” (ICD–10–CM code I50) instead of “acute systolic (congestive) heart failure” (ICD–

10–CM code I50.21), then the patient may be charged substantially more1 causing

significant unfair burden. Therefore, it is important for coders to have better tools at their

disposal to find the most appropriate codes. Additionally, if coders become more efficient,

hospitals may hire fewer coders to reduce their operating costs. Thus automated coding

methods are expected to help with expedited coding, cost savings, and error control.

In this paper, we treat medical coding of EMR narratives as a multi–label text classification

problem. Multi–label classification (MLC) is a machine learning task that assigns a set of

labels (typically from a fixed terminology) to an instance. MLC is different from multi–class

problems, which assign a single label to each example from a set of labels. Compared to

general multi–label problems, EMR coding has three distinct challenges. First, with

thousands of ICD codes, the label space is large and the label distribution is extremely

unbalanced – most codes occur very infrequently with a few codes occurring several orders

of magnitude more than others. Second and more importantly, a patient may have a large

number of diagnoses and procedures. On average, coders annotate an EMR with more than

20 such codes and hence predicting the top one or two codes is not sufficient for EMR

coding. Third, EMR narratives may be very long (e.g., discharge summaries may have over

1000 words), which may result in a needle in a haystack situation when attempting to seek

evidence for particular codes.

Recent advances in extreme multi–label classification have proven to work well for large

label spaces. Many of these methods (Yu et al., 2014; Bhatia et al., 2015; Liu et al., 2017)

focus on creating efficient multi–label models that can handle 104 to 106 labels. While these

models perform well in large label spaces, they don’t necessarily focus on improving

prediction of infrequent labels. Typically, they optimize for the top 1, 3, or 5 ranked labels

by focusing on the P@1, P@3, and P@5 evaluation measures. The labels ranked at the top

usually occur frequently in the dataset and it is not obvious how to handle infrequent labels.

One solution would be to ignore the rare labels. However, when the majority of medical

codes are infrequent, this solution is unsatisfactory.

While neural networks have shown great promise for text classification (Kim, 2014; Yang et

al., 2016; Johnson and Zhang, 2017), the label imbalances associated with EMR coding

hinder their performance. Imagine if a dataset contains only one training example for every

class leading to one–shot learning, a subtask of few–shot learning. How can we classify a

new instance? A trivial solution would be to use a non–parametric 1–NN (1 nearest

neighbor) classifier. 1–NN does not require learning any label specific parameters and we

only need to define features to represent our data and a distance metric. Unfortunately,

defining good features and picking the best distance metric is nontrivial. Instead of manually

defining the feature set and distance metric, neural network training procedures have been

developed to learn them automatically (Koch et al., 2015). For example, matching networks

(Vinyals et al., 2016) can automatically learn discriminative feature representations and a

useful distance metric. Therefore, using a 1–NN prediction method, matching networks

work well for infrequent labels. However, researchers typically evaluate matching networks

on multi–class problems without label imbalance. For EMR coding with extreme label

Rios and Kavuluru Page 2

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

imbalance with several labels occurring thousands of times, traditional parametric neural

networks (Kim, 2014) should work very well on the frequent labels. In this paper, we

introduce a new variant of matching networks (Vinyals et al., 2016; Snell et al., 2017) to

address the EMR coding problem. Specifically, we combine the non–parametric idea of k–

NN and matching networks with traditional neural network text classification methods to

handle both frequent and infrequent labels encountered in EMR coding.

Overall, we make the following contributions in this paper:

• We propose a novel semi–parametric neural matching network for diagnosis/

procedure code prediction from EMR narratives. Our architecture employs ideas

from matching networks (Vinyals et al., 2016), multiple attention (Lin et al.,

2017), multi–label loss functions (Nam et al., 2014a), and convolutional neural

networks (CNNs) for text classification (Kim, 2014) to produce a state–ofthe–art

EMR coding model.

• We evaluate our model on publicly available EMR datasets to ensure

reproducibility and benchmarking; we also compare against prior state–of–the–

art methods in EMR coding and demonstrate robustness across multiple standard

evaluation measures.

• We analyze and measure how each compo nent of our model affects the

performance using ablation experiments.

2 Related Work

In this section we cover recent methodologies that are either relevant to our approach and

problem or form the main ingredients of our contribution.

2.1 Extreme Multi–label Classification

Current methods for extreme MLC fall into two categories: embedding and tree–based

methods. Embedding–based methods aim to reduce the training complexity. They effectively

reduce the label space by assuming the training label matrix is low rank. Intuitively, rather

than learning independent classifiers for each label (binary relevance) (Tsoumakas et al.,

2010), classifiers are learned in a reduced label space L ≪ L where L is the total number of

labels. Likewise, a projection matrix is learned to convert predictions from the reduced label

space back to the original label space. In general, embedding methods vary based on how

they reduce the label space and how the projection operation is optimized. Tai and Lin

(2012) use principal component analysis (PCA) to reduce the label space. Low–rank

Empirical risk minimization for Multi–Label Learning (LEML) (Yu et al., 2014) jointly

optimizes the label space reduction and the projection processes. RobustXML (Xu et al.,

2016) is similar to LEML but it treats infrequent labels as outliers and models them

separately. Liu et al. (2017) employ neural networks for extreme multi–label problems using

a funnel–like architecture that reduces the label vector dimensionality. Tree–based multi–

label methods work by recursively splitting the feature space. These methods usually differ

based on the node splitting criterion. FastXML (Prabhu and Varma, 2014) partitions the

feature space using the nDCG measure as the splitting criterion. PfastreXML (Jain et al.,

Rios and Kavuluru Page 3

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2016) improves on FastXML by using a propensity scored nDCG splitting criterion and re–

ranking the predicted labels to optimize various ranking measures.

