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Cholesterol transport between intracellular compartments proceeds by both energy- and non-energy-dependent processes. Energy-
dependent vesicular traffic partly contributes to cholesterol flux between endoplasmic reticulum, plasma membrane, and endocytic
vesicles. Membrane contact sites and lipid transfer proteins are involved in nonvesicular lipid traffic. Only “active” cholesterol
molecules outside of cholesterol-rich regions and partially exposed in water phase are able to fast transfer. The dissociation of
partially exposed cholesterol molecules in water determines the rate of passive aqueous diffusion of cholesterol out of plasma
membrane. ATP hydrolysis with concomitant conformational transition is required to cholesterol efflux by ABCAl and ABCG1
transporters. Besides, scavenger receptor SR-BI is involved also in cholesterol efflux by facilitated diffusion via hydrophobic tunnel
within the molecule. Direct interaction of ABCA1 with apolipoprotein A-I (apoA-I) or apoA-I binding to high capacity binding
sites in plasma membrane is important in cholesterol escape to free apoA-I. ABCGl-mediated efflux to fully lipidated apoA-I within
high density lipoprotein particle proceeds more likely through the increase of “active” cholesterol level. Putative cholesterol-binding
linear motifs within the structure of all three proteins ABCAl, ABCGI, and SR-B1 are suggested to contribute to the binding
and transfer of cholesterol molecules from cytoplasmic to outer leaflets of lipid bilayer. Together, plasma membrane events and

intracellular cholesterol metabolism and traffic determine the capacity of the cell for cholesterol efflux.

1. Introduction

Cholesterol homeostasis is a well-coordinated machinery
of de novo cholesterol synthesis in endoplasmic reticulum
and uptake of cholesterol-containing low-density lipopro-
teins (LDL). Cholesterol synthesis is under tight control by
lipoprotein-derived cholesterol that includes inhibition of the
sterol regulatory element-binding protein (SREBP) pathway
with the decreased expression of genes involved in cholesterol
synthesis and uptake [1]. Cholesterol turnover is normally
balanced by cholesteryl ester formation at cholesterol excess
and cellular cholesterol efflux by both passive and active
transport. Reverse cholesterol transport from the cell to the
liver is considered as a major atheroprotective event with
cholesterol eftlux as a rate-limiting step [2, 3]. Eukaryotic cells
maintain a gradient in sterol concentration between plasma
membrane (PM) and the membranes of cell organelles
such as endoplasmic reticulum (ER) by both vesicular and
nonvesicular mechanisms involving lipid transport proteins.

PM contains 40-90% of total cellular cholesterol [4], for
example, 64% in CHO cells [5] and 90% in human fibroblasts
and FU5AH rat hepatoma cells [6, 7]. ER is the site of
cholesterol synthesis; however in contrast to PM, the ER
contains just a small fraction of total cell cholesterol, such
as 0.5% of total cell cholesterol in human fibroblasts [8].
Such a drastic difference in cholesterol pools in the PM
and ER is due to much higher cholesterol concentration
in PM compared to ER and other intracellular membranes.
The fraction of cholesterol in PM relative to total PM
lipids is 30-40 mol% in leukocytes, epithelial cells, neurons,
and mesenchymal cell [9]. The sterol/phospholipid ratio
in RAW264.7 macrophages and mouse fibroblast LM cells
is 0.5-0.6 for PM, as compared to 0.25-0.3 for ER, and
0.05-0.1 for mitochondrial membrane [10, 11]. The ratio of
cholesterol to combined cholesterol and phospholipid (PL)
content for ER for CHO cells is 5-7 mol%, compared to
35mol% for the whole cell [12, 13]. All other intracellular
membranes have smaller cholesterol concentration than the
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PM. Importantly, the PM cholesterol is the cholesterol that
participates in the efflux to the extracellular acceptors [14].
Despite the large size of PM cholesterol pool, efflux of just a
small fraction of PM cholesterol can be significantly affected
by intracellular events. Indeed, while cholesterol efflux in
cholesterol-depleted RAW 264.7 cells is as small as less than
1% of total cholesterol, the knockdown of dynamin-2, or
ADP-ribosylation factor 6 (Arf6), or Cdc42 reduces it even
further [15]. The efflux of 2% of total cell cholesterol in THP-
1 cells was almost completely inhibited by the knockdown
of oxysterol-binding protein-related protein 6 (OSBPL6, aka
ORP6) [1]. The efflux of 4% of total cholesterol in peritoneal
macrophages from WT mouse was reduced by 2-fold in
the peritoneal macrophages with knockout in Niemann-Pick
disease, type Cl (NPCI1) protein [16]. Another illustration
of the effect of intracellular or PM processes on cholesterol
efflux is the overexpression of caveolin-1 in RAW 264.7 that
increases cholesterol efflux to HDL from 2.5% to almost 5%
[17]. The lipid composition and structural features of plasma
membrane (18, 19] also contribute to cholesterol efflux.