2.2 Memory Augmented Neural Networks

Memory networks (Weston et al., 2014) have access to external memory, typically consisting

of information the model may use to make predictions. Intuitively, informative memories

concerning a given instance are found by the memory network to improve its predictive

power. Kamra et al. (2017) use memory networks to fix issues of catastrophic forgetting.

They show that external memory can be used to learn new tasks without forgetting previous

tasks. Memory networks are now applied to a wide variety of natural language processing

tasks, including question answering and language modeling (Sukhbaatar et al., 2015; Bordes

et al., 2015; Miller et al., 2016).

Matching networks (Vinyals et al., 2016; Snell et al., 2017) have recently been developed for

few/one–shot learning problems. We can interpret matching networks as a key–value

memory network (Miller et al., 2016). The “keys” are training instances, while the “values”

are the labels associated with each training example. Intuitively, the concept is similar to a

hashmap. The model will search for the most similar training instance to find its respective

“value”. Also, matching networks can be interpreted as a k–NN based model that

automatically learns an informative distance metric. Finally, Altae–Tran et al. (2017) used

matching networks for drug discovery, a problem where data is limited.

2.3 Diagnosis Code Prediction

The 2007 shared task on coding radiology reports (Pestian et al., 2007) was the first effort

that popularized automated EMR coding. Traditionally, linear methods have been used for

diagnosis code prediction. Perotte et al. (2013) developed a hierarchical support vector

machine (SVM) model that takes advantage of the ICD–9–CM hierarchy. In our prior work,

we train a linear model for every label (Rios and Kavuluru, 2013) and re–rank the labels

using a learning–to–rank procedure (Kavuluru et al., 2015). Zhang et al. (2017) supplement

the diagnosis code training data with data from PubMed (biomedical article corpus and

search system) to train linear models using both the original training data and the PubMed

data.

Recent advances in neural networks have also been put to use for EMR coding: Baumel et

al. (2018) trained a CNN with multiple sigmoid outputs using binary cross–entropy. Duarte

et al. (2017) use hierarchical recurrent neural networks (RNNs) to annotate death reports

with ICD–10 codes. Vani et al. (2017) introduced grounded RNNs for EMR coding. They

found that iteratively updating their predictions at each time step significantly improved the

performance. Finally, similar to our work, memory networks (Prakash et al., 2017) have

recently been used for diagnosis coding. However, we would like to note two significant

differences between the memory network from Prakash et al. (2017) and our model. First,

they don’t use a matching network and their memories rely on extracting information about

each label from Wikipedia. In contrast, our model does not use any auxiliary information.

Second, they only evaluate on the 50 most frequent labels, while we evaluate on all the

labels in the dataset.

Rios and Kavuluru Page 4

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3 Our Architecture

An overview of our model is shown in Figure 1. Our model architecture has two main

components.

1. We augment a CNN with external memory over a support set S, which consists

of a small subset of the training dataset. The model searches the support set to

find similar examples with respect to the input instance. We make use of the

homophily assumption that similar instances in the support set are coded with

similar labels. Therefore, we use the related support set examples as auxiliary

features. The similar instances are chosen automatically by combining ideas

from metric learning and neural attention. We emphasize that unlike in a

traditional k–NN setup, we do NOT explicitly use the labels of the support set

instances. The support set essentially enriches and complements the features

derived from the input instance.

2. Rather than predicting labels by thresholding, we rank them and select the top k
labels specific to each instance where k is predicted using an additional output

unit (termed MetaL–abeler). We train the MetaLabeler along with the

classification loss using a multi–task training scheme.

Before we go into more specific details of our architecture, we introduce some notation. Let

X represent the set of all training documents and x be an instance of X. Likewise, let S
represent the set of support instances and s be an instance of S. We let L be the total number

of unique labels. Our full model is described in following subsections.

3.1 Convolutional Neural Networks

We use a CNN to encode each document following what is now a fairly standard approach

consisting of an embedding layer, a convolution layer, a max–pooling layer, and an output

layer (Collobert et al., 2011; Kim, 2014). However, in our architecture, the CNN additionally

aids in getting intermediate representations for the multi–head matching network component

(Section 3.2).

Intuitively, CNNs make use of the sequential nature of text, where a non–linear function is

applied to region vectors formed from vectors of words in short adjacent word sequences.

Formally, we represent each document as a sequence of word vectors, [w1, w2, . . . , wn],

where wi ∈ ℝd represents the vector of the i–th word in the document. The region vectors are

formed by concatenating each window of s words, wi − s + 1 ... wi into a local region vector

c j ∈ ℝsd. Next, cj is passed to a non-linear function

c j = ReLU Wc j + b ,

where W ∈ ℝv × sd,b ∈ ℝv, and ReLU is a recti fied linear unit (Glorot et al., 2011; Nair and

Hinton, 2010). Each row of W represents a convolutional filter; so v is the total number of

filters.

Rios and Kavuluru Page 5

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

After processing each successive region vector, we obtain a document representation

D = c1, c2, …, cn + s − 1 by concatenating each c j forming a matrix D ∈ ℝv × n + s − 1 . Each

row of D is referred to as a feature map, formed by different convolutional filters.

Unfortunately, this representation is dependent on the length of the document and we cannot

pass it to an output layer. We use max–over–time pooling to create a fixed size vector

g s = cmax
1 , cmax

2 , …, cmax
q ,

where cmax
j = max c1

j , c2
j , …cn+s − 1

j .

3.2 Multi–Head Matching Network

Using the support set and the input instance, our goal is to estimate P y x, S . The support set

S is chosen based on nearest neighbors and its selection process is discussed in Section 3.4.

Among instances in S, our model finds informative support instances with respect to x and

creates a feature vector using them. This feature vector is combined with the input instance

to make predictions.

First, each support instance sk ∈ S is projected into the support space using a simple single–

layer feed forward NN as

h g sk = ReLU Wsg sk + bs ,

where Ws ∈ ℝz × v and bsℝ
z. Likewise, we project each input instance x into the input space

using a different feed forward neural network,

pi g x = ReLU Wα
i g x + bα

i ,

where Wα
i ∈ ℝz × v and bα

i ∈ ℝz Compared to the support set neural network where we use

only a single network, for the input instance we have u projection neural networks. This

means we have u versions of x, an idea that is similar to self–attention (Lin et al., 2017),

where the model learns multiple representations of an instance. Here each pi(g(x)) represents

a single “head” or representation of the input x. Using different weight matrices,

Wα
1, …, Wα

u and bα
1, …, bα

u , we create different representations of x (multiple heads). For

both the input multi–heads and the support instance projection, we note that the same CNN

is used (also indicated in Figure 1) whose output is subject to the feed forward neural nets

outlined thus far in this section.

Rather than searching for a single informative support instance, we search for multiple

relevant support instances. For each of the u input instance representations, we calculate a

normalized attention score

Rios and Kavuluru Page 6

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ai, k =
exp −d pig x , h g sk

∑sk′ ∈ S exp −d pig x , h g sk′

where Ai,k represents the score of the k–th support example with respect to the i–th input

representation pi(g(x)) and

d xi, x j = xi − x j 2
2,

is the square of the Euclidean distance between the input and support representations.

Next, the normalized scores are aggregated into a matrix A ∈ ℝu × S . Then, we create a

feature vector

q = vec AS (1)

where q ∈ ℝuz, vec is the matrix vectorization operator, and S ∈ ℝ S × z is the support

instance CNN feature matrix whose i–th row is h(g(si)) for i = 1, …, S . Intuitively, multiple

weighted averages of the support instances are created, one for each of the u input

representations. The final feature vector,

h = q g x , (2)

is formed by concatenating the CNN representation of the input instance x and the support

set feature vector q.

Finally, the output layer for L labels involves computing

y = P y x, S = σ Wch + bc (3)

where Wc ∈ ℝL × uz × v ,bc ∈ ℝL, and σ is the sigmoid function. Because we use a sigmoid

activation function, each label prediction (ŷi) is in the range from 0 to 1.

3.3 MetaLabeler

The easiest method to convert ŷ into label predictions is to simply threshold each element at

0.5. However, most large–scale multi–label problems are highly imbalanced. When training

using binary cross–entropy, the threshold 0.5 is optimized for accuracy. Therefore, our

predictions will be biased towards 0. A simple way to fix this problem is to optimize the

threshold value for each label. Unfortunately, searching for the optimal threshold of each

label is computational expensive in large label spaces. Here we train a regression based

output layer

Rios and Kavuluru Page 7

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

r = ReLU Wrg x + br

where r estimates the number of labels x should be annotated with. At test time, we rank

each label by its score in ŷ. Next, r is rounded to the nearest integer and we predict the top r
ranked labels.

3.4 Training

To train our model, we need to define two loss functions. First, following recent working on

multi–label classification with neural networks (Nam et al., 2014b), we train using a multi–

label cross–entropy loss. The loss is defined as

ℒc = ∑
i = 1

L
−yilog yi − 1 − yi log 1 − yi ,

which sums the binary cross–entropy loss for each label. The second loss is used to train the

MetaL–abeler for which we use the mean squared error

ℒr = r − r 2
2

where r is the vector of correct numbers of labels and r is our estimate. We train these two

losses using a multi–task learning paradigm (Collobert et al., 2011)

Similar to previous work with matching networks (Vinyals et al., 2016; Snell et al., 2017),

“episode” or mini–batch construction can have an impact on performance. In the multi–label

setting, episode construction is non–trivial. We propose a simple strategy for choosing the

support set S which we find works well in practice. First, at the beginning of the training

process we loop over all training examples and store g(x) for every training instance. We

will refer to this set of vectors as T. Next, for every step of the training process (for every

mini–batch M), we search T \ M to find the e nearest neighbors (using Euclidean distance)

per instance to form our support set S. Likewise, we add e random examples from T \ M to

the support set. Therefore, our support set S contains up to M e + e instances. The purpose of

the random examples is to ensure the distance metric learned during training (captured by

improving representations of documents as influenced by all network parameters) is robust

to noisy examples.

3.5 Matching Network Interpretation

If we do not use the support set label vectors, then what is our network learning? To answer

this question we directly compare the matching network formulation to our method.