The goal of this review is to describe the complex pro-
cesses of cholesterol metabolism and cholesterol traffic inside
the cell and the effect of these processes on the cholesterol
efflux from the cells. The mechanisms of cholesterol transfer
between cell membranes and underlying reason of gradi-
ent of cholesterol concentration between intracellular and
plasma membranes will be discussed. We also describe four
known mechanisms of cholesterol efflux-aqueous diffusion,
facilitated diffusion mediated by SR-B1 receptor, and active
unidirectional efflux mediated by ABCAl and ABCGI trans-
porters. The contribution of different pools of cholesterol and
types of acceptor will be also considered.

2. Lipid Rafts and Cholesterol Pools in
Lipid Bilayer and Cell Membranes

2.1. Membrane Lipid Composition and Two Kinetic Pools of PM
Cholesterol. 'The distribution of lipids between membrane
leaflets is not even. The cytosolic leaflet of PM is enriched with
PE, PI, and PS compared to outward leaflet and is poorer in
sphingolipids and PC [10, 20]. In addition, the composition
of the membranes is not isotropic because of rafts and other
structural features [21]. Dependent on the membrane compo-
sition, cholesterol can be associated with other lipids in more
or less tight and stable complexes that affect its activity. The
ability to form a complex and its stoichiometry depends on
the lipid structure, such as the saturation and length of the
acyl chains and the size of the polar head. The lipid:cholesterol
molar ratio in the complexes usually varies between 3:1 and
L:1. Cholesterol preferably interacts with lipids containing
large polar heads and saturated fatty acid residues due to
increased shielding of cholesterol from the aqueous phase
by large heads and a stronger Van der Waals interaction
with saturated chains [18]. Under certain conditions, the
addition of cholesterol to phospholipids leads to phase sep-
aration: phosphatidylcholine and especially sphingomyelin
concentrate in the ordered and condensed cholesterol-rich
phase, while the remaining phospholipids are displaced into
the liquid phase. The pressure-composition phase diagram
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FIGURE 1: Cholesterol distribution and movement between major
compartments. Solid arrows indicate nonvesicular cholesterol trans-
port (including transport via membrane contact sites and lipid
transfer proteins); dashed arrows indicate vesicular transport and
transport of cholesterol mediated by organelles. The numbers
indicate the following: (1) the major nonvesicular, not cytoskeleton-
dependent, energy-dependent path of cholesterol transport from
ER to PM; (2) the minor vesicular transport from ER to PM via
Golgi; (3) not energy-dependent, cytoskeleton-dependent choles-
terol transport from PM to ER; (4) transport of LDL bound by
LDL receptor in clathrin-coated vesicles; (5) energy-dependent,
cytoskeleton-dependent cholesterol transport via lysosome-related
organelles; (6) lysosomal degradation of LD. Three pools of choles-
terols with different accessibility to water phase are known in PM.
PFO-accessible cholesterol is the most available pool for the inter-
actions with reagents in aqueous phase, such as PFO (Perfringolysin
0), cholesterol oxidase, and cyclodextrin. This pool with variable
size is considered as a putative “active” cholesterol. The size of this
pool is very small at cholesterol depletion, while at the increase of
its size in PM cholesterol moves to the ER. PFO-accessible pool
in ER appears at much smaller mol% of cholesterol. PM (plasma
membrane), ER (endoplasmic reticulum), LD (lipid droplets), TGN
(trans-Golgi network), LDL (low-density lipoprotein), and SM
(sphingomyelin).

for cholesterol-phospholipid mixtures is characterized by an
initial increase in pressure at low cholesterol content caused
by the formation of ordered regions in the liquid phase. As
cholesterol content increases, the pressure decreases due to
the formation of a stoichiometric complex. The pressure then
increases again when the liquid regions are formed in the
condensed phase with a further increase in the cholesterol
content [19]. Cholesterol, not associated in complexes with
other lipids, is more available for reactions and more active
at the escape from the membrane, probably due to disruption
of its orientation in the bilayer. Cholesterol molecules with
higher chemical activity are more accessible for the removal
by cholesterol acceptors, for oxidation by cholesterol oxidase,
and for binding to bacterial protein toxins of cholesterol-
dependent cytolysins family, e.g., Perfringolysin O (PFO)
and anthrolysin [19, 22, 23]. In the membrane, cholesterol
pools with different activity can simultaneously be present
(Figure 1). It was suggested that cholesterol distribution in
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membranes of various organelles depends on the compo-
sition of these membranes and corresponds to the stoi-
chiometry of the cholesterol complexes. Two existing views
on uneven cholesterol content in plasma and intracellular
membranes suggest (1) the distribution of cholesterol by
diffusion or assisted diffusion of cholesterol, which depends
on cholesterol concentration and lipid composition of the
membranes, and (2) the participation of energy-dependent
active transport of cholesterol by cholesterol transfer proteins
[19, 24]. Cholesterol level in endoplasmic reticulum does not
exceed 5% and there is no complex with 19:1 stoichiometry;
the complex formation is discarded for such phospholipid as
1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine. Alter-
natively, the diminished cholesterol content may originate
from the presence in ER of any substances that exclude
cholesterol from the complex.

Cholesterol level is tightly maintained in cell membrane
due to complex formation. Thus, the excess of cholesterol in
the PM results in the cholesterol efflux or its transfer to ER for
conversion to CE or in some cases to mitochondria for oxi-
dation to oxysterols [25]. Normally, the cholesterol content
of PM of fibroblasts and CHO cells is about 40-50% of total
PM lipids. The association of plasma membrane cholesterol
with a mutant form of bacterial Perfringolysin O (PFOx)
occurs at cholesterol increase over 35%. Thus up to ~15%
are available for the binding to the PFO=. This cholesterol
pool disappeared when cells are cholesterol-depleted. The
treatment of the cells with sphingomyelinase releases choles-
terol from cholesterol-SM complexes thus adding 10-23% of
the cholesterol to the PFO=-accessible pool. The rest of the
cholesterol does not bind to PFO*. It is an essential pool, and
the depletion of this cholesterol results in the rounding of the
cells and their detachment to the medium. The binding of ER
cholesterol with PFO occurs at cholesterol level over 5%. The
relation between static and kinetic cholesterol pools remains
undetermined; however, the concentration of cholesterol
complex with sphingomyelin decreased at the increase of
cyclodextrin content [14, 26].

Two pools of cholesterol are observed in the kinetics of
cholesterol efflux to cyclodextrin in Fu5AH hepatoma cells,
mouse fibroblasts L-cells, human skin fibroblasts, and CHO-
K1 cells. The fast pool is 20-60% (the highest is for the Fu5AH
cells) of cell cholesterol and the efflux half time is about 15-
23 sec. The slow pool is 50-80% and its half time of efflux is
about 15-35min [14, 27]. The cholesterol efflux to HDL; in
CHO-KI cells similarly to the efflux to cyclodextrin shows fast
and slow pools. However, the sizes of both pools for the efflux
to HDL3 are much smaller than if the cholesterol acceptor
is cyclodextrin. The temperature dependence of cholesterol
efflux indicates that activation energy for cholesterol transfer
to HDL;-derived apoHDL-PC is 20 kcal/mol, which is much
higher than for cyclodextrin (7 kcal/mol). Slow and fast
pools exchange cholesterol with a half time 20-30 min. All
cholesterol molecules of the fast pool and the majority of
cholesterol of the slow pool escape from the PM [14, 27].

Energy poisons do not significantly affect the fast pool of
cholesterol. Sodium azide (NaNj;), potassium cyanide (KCN),
sodium fluoride (NaF), ATPase inhibitor bafilomycin Al,
or mixture of NaN; with 2-deoxyglucose does not affect

half-times and size of fast cholesterol pool in CHO-KI
cells or just slightly affects them in CHO cells expressing
human transferrin receptor [14, 28]. The data on the effect
of energy poisons on the parameters of slow cholesterol pool
are controversial. NaN;, KCN, NaF, and ATPase inhibitor
bafilomycin Al do not affect half time and size of slow
cholesterol pool in CHO-KI1 cells [14]. However, energy
poison mixture of NaN; with 2-deoxyglucose effectively
prevents cholesterol efflux from the slow pool in CHO cells
expressing human transferrin receptor [28].

2.2. Cholesterol Homeostasis Might Be Regulated by “Active”
Cholesterol. The difference in the chemical activity of choles-
terol between various membranes results in the cholesterol
flux from one membrane to another [22]. Sphingomyelins
(SMs) are known as lipids that can be associated with
cholesterol in membranes. Partial hydrolysis of SMs by
treatment of the cells with sphingomyelinase results in rapid
flux of cholesterol from PM to intracellular cholesterol pools
[72]. It can be assumed that many processes that depend
on individual cholesterol molecules, such as cholesterol dif-
fusion and cholesterol-protein interaction, similarly depend
on the concentration of the accessible “active” cholesterol,
but not the total cholesterol. An increase of ER cholesterol
above ~5mol% results in the appearance of PFO-accessible
cholesterol and in the disappearance of SREBP-2 in the
nucleus controlled by SREBP cleavage-activating protein
(SCAP). It suggests that SCAP protein senses the “active”
cholesterol in the membrane and becomes activated in the
presence of active cholesterol [12]. On the contrary, the
“active” cholesterol inhibits the activity of ER-associated
enzyme HMG-CoA reductase. Its activity is minimal at
normal or increased “active” cholesterol in PM but increases
when the cholesterol level is not enough for the appearance
of the active cholesterol [73].