Matching networks can be expressed as

y = ∑
sk ∈ S

a x, sk ysk

Rios and Kavuluru Page 8

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where a(,) is the attention/distance learned between two instances, k indexes each support

instance, and yk is a one–hot encoded vector. a(,) is equivalent to A1,k assuming we use a

single head. Traditional matching networks use onehot encoded vectors because they are

evaluated on multi–class problems. EMR coding is a multi–label problem. Hence, yk is a

multi–hot encoded vector. Moreover, with thousands of labels, it is unlikely even for

neighboring instance pairs to share many labels; this problem is not encountered in the

multi–class setting. We overcome this issue by learning new output label vectors for each

support set instance. Assuming a single head, our method can be re–written as

y = σ Wc
1g x + bc + ∑

sk ∈ S
a x, sk ysk

, (4)

where yk is the learned label vector for support instance s. Next, we define yk, the learned

support set vectors, as

ysk
= Wc

2h g sk (5)

where both Wc
1 and Wc

2 are submatrices of Wc.Using this reformulation, we can now see that

our method’s main components (equations (1)–(3)) are equivalent to this more explicit

matching network formulation (equations (4)–(5)). Intuitively, our method combines a

traditional output layer – the first half of equation 4 – with a matching network where the

support set label vectors are learned to better match the labels of their nearest neighbors.

4 Experiments

In this section we compare our work with prior state–of–the–art medical coding methods. In

Section 4.1 we discuss the two publicly available datasets we use. Next, Section 4.2

describes the implementation details of our model. We summarize the various baselines and

models we compare against in Section 4.3. The evaluation metrics are described in Section

4.4. Finally, we discuss how our method performs in Section 4.5.

4.1 Datasets

EMR data is generally not available for public use especially if it involves textual notes.

Therefore, we focus on the publicly available Medical Information Mart for Intensive Care

(MIMIC) datasets for benchmarking purposes. We evaluate using two versions of MIMIC:

MIMIC II (Lee et al., 2011) and MIMIC III (Johnson et al., 2016), where the former is a

relatively smaller and older dataset and the latter is the most recent version. Following prior

work (Perotte et al., 2013; Vani et al., 2017), we use the free text discharge summaries in

MIMIC to predict the ICD–9–CM2 codes. The dataset statistics are shown in Table 1.

For comparison purposes, we use the same MIMIC II train/test splits as Perotte et al. (2013).

Specifically, we use discharge reports collected from 2001 to 2008 from the intensive care

Rios and Kavuluru Page 9

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

unit (ICU) of the Beth Israel Deaconess Medical Center. Following Perotte et al. (2013), the

labels for each discharge summary are extended using the parent of each label in label set.

The parents are based on the ICD–9–CM hierarchy. We use the hierarchical label expansion

to maximize the prior work we can compare against.

The MIMIC III dataset has been extended to include health records of patients admitted to

the Beth Israel Deaconess Medical Center from 2001 to 2012 and hence provides a test bed

for more advanced learning methods. Unfortunately, it does not have a standard train/test

split to compare against prior work given we believe we are the first to look at it for this

purpose. Hence, we use both MIMIC II and MIMIC III for comparison purposes.

Furthermore, we do not use the hierarchical label expansion on the MIMIC III dataset.

Before we present our results, we discuss an essential distinction between the MIMIC II and

MIMIC III datasets. Particularly, we are interested in the differences concerning label

imbalance. From Table 1, we find that MIMIC III has almost twice as many examples

compared to MIMIC II in the dataset. However, MIMIC II on average has more instances

per label. Thus, although MIMIC III has more examples, each label is used fewer times on

average compared to MIMIC II. The reason for this is because of how the label sets for each

instance were extended using the ICD–9 hierarchy in MIMIC II.

4.2 Implementation Details

Preprocessing: Each discharge summary was tokenized using a simple regex tokenization

scheme (\w\w+). Also, each word/token that occurs less than five times in the training

dataset was replaced with the UNK token.

Model Details: For our CNN, we used convolution filters of size 3, 4 and 5 with 300 filters

for each filter size. We used 300 dimensional skip–gram (Mikolov et al., 2013) word

embeddings pre–trained on PubMed. The Adam optimizer (Kingma and Ba, 2015) was used

for training with the learning rate 0.0001. The mini–batch size was set to 4, e – the number

of nearest neighbors per instance – was set to 16, and the number of heads (u) is set to 8.

Our code is available at: https://github.com/bionlproc/med-match-cnn

4.3 Baseline Methods

In this paper, we focused on comparing our method to state–of–the–art methods for

diagnosis code prediction such as grounded recurrent neural networks (Vani et al., 2017)

(GRNN) and multi–label CNNs (Baumel et al., 2018). We also compare against traditional

binary relevance methods where independent binary classifiers (L1–regularized linear

models) are trained for each label. Next, we compare against hierarchical SVM (Perotte et

al., 2013), which incorporates the ICD–9–CM label hierarchy. Finally, we also report the

results of the traditional matching network with one modification: We train the matching

network with the multi–label loss presented in Section 3.4 and threshold using the

MetaLabeler described in Section 3.3.

We also present two versions of our model: Match–CNN and Match–CNN Ens. Match–

CNN is the multi–head matching network introduced in Section 3. Match–CNN Ens is an

Rios and Kavuluru Page 10

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bionlproc/med-match-cnn

ensemble that averages three Match–CNN models, each initialized using a different random

seed.

4.4 Evaluation Metrics

We evaluate our method using a wide variety of standard multi–label evaluation metrics. We

use the popular micro and macro averaged F1 measures to assess how our model (with the

MetaL–abeler) performs when thresholding predictions. For problems with large labels

spaces that suffer from significant imbalances in label distributions, the default threshold of

0.5 generally performs poorly (hence our use of MetaLabeler). To remove the thresholding

effect bias, we also report different versions of the area under the precision–recall (PR) and

receiver operating characteristic (ROC) curves. Finally, in a real–world setting, our system

would not be expected to replace medical coders. We would expect medical coders to use

our system to become more efficient in coding EMRs. Therefore, we would rank the labels

based on model confidence and medical coders would choose the correct labels from the top

few. To understand if our system would be useful in a real–world setting, we evaluate with

precision at k (P@k) and recall at k (R@k). Having high P@k and R@k are critical to

effectively encourage the human coders to use and benefit from the system.

4.5 Results

We show experimental results on MIMIC II in Table 2. Overall, our method improves on

prior work across a variety of metrics. With respect to micro F1, we improve upon GRNN–

128 by over 1%. Also, while macro–F1 is still low in general, we also improve macro F1

compared to state–of–theart neural methods by more than 1%. In general, both micro and

macro F1 are highly dependent on the thresholding methodology. Rather than thresholding

at 0.5, we rank the labels and pick the top k based on a trained regression output layer. Can

we do better than using a MetaLabeler? To measure this, we look at the areas under PR/ROC

curves. Regarding micro and macro PR–AUC, we improve on prior work by ≈ 2.5%. This

suggests that via better thresholding, the chances of improving both micro and macro F1 are

higher for Match–CNN compared to other methods. Finally, we are also interested in metrics

that evaluate how this model would be used in practice. We perform comparably with prior

work on P@k. We show strong improvements in R@k with over a 4% improvement in

R@40 compared to grounded RNNs and over 1% improvement when compared with

Baumel et al. (2018). Our method also outperforms matching networks across every

evaluation measure.

We present MIMIC III results in Table 3. We reiterate that MIMIC III does not have a

standard train/test split. Hence we compare our model to our implementations of methods

from prior efforts. For MIMIC III also we show improvements in multiple evaluation

metrics. Interestingly, our method performs much better than the standard CNN on MIMIC

III, compared to the relative performances of the two methods on MIMICII. Match–CNN

improves on CNN in R@40 by almost 5% on the MIMIC III dataset. The gain in R@40 is

more than the 1% improvement found on MIMIC II. We hypothesize that the improvements

on MIMIC III are because the label imbalance found in MIMIC III is higher than MIMIC II.

Increased label imbalances mean more labels occur less often. Therefore, we believe our

Rios and Kavuluru Page 11

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model works better with less training examples per label compared to the standard CNN

model.

In Table 4 we analyze each component of our model using an ablation analysis on the

MIMIC III dataset. First, we find that removing the matching component significantly

effects our performance by reducing micro PR–AUC by almost 5%. Regarding micro and

macro F1, we also notice that the MetaLabeler heuristic substantially improves on default

thresholding (0.5). Finally, we see that the multi–head matching component provides

reasonable improvements to our model across multiple evaluation measures. For example,

P@8 and P@40 decrease by around 1% when we use attention with a single input

representation.

5 Conclusion

In this paper, we introduce a semi–parametric multi–head matching network with a specific

application to EMR coding. We find that by combining the non–parametric properties of

matching networks with a traditional classification output layer, we improve metrics for both

frequent and infrequent labels in the dataset. In the future, we plan to investigate three

limitations of our current model.

1. We currently use a naive approach to choose the support set. We believe that

improving the support set sampling method could substantially improve

performance.

2. We hypothesize that a more sophisticated thresholding method could have a

significant impact on the micro and macro F1 measures. As we show in Table 4,

MetaLabeler outperforms naive thresholding strategies. However, given our

method shows non–trivial gains in PR–AUC compared to micro/macro F1, we

believe better thresholding strategies are a worthy avenue to seek improvements.

3. Both the MIMIC II and MIMIC III datasets have around 7000 labels but ICD–9–

CM contains over 16000 labels and ICD–10–CM has nearly 70,000 labels. In

future work, we believe significant attention should be given to zero–shot

learning applied to EMR coding. To predict labels that have never occurred in

the training dataset, we think it is vital to take advantage of the ICD hierarchy.

Baker and Korhonen (2017) improve neural network training by incorporating

hierarchical label information to create better weight initializations. However,

this does not help with respect to zero–shot learning. If we can better incorporate

expert knowledge about the label space, we may be able to infer labels we have

not seen before.

Acknowledgments

Thanks to anonymous reviewers for their thorough reviews and constructive criticism that helped improve the
clarity of the paper (especially leading to the addition of Section 3.5 in the revision). This research is supported by
the U.S. National Library of Medicine through grant R21LM012274. We also gratefully acknowledge the support of
the NVIDIA Corporation for its donation of the Titan X Pascal GPU used for this research.

Rios and Kavuluru Page 12

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

Altae–Tran Han, Ramsundar Bharath, Pappu Aneesh S, and Pande Vijay. 2017 Low data drug
discovery with one–shot learning. ACS central science 3(4):283–293. [PubMed: 28470045]

Baker Simon and Korhonen Anna. 2017 Initializing neural networks for hierarchical multi–label text
classification. BioNLP 2017 pages 307–315.

Baumel Tal, Nassour–Kassis Jumana, Elhadad Michael, and Elhadad Noemie. 2018 Multi–label
classification of patient notes a case study on icd code assignment. In Proceedings of the 2018
AAAI Joint Workshop on Health Intelligence.