A model was proposed that explains sterol gradient
between ER and PM and the ability of the sterol-poor ER
to respond to the small changes in sterol content in the
sterol-rich PM. It suggests that PM rafts contain the most
of PM sterols, which is not “free” (or “active”) and does not
participate in the exchange with ER cholesterol. “Free” (not
raft-associated) cholesterol is transferred between ER and
PM by nonvesicular mechanism. The concentration of “free”
cholesterol in the ER and PM is about the same, and the
difference in the total cholesterol content between ER and
PM is caused by the removal of the active cholesterol into
the lipid rafts [74]. The concentration of “active” cholesterol
depends on the cholesterol concentration and the mem-
brane composition [75]. Indeed, while PFO-sensitive pool of
cholesterol in the ER appears at about 5 mol% of cholesterol,
the PM needs around 35mol% cholesterol before it starts
to appear in PFO-sensitive pool [76]. Thus, the gradient of
cholesterol concentration between the PM and ER might be
thermodynamically stable.

3. Intracellular Cholesterol Turnover

A number of intracellular proteins affect cholesterol efflux to
extracellular acceptors of cholesterol (Table 1) with activator
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and inhibitor properties toward cholesterol synthesis and
uptake, cholesterol distribution in the membrane, intra-
cellular vesicular and nonvesicular trafficking, cytoskeletal
organization, and cholesterol escape. It can be assumed
that proper cholesterol homeostasis and fully functional
intracellular cholesterol transport are required for normal
level of cholesterol efflux. The central processes that maintain
cholesterol balance and are common for the most of the cells
are described below.

3.1. Abundance of Cholesterol Pools. A person every day
receives about 400 mg of cholesterol with food while secret-
ing through the liver approximately 1g [77]. The rate of
cholesterol synthesis in humans is estimated at about
10 mg/day per kg of body weight. It is assumed that liver con-
tributes roughly 10% of this rate and the rest of the synthesis
occurs in intestine and peripheral tissues [78, 79]. Endoge-
nous cholesterol as well as the majority of other lipids is
synthesized by the ER. In particular, rate-limiting enzyme
in cholesterol synthesis 3-hydroxy-3-methylglutaryl coen-
zyme A reductase (HMGCR) is located in the ER. Most
cells also uptake cholesterol from lipoproteins in normal
conditions [80]. Low-density lipoproteins are internalized by
LDL receptor (LDLR) in clathrin-coated vesicles. The vesicle
is transported to sorting endosome, where LDL dissociates
from the LDL receptor and the latter is recycled back to the
plasma membrane via the endocytic recycling compartment
(ERC). LDL goes to late endosome (LE), where cholesteryl
ester (CE) of LDL is hydrolyzed by acid lipase and resulting
cholesterol is distributed mainly to PM, to ER to a lesser
degree, and to cell membranes of other organelles [81, 82].
Niemann-Pick type C proteins NPCl and NPC2 are critically
important for unloading of cholesterol from LE. A small
GTPase Rab8 participates in cholesterol transport from LE
to PM in Myosin5-dependent movement of cholesterol-
enriched lysosome-related organelles along actin cytoskele-
ton [82]. Depletion of Rab8 in foam cell inhibits cholesterol
efflux to apoA-I in part by the reduction of ABCALI level at
the PM [46]. One of the routes of cholesterol transport from
LE to ER is vesicular transport through trans-Golgi network
(TGN) and requires NPCl and v-SNARE vesicle-associated
membrane protein 4. Peritoneal macrophages from NPCl
knockout mouse show less efficient cholesterol efflux com-
pared to the normal peritoneal macrophages (Table 1). In
addition, there are membrane contact sites (MCSs) between
LE and ER with cholesterol-binding proteins ORPIL, ORP5,
and STARD3 that can participate in cholesterol transfer
[82]. While cholesterol content of ER is much lower than
of PM, it plays essential role in maintaining cholesterol
homeostasis as a site of sensing cholesterol level that regulates
expression of LDLR and HMGCR and a site of cholesterol
synthesis if required and esterification for storage when
cholesterol is in excess. Loading of fibroblasts with cholesterol
using hydroxypropyl-beta-cyclodextrin-cholesterol complex
that increases total cell cholesterol by 50% results in 10-fold
increase in cholesterol level in the ER from 0.5% to 5% of total
cell cholesterol. A depletion of the cells by 25% decreased ER
cholesterol by 75% of original level [8]. An excess of some
intermediates of cholesterol synthesis results in HMGCR

degradation. Enzyme structure has sterol-sensing domain
(SSD) and it is subjected to proteasome degradation if it binds
oxysterols, lanosterol, 4,25-dihydrolanosterol but not choles-
terol [80]. On the contrary, acyl-coenzyme A:cholesterol
acyltransferase (ACAT) is activated by cholesterol and at
higher cholesterol level converts it to CE for storage [83].