Bhatia Kush, Jain Himanshu, Kar Purushottam, Varma Manik, and Jain Prateek. 2015 Sparse local
embeddings for extreme multi–label classification. In Advances in neural information processing
systems. pages 730–738.

Bordes Antoine, Usunier Nicolas, Chopra Sumit, and Weston Jason. 2015 Large–scale simple question
answering with memory networks. arXiv preprint arXiv:1506.02075.

Collobert Ronan, Weston Jason, Bottou Léon, Karlen Michael, Kavukcuoglu Koray, and Kuksa Pavel.
2011 Natural language processing (almost) from scratch. Journal of Machine Learning Research
12:2493–2537.

Dougherty Michelle, Seabold Sandra, and White Susan E. 2013 Study reveals hard facts on CAC.
Journal of the American Health Information Management Association 84(7):54–56.

Duarte Francisco, Martins Bruno, Pinto Cátia Sousa, and Silva Mário J. 2017 A deep learning method
for icd–10 coding of free–text death certificates In Portuguese Conference on Artificial Intelligence.
Springer, pages 137–149.

Glorot Xavier, Bordes Antoine, and Bengio Yoshua. 2011 Deep sparse rectifier networks. In
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. JMLR
W&CP Volume. volume 15, pages 315–323.

Jain Himanshu, Prabhu Yashoteja, and Varma Manik. 2016 Extreme multi–label loss functions for
recommendation, tagging, ranking & other missing label applications. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ACM, pages
935–944.

Johnson Alistair EW, Pollard Tom J, Shen Lu, Lehman Liwei H, Feng Mengling, Ghas–semi
Mohammad, Moody Benjamin, Szolovits Peter, Celi Leo Anthony, and Mark Roger G. 2016
Mimic–iii, a freely accessible critical care database. Scientific data 3.

Johnson Rie and Zhang Tong. 2017 Deep pyramid convolutional neural networks for text
categorization. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). volume 1, pages 562–570.

Kamra Nitin, Gupta Umang, and Liu Yan. 2017 Deep generative dual memory network for continual
learning. arXiv preprint arXiv:1710.10368.

Kavuluru Ramakanth, Rios Anthony, and Lu Yuan. 2015 An empirical evaluation of supervised
learning approaches in assigning diagnosis codes to electronic medical records. Artificial
intelligence in medicine 65(2):155–166. [PubMed: 26054428]

Kim Yoon. 2014 Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP) Association for
Computational Linguistics, Doha, Qatar, pages 1746–1751.

Kingma Diederik P. and Ba Jimmy. 2015 Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR).

Koch Gregory, Zemel Richard, and Salakhutdinov Ruslan. 2015 Siamese neural networks for one–shot
image recognition. In ICML Deep Learning Workshop. volume 2.

Lee Joon, Scott Daniel J, Villarroel Mauricio, Clifford Gari D, Saeed Mohammed, and Mark Roger G.
2011 Open–access mimic–ii database for intensive care research. In Engineering in Medicine and
Biology Society, EMBC, 2011 Annual International Conference of the IEEE IEEE, pages 8315–
8318.

Lin Zhouhan, Feng Minwei, dos Santos Cicero Nogueira, Yu Mo, Xiang Bing, Zhou Bowen, and
Bengio Yoshua. 2017 Automatic discovery and optimization of parts for image classification. In
Proceedings of the International Conference on Learning Representations (ICLR).

Rios and Kavuluru Page 13

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu Jingzhou, Chang Wei–Cheng, Wu Yuexin, and Yang Yiming. 2017 Deep learning for extreme
multi–label text classification. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval ACM, pages 115–124.

Mikolov Tomas, Sutskever Ilya, Chen Kai, Corrado Greg S, and Dean Jeff. 2013 Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems. pages 3111–3119.

Miller Alexander H., Fisch Adam, Dodge Jesse, Karimi Amir–Hossein, Bordes Antoine, and Weston
Jason. 2016 Key–value memory networks for directly reading documents. In EMNLP. The
Association for Computational Linguistics, pages 1400–1409.

Nair Vinod and Hinton Geoffrey E. 2010 Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th International Conference on Machine Learning (ICML–10)
pages 807–814.

Nam Jinseok, Kim Jungi, Mencía Eneldo Loza, Gurevych Iryna, and Furnkranz Johannes. 2014a
Large–scale multi–label text classification – revisiting neural networks In Machine Learning and
Knowledge Discovery in Databases – European Conference, ECML PKDD 2014, Nancy, France,
September 15–19, 2014. Proceedings, Part II pages 437–452.

Nam Jinseok, Kim Jungi, Mencía Eneldo Loza, Gurevych Iryna, and Furnkranz Johannes. 2014b
Large–scale multi–label text classificationrevisiting neural networks In Machine Learning and
Knowledge Discovery in Databases, Springer, pages 437–452.

Perotte Adler, Pivovarov Rimma, Natarajan Karthik, Weiskopf Nicole, Wood Frank, and Elhadad
Noémie. 2013 Diagnosis code assignment: models and evaluation metrics. Journal of the
American Medical Informatics Association 21(2):231–237. [PubMed: 24296907]

Pestian John P, Brew Christopher, Matykiewicz Paweł, Hovermale Dj J, Johnson Neil, Cohen K
Bretonnel, and Duch Włodzisław. 2007 A shared task involving multi–label classification of
clinical free text. In Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and
Clinical Language Processing Association for Computational Linguistics, pages 97–104.