Both the biosynthesis and uptake of cholesterol are tran-
scriptionally regulated by sterol regulatory element-binding
protein family of SREBP-la, SREBP-1c, and SREBP-2. The
function of SREBPs is dependent on proper protein traffick-
ing from ER to Golgi. When cell does not require a supply of
cholesterol, SREBPs are anchored to ER. At low cholesterol
condition, sterol-sensing domain (SSD) of SREBP cleavage-
activating protein (SCAP) loses cholesterol, and SCAP initi-
ates COPII-mediated incorporation of SREBPs into budding
vesicles and transport them from the ER to the Golgi, where
SREBPs are cleaved by Site-1 and Site-2 proteases. N-termini
of SREBPs release into cytoplasm and move to nucleus
escorted by importin-beta, where they induce expression of
LDLR, HMGCR, Insulin induced gene 1 (Insig-1), and other
SREBP target genes. In addition, SREBPs suppress expression
of ABCAI that removes cholesterol to extracellular acceptors.
When cholesterol level becomes too high, SCAP/SREBP
complex binds to ER-anchored Insig-1, which retains the
complex in the ER and prevents induction of target genes
[80].

When cells become depleted of cholesterol, they first start
to utilize CE stored in lipid droplets (LD) instead of the
synthesis of new cholesterol [80]. A large number of CE-
rich LDs is an indicator of macrophage transformation to
foam cell because of excessive uptake of cholesterol. Lipid
droplets are organelles that store sterol esters, triglycerides,
and some other neutral lipids. The neutral lipid core is
surrounded by a monolayer of phospholipids that contains
a number of proteins that participate in LD metabolism. LDs
are formed in ER because of synthesis of neutral lipids, such
as CE that is synthesized from newly synthesized or LDL-
derived cholesterol and fatty acyl-CoA by ACAT-1 or sterol
O-acyltransferase 1. As the concentration of neutral lipids
increases, they cannot be dissolved anymore in the ER mem-
brane, and supposedly, a “lens” of neutral lipids between ER
membrane leaflets appears that grows to a “drop” being still
attached to the ER membrane. An integral membrane protein
Seipin is detected in the LD-ER contact site. It is not fully clear
whether fully formed LD stays attached to the ER or separated
from the ER. Nevertheless the proteins of COPI vesicle
coats are found on the LD surface. COPI vesicle transports
cargo from Golgi to ER [84-86]. In macrophage foam cells
cholesterol is constantly esterified by ACAT and deesterified
by neutral CE hydrolases, such as carboxylesterase 1 and,
possibly, neutral cholesterol ester hydrolase 1 [87]. That
“futile cycle” is a LD-based mechanism that can help to
maintain the normal cholesterol concentration. Beside the
cytoplasmic lipolysis, LD can release cholesterol by LD
lysosomal degradation in an autophagy route when CE is
hydrolyzed by lysosomal acid lipase. In foam cells, the LD
incorporates into autophagosome that fuses with lysosome
and releases cholesterol for efflux from the cells. Inhibition
of autophagy by Atg5 gene knockout reduces cholesterol



efflux to apoA-I and reverses cholesterol transport to the liver
in vivo, and mTOR inhibitors that stimulate autophagy are
atheroprotective [88, 89]. An inhibition or knockdown of
ACAT-1 results in the increase of cholesterol:phospholipid
ratio in PM rafts and in the stimulation of ABCAIl-dependent
cholesterol efflux [90]. Incubation of the cells with cholesterol
acceptors depletes cellular CE content [91].

3.2. Vesicular and Nonvesicular Cholesterol Traffic. Intracel-
lular vesicular movement includes lipid transfer from one
compartment to another as a constituent of the membrane
of secretory vesicles [92, 93]. Anterograde COPII (coat
protein complex II) vesicles traverse from the ER to Golgi,
and retrograde COPI vesicles traverse from Golgi to the
ER. Golgi along with trans-Golgi network is structurally
highly dynamic organelle and intra-Golgi vesicle transport
is not clearly understood. The Golgi routes the vesicle
to PM and endosomal compartments. Intracellular traffic
between compartments depends on various mechanisms.
These mechanisms can be roughly described as energy-
dependent and cytoskeleton-dependent. For instance, vesicle
transport requires both energy and functional cytoskeleton.
Despite the hypothetical possibility of vesicular traffic to
transport significant amount of cholesterol, this route plays
just a minor role in the cholesterol transfer from the site
of the synthesis (ER) to PM. The disruption of cytoskeleton
has no effect on the cholesterol transfer from ER to PM,
and disruption of vesicle traffic by brefeldin A decreases
nascent cholesterol transport to PM just by 20% [94]. Newly
synthesized cholesterol bypasses the esterification to CE and
appears in PM with half time of about 15min [7]. This
transport is inhibited by energy poisons KCN + KF or NaNj,
+ NaF in both mammalian and yeast cells [74, 95]. The
transport of nascent cholesterol to PM stops if the cells are
cooled to 15°C. At this temperature, the nascent cholesterol
accumulates in the ER, and after retuning cells to 37°C
cholesterol transport to PM is restored [95]. The disruption of
cytoskeleton by cytochalasin, colchicine, and nocodazole or
the disruption of Golgi apparatus by monensin and brefeldin
A just slightly inhibits cholesterol transport from ER to PM
[4, 95]. Microtubule disruption reagent nocodazole inhibits
the transport just by 25% and the disruption of Golgi by
brefeldin A by 20% [96].

The PM cholesterol is constantly transported back to
ER by not energy-dependent mechanism. This transport is
inhibited by disruption of the cytoskeleton and acidic com-
partments [4]. It was estimated that if the whole PM pool of
cholesterol participates in the cycling, then the half time of
cholesterol cycling is 40 min [7]. Considering the hypothesis
of some “active” cholesterol in membranes, the half time is
even faster. Unlike creating a cholesterol gradient between
PM and ER, its maintaining does not depend on energy.
Incubation of the cells with energy poisons does not change
the distribution of cholesterol between PM and ER [95,
97]. The rate of dehydroergosterol transport to cholesterol-
enriched endocytic recycling compartment from the PM was
not greatly affected by ATP depletion with energy poison
mixture of NaN; with 2-deoxyglucose, indicating that the
transport was mainly nonvesicular [28]. Oppositely, the efflux
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of sterol from ERC to the PM is inhibited significantly by the
energy poisons [28] indicating that vesicular transport out of,
but not into, the ERC is a major contributor to sterol transport
kinetics. However, recent data of the same group suggest
rather different mechanism of bidirectional sterol movement.
The poison mixture decreased the rate of PM to ERC and
ERC to PM transfer by ~30%, so that ~70% of cholesterol
flux is not dependent on vesicle transport in osteosarcoma
U208 cells that stably express the scavenger receptor A SRA;
the half time of dehydroergosterol transfer between PM and
ERC is about 15min in both directions [98]. In yeast, the
disruption of Secl8p, the yeast orthologue of mammalian N-
ethylmaleimide sensitive fusion protein, an essential protein
for vesicular trafficking between ER, Golgi, and PM, does not
inhibit the ER to PM transport [74]; two plasma membrane
ABCG transporters, Auslp and Pdrllp, stimulate cholesterol
transport from PM to ER [99].

Membranes of virtually any organelle are interconnected
through membrane contact sites (MCSs). MCSs connect ER
with PM, Golgi, endosomes, lysosomes, mitochondria, and
peroxisomes. The MCSs are organized as protein complexes
that link the membranes and hold them in the distance about
10-50nm apart and serve as sites for lipid transfer protein-
(LTP-) assisted nonvesicle lipid transport. Several LTPs are
known to transfer cholesterol between the organelles. The
most studied proteins are proteins of ORP family (oxysterol-
binding protein- (OSBP-) related proteins) [100-102], STARD
family (StAR related lipid transfer domain containing pro-
teins) [100, 103, 104], and sterol carrier protein 2 (SCP-2)
[105].

3.3. Lipid Transfer Proteins. The oxysterol-binding protein
(OSBP) is the founder member of the ORP (OSBP-related
protein) family that consists of 12 genes in humans and 7
genes in yeast, Osh1-Osh7 All ORP genes contain lipid bind-
ing domain [100]. OSBP is predominately cytosolic protein
with minor fraction bound to ER. The ER-bound OSBP forms
the MCS between ER and Golgi through binding with vesicle-
associated membrane protein-associated protein A (VAP-A)
[106]. OSBP binds with high affinity to 25-hydroxycholesterol
(K4 =5nM) and to a number of other oxysterols [100, 107].
The binding to oxysterols leads to translocation of OSBP
as well as VAP-A to perinuclear compartments of the cells
[106]. OSBP also binds to cholesterol (K4 = 70nM) and
phosphatidylinositol-4-phosphate (PI4P) [100]. Overexpres-
sion of OSBP in HeLa cells suppresses sterols incorpora-
tion into lipid droplets, while the mutant OSBP protein,
which is assumed to lose PI4P binding ability, does not
interfere with sterols accumulation in LDs. In vivo and in
vitro experiments suggest that OSBP is a PI4P-dependent
cholesterol transporter. According to the proposed model,
ER-anchored VAP-A at the ER-trans-Golgi MCS binds OSBP,
which starts to transfer cholesterol from ER to trans-Golgi,
and PI4P in the opposite direction. The gradient of PI4P
between two membranes is required, and ER-anchored PI4P
phosphatase Sacl helps in maintaining the PI4P gradient by
PI4P degradation while supposedly PI4-kinases continuously
regenerate PI4P in the Golgi [106]. Thus, this mechanism
requires ATP to maintain PI4P gradient. Similarly, Osh4p
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transfers ergosterol between ER and trans-Golgi in yeast.
Other ORP/Osh proteins are located in the MCSs between
ER and PM and other organelles, and most of them are
involved in cholesterol transfer [101, 102]. A contribution of
ORP6 was investigated in THP-1 macrophages and HepG2
hepatocytes. ORP6 localizes in early endosomes, lysosomes,
and the endoplasmic reticulum. Loading of THP-1 cells with
cholesterol by acetylated low-density lipoprotein (acLDL)
induces ORP6 expression. Knockdown of ORP6 in THP-
1 macrophages upregulates mRNA of SREBF2 and genes
induced by SREBFI/2, HMGCR, and LDLR. At the same
time ORP6 knockdown inhibits cholesterol efflux to apoA-
I and HDL in THP-1 macrophages and inhibits cholesterol
efflux to apoA-I in HepG2 hepatocytes. The overexpression
of ORP6 results in the opposite effect [1]. Thus, ORP6-
dependent cholesterol supply from the intracellular sources
significantly affects cholesterol efflux. Knockdown of another
ORP protein, ORP8 (or OSBP-related protein 8), in THP-
1 macrophages stimulates cholesterol efflux to apoA-I in
parallel to an increase of ABCAL protein [59].