Prabhu Yashoteja and Varma Manik. 2014 Fastxml: A fast, accurate and stable tree–classifier for
extreme multi–label learning. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining ACM, pages 263–272.

Prakash Aaditya, Zhao Siyuan, Hasan Sadid A, Datla Vivek V, Lee Kathy, Qadir Ashequl, Liu Joey,
and Farri Oladimeji. 2017 Condensed memory networks for clinical diagnostic inferencing. In
AAAI. pages 3274–3280.

Rios Anthony and Kavuluru Ramakanth. 2013 Supervised extraction of diagnosis codes from emrs:
role of feature selection, data selection, and probabilistic thresholding. In Healthcare Informatics
(ICHI), 2013 IEEE International Conference on IEEE, pages 66–73.

Snell Jake, Swersky Kevin, and Zemel Richard. 2017 Prototypical networks for few–shot learning In
Guyon I, Luxburg UV, Bengio S, Wallach H,Fergus R, Vishwanathan S, and Garnett R, editors,
Advances in Neural Information Processing Systems 30, Curran Associates, Inc., pages 4078–
4088.

Sukhbaatar Sainbayar, Weston Jason, Fergus Rob, et al. 2015 End–to–end memory networks. In
Advances in neural information processing systems. pages 2440–2448.

Tai Farbound and Lin Hsuan–Tien. 2012 Multilabel classification with principal label space
transformation. Neural Computation 24(9):2508–2542. [PubMed: 22594831]

Tsoumakas Grigorios, Katakis Ioannis, and Vlahavas Ioannis P.. 2010 Mining multi–label data In Data
Mining and Knowledge Discovery Handbook, pages 667–685.

Vani Ankit, Jernite Yacine, and Sontag David. 2017 Grounded recurrent neural networks. arXiv
preprint arXiv:1705.08557.

Vinyals Oriol, Blundell Charles, Lillicrap Tim, Wierstra Daan, et al. 2016 Matching networks for one
shot learning. In Advances in Neural Information Processing Systems. pages 3630–3638.

Weston Jason, Chopra Sumit, and Bordes Antoine. 2014 Memory networks. arXiv preprint arXiv:
1410.3916.

Xu Chang, Tao Dacheng, and Xu Chao. 2016 Robust extreme multi–label learning. In KDD. pages
1275–1284.

Rios and Kavuluru Page 14

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang Zichao, Yang Diyi, Dyer Chris, He Xiaodong, Smola Alex, and Hovy Eduard. 2016 Hierarchical
attention networks for document classification. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies pages 1480–1489.

Yu Hsiang–Fu, Jain Prateek, Kar Purushottam, and Dhillon Inderjit S.. 2014 Large–scale multi–label
learning with missing labels. In Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21–26 June 2014 pages 593–601.

Zhang Danchen, He Daqing, Zhao Sanqiang, and Li Lei. 2017 Enhancing automatic icd–9–cm code
assignment for medical texts with pubmed. BioNLP 2017 pages 263–271.

Rios and Kavuluru Page 15

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
The matching CNN architecture. For each input instance, x, we search a support set using

different representations of x and use the similar support instances and auxiliary features to

the output layer.

Rios and Kavuluru Page 16

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rios and Kavuluru Page 17

Table 1:

This table presents the number of training examples (# Train), the number of test examples (# Test), label

cardinality (LC), and the average number of instances per label (AI/L) for the MIMIC II and MIMIC III

datasets.

Train # Test # Labels LC AI/L

MIMIC II 18822 2282 7042 36.7 118.8

MIMIC III 37016 2755 6932 13.6 80.8

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rios and Kavuluru Page 18

Ta
b

le
 2

:

R
es

ul
ts

 f
or

 th
e

M
IM

IC
 I

I
da

ta
se

t.

F
1

A
U

C
 (

P
R

)
A

U
C

 (
R

O
C

)
P

@
k

R
@

k

P
re

c.
R

ec
al

l
M

ic
ro

M
ac

ro
M

ic
ro

M
ac

ro
M

ic
ro

M
ac

ro
8

40
8

40

Fl
at

 S
V

M
 (

Pe
ro

tte
 e

t a
l.,

 2
01

3)
0.

86
7

0.
16

4
0.

27
6

–
–

–
–

–
–

–
–

–

H
ie

r.
SV

M
 (

Pe
ro

tte
 e

t a
l.,

 2
01

3)
0.

57
7

0.
30

1
0.

39
5

–
–

–
–

–
–

–
–

–

L
og

is
tic

 (
V

an
i e

t a
l.,

 2
01

7)
0.

77
4

0.
39

5
0.

52
3

0.
04

2
0.

54
1

0.
12

5
0.

91
9

0.
70

4
0.

91
3

0.
57

2
0.

16
9

0.
52

8

A
ttn

 B
oW

 (
V

an
i e

t a
l.,

 2
01

7)
0.

74
5

0.
39

9
0.

52
0.

02
7

0.
52

1
0.

07
9

0.
97

5
0.

80
7

0.
91

2
0.

54
9

0.
16

9
0.

50
8

G
R

U
–1

28
 (

V
an

i e
t a

l.,
 2

01
7)

0.
72

5
0.

39
6

0.
51

2
0.

02
7

0.
52

3
0.

08
2

0.
97

6
0.

82
7

0.
90

6
0.

54
1

0.
16

8
0.

50
1

B
iG

R
U

–6
4

(V
an

i e
t a

l.,
 2

01
7)

0.
71

5
0.

36
7

0.
48

5
0.

02
1

0.
49

3
0.

07
1

0.
97

3
0.

81
1

0.
89

2
0.

52
2

0.
16

5
0.

48
3

G
R

N
N

–1
28

 (
V

an
i e

t a
l.,

 2
01

7)
0.

75
3

0.
47

2
0.

58
0.

05
2

0.
58

7
0.

12
6

0.
97

6
0.

81
5

0.
93

0.
59

2
0.

17
2

0.
54

8

B
iG

R
N

N
–6

4
(V

an
i e

t a
l.,

 2
01

7)
0.

76
1

0.
46

6
0.

57
8

0.
05

4
0.

58
9

0.
13

1
0.

97
5

0.
79

8
0.

92
5

0.
59

6
0.

17
2

0.
55

2

C
N

N
 (

B
au

m
el

 e
t a

l.,
 2

01
8)

*
0.

81
0

0.
40

3
0.

53
8

0.
03

1
0.

59
9

0.
12

7
0.

97
1

0.
75

9
0.

93
1

0.
58

5
0.

20
7

0.
58

6

M
at

ch
in

g
N

et
w

or
k*

0.
43

9
0.

38
8

0.
41

2
0.

01
4

0.
39

4
0.

03
4

0.
89

3
0.

55
1

0.
79

3
0.

42
7

0.
17

2
0.

42
5

M
at

ch
–C

N
N

 (
O

ur
s)

0.
60

5
0.

56
1

0.
58

2
0.

06
4

0.
61

2
0.

14
8

0.
97

7
0.

79
2

0.
93

0
0.

58
6

0.
20

7
0.

59
0

M
at

ch
–C

N
N

 E
ns

. (
O

ur
s)

0.
61

6
0.

56
7

0.
59

1
0.

06
6

0.
62

3
0.

15
7

0.
97

7
0.

79
3

0.
93

5
0.

59
4

0.
20

8
0.

59
8

M
od

el
s

m
ar

ke
d

w
ith

 *
 r

ep
re

se
nt

 o
ur

 c
us

to
m

 im
pl

em
en

ta
tio

ns
.

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rios and Kavuluru Page 19

Ta
b

le
 3

:

R
es

ul
ts

 f
or

 th
e

M
IM

IC
 I

II
 d

at
as

et
.

F
1

A
U

C
 (

P
R

)
A

U
C

 (
R

O
C

)
P

@
k

R
@

k

P
R

M
ic

ro
M

ac
ro

M
ic

ro
M

ac
ro

M
ic

ro
M

ac
ro

8
40

8
40

L
og

is
tic

 (
V

an
i e

t a
l.,

 2
01

7)
*

0.
71

1
0.

24
2

0.
36

1
0.

02
6

0.
41

9
0.

14
7

0.
96

1
0.

75
1

0.
55

4
0.

21
1

0.
41

4
0.

68
6

C
N

N
 (

B
au

m
el

 e
t a

l.,
 2

01
8)

*
0.

72
6

0.
24

6
0.

36
7

0.
02

1
0.

37
6

0.
09

5
0.

94
2

0.
69

7
0.

53
4

0.
19

6
0.

39
5

0.
63

6

M
at

ch
in

g
N

et
w

or
k*

0.
24

8
0.

23
7

0.
24

2
0.

00
8

0.
18

3
0.

02
8

0.
82

3
0.

55
4

0.
31

0
0.

12
8

0.
23

1
0.

43
1

M
at

ch
-C

N
N

 (
O

ur
s)

0.
46

6
0.

44
7

0.
45

6
0.

04
1

0.
42

1
0.

11
9

0.
96

3
0.

72
6

0.
55

7
0.

20
6

0.
41

3
0.

67
0

M
at

ch
-C

N
N

 E
ns

. (
O

ur
s)

0.
48

8
0.

44
9

0.
46

8
0.

04
3

0.
44

1
0.

12
9

0.
96

5
0.

76
0

0.
57

0
0.

21
1

0.
42

2
0.

68
3

M
od

el
s

m
ar

ke
d

w
ith

 *
 r

ep
re

se
nt

 o
ur

 c
us

to
m

 im
pl

em
en

ta
tio

ns
.

Proc Conf. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rios and Kavuluru Page 20

Table 4:

Ablation results for the MIMIC III dataset.

F1 P@k R@k AUC (PR)

Micro Macro 8 40 8 40 Micro Macro

Match-CNN 0.456 0.041 0.557 0.206 0.413 0.670 0.421 0.119

- Matching 0.429 0.034 0.534 0.196 0.395 0.636 0.376 0.095

- MetaLabler 0.391 0.026 0.557 0.206 0.413 0.670 0.421 0.119

- Multi-Head 0.450 0.034 0.548 0.202 0.403 0.656 0.417 0.113

Proc Conf. Author manuscript; available in PMC 2018 August 23.

	Abstract
	Introduction
	Related Work
	Extreme Multi–label Classification
	Memory Augmented Neural Networks
	Diagnosis Code Prediction

	Our Architecture
	Convolutional Neural Networks
	Multi–Head Matching Network
	MetaLabeler
	Training
	Matching Network Interpretation

	Experiments
	Datasets
	Implementation Details
	Baseline Methods
	Evaluation Metrics
	Results

	Conclusion
	References
	Figure 1:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