StAR (or STARDI) is the founder protein of the STARD
family. It transfers cholesterol from the outer mitochondrial
membrane to the inner mitochondrial membrane in steroido-
genic tissues for hormone synthesis. The rate of the transfer
was estimated as 400 molecules of cholesterol/min per
molecule of newly synthesized StAR [108]. StAR overexpres-
sion stimulates cholesterol efflux by activating LXR and stim-
ulation of ABCALI expression. The stimulation of the efflux
in cAMP-activated RAW 264.7 macrophages is blocked by
sterol 27-hydroxylase inhibitor GW273297x, LXR inhibitor
geranylgeranyl pyrophosphate, and ABCAI inhibitor probu-
col [49]. Overexpression of StAR stimulates cholesterol efflux
to apoA-I in RAW 264.7 macrophages stimulated by agonists
of retinoic acid receptor and/or retinoid X receptor all-
trans retinoic acid (RA) or 9-cis RA, which activate LXR
pathway [50]. STARD?3 protein is anchored to late endosomes
and together with ER-anchored vesicle-associated membrane
protein-associated proteins A and B STARD3 contributes to
formation of MCSs between endosomes and ER. Overexpres-
sion of STARD3 in HeLa cells, which express STARD3 at
very low level, promotes accumulation of cholesterol in LE,
while not changing the total cell cholesterol level. Cholesterol
depletion of the cells does not prevent cholesterol accumu-
lation in endosomes, while inhibitor of cholesterol synthesis
mevinolin prevents the endosomal cholesterol accumulation
that indicates on the ER-synthesized cholesterol transport
by STARD3. All together, it suggests that STARD3 mediates
cholesterol traffic from ER to endosomes, and this route com-
petes with ER to PM traffic. The mechanism of the transfer
does not depend on energy [109]. Overexpression of STARD3
in THP-1 cells stimulates cholesterol efflux to apoA-I; how-
ever the effect is likely based on the upregulation of ABCA1
mRNA and protein; the efflux to HDL does not change in the
STARD3-transfected cells significantly [51]. Another member
of STARD family, STARD4 protein, mediates nonvesicular
sterol transfer between PM and ERC [98, 110]. In HepG2
hepatocytes expression of STARD4 is induced when cells are
incubated in cholesterol-poor conditions. The overall effect
of knockdown of the STARD4 on the cell cholesterol level

and intracellular distribution depends on the cell type. The
knockdown of the STARD4 in HepG2 cells results in the
reduction of cholesterol in endoplasmic reticulum and the
reduction in the level of cholesteryl esters without significant
changes in total cholesterol level [111]. On the contrary, the
knockdown of STARD4 in osteosarcoma cells U20S results
in an increase in cholesterol level in PM and ERC and in an
increase in the level of cholesteryl esters [110].

Sterol carrier protein 2 (SCP-2) binds cholesterol and
phospholipids with high affinity. It is localized in peroxi-
somes and in cytoplasm and involved in cholesterol and
phospholipid intracellular transfer. SCP-x, a longer form of
SCP-2 that is transcribed from an alternate transcription site,
is a peroxisomal 3-ketoacyl-CoA thiolase [105]. The study
of SCP-2-deficient fibroblasts from patients with Zellweger
syndrome revealed that roughly 50% of ER to PM transport
of newly synthesized cholesterol is cytoskeleton- and Golgi-
dependent, in contrast to the transport in normal fibroblasts,
which does not depend on the cytoskeleton and Golgi.
Knockdown of the SCP-2 in normal fibroblasts decreases
the fast (10 min) transport from ER to PM by 80%; however
the cholesterol is still able to flux to the PM by slower
mechanism [112]. Overexpression of SCP-2 in McA-RH7777
rat hepatoma cells sharply increases the rate of the transfer of
newly synthesized cholesterol from ER to PM and the amount
of newly synthesized cholesterol in the secreted HDL. The
overexpression also decreases the rate of CE synthesis with-
out affecting the acyl-CoA:cholesterol acyltransferase and
neutral cholesterol ester hydrolase activities measured in
vitro. In addition, it does not affect the transport of LDL-
derived cholesterol to the PM [113]. Because the SCP-2
overexpression stimulates cholesterol transport from ER to
PM and stimulates secretion of cholesterol with HDL in
hepatoma cells, the SCP-2 overexpression in L-cell fibroblasts
inhibits cholesterol efflux to HDL at HDL concentration
below 100 ug/ml [63]. Possible clue to explanation of neg-
ative effect of SCP-2 on cholesterol efflux is the inverse
relationship between the expression of SCP-2 and liver fatty
acid-binding protein (L-FABP aka FABPI). L-FABP is a
hepatic cytosolic protein that binds long-chain fatty acids and
other hydrophobic molecules including cholesterol. L-FABP
protein level is twice higher in hepatocytes from SCP-2/SCP-
x knockout compared to hepatocytes from normal mouse.
Cholesterol efflux to HDL in hepatocytes from SCP-2/SCP-
x knockout mouse is 35% higher than in normal mouse
hepatocytes. However, cholesterol efflux in hepatocytes from
L-FABP~/~/SCP-2/SCP-x"/~ mouse is decreased compared to
hepatocytes from WT mouse that indicates positive effect of
L-FABP on the cholesterol efflux [114]. Thus, overexpression
of SCP-2 might possibly repress the expression of L-FABP
and inhibit the efflux. Besides cytoplasmic localization, SCP-2
and L-FABP are found on the PM in close proximity to SR-
BI. Some data suggest that L-FABP promotes uptake of HDL
cholesterol by SR-BI in mouse hepatocytes [115].

3.4. Caveolae Cholesterol Is Actively Consumed in Choles-
terol Efflux from the Cells. Caveolae are cholesterol-rich
microdomains of PM formed by caveolin protein that are
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likely assembled in Golgi and transported to the PM. Both the
newly synthesized and derived from LDL cholesterol pools
first appear in caveolae and then they spread to non-caveolae
areas of PM in human fibroblasts [116, 117]. In fibroblasts, at
least 70% of cholesterol from LDL is quickly transported to
caveolae domains of PM by a Golgi-dependent pathway. This
path does not depend on the functional cytoskeleton. The
rest of cholesterol from LDL is transported from lysosomes
to the ER. This path is not Golgi-dependent and is inhibited
by the disruption of actin filaments that suggests vesicular
transport [4]. In yeast, contrary, newly synthesized ergosterol,
the major yeast sterol, first appears mostly in non-raft fraction
of PM. Then it equilibrates with raft sterol in about 1 h.

The caveolar cholesterol is the primary PM cholesterol
that is effluxed by the fibroblasts to plasma or HDL [116].
The nascent HDL produced by cholesterol efflux to apoA-
I by human embryonic kidney (HEK) 293 cells that express
ABCALl or mouse BMDMs are closer in cholesterol:PC
and SM:PC ratio to rafts than to the PM fraction [118].
Caveolae formations start with expression of integral mem-
brane proteins caveolin-1 or caveolin -2 in ER followed
by their oligomerization (7-14 molecules of caveolin) and
COPII-dependent transportation to the Golgi. The oligomer
size in the Golgi increases to 18-25 molecules of cave-
olin and the oligomer-associated membrane saturates with
cholesterol molecules. Then the cholesterol-rich complex
is transported from trans-Golgi network to PM by four
phosphate-adapter protein (FAPP1, FAPP2) secretory vesi-
cles. Phosphatidylinositol-4-phosphate (PI4P), the prevalent
phosphoinositide species in Golgi membrane, and small
GTPases ARF1 play the essential role in the formation of
these secretory vesicles [119]. Caveolin family consists of three
genes. They share the property of insertion into the lipid
membrane, the generation of oligomers with the formation
of specific lipid rafts caveolae, which are cholesterol-enriched
flask-shaped membrane invaginations of 50-100 nm in size
[119]. Caveolins bind cholesterol and make specific pool
of cholesterol on the PM [120, 121]. Caveolin-1 interacts
with SCP-2 protein in caveolae in PM as well in cytosolic
caveolar vesicles and caveolin/chaperone complexes of L-cells
fibroblasts [121]. Cholesterol efflux to plasma is increased in
fibroblasts transfected by caveolin-1 [38]; however the effect
of the caveolin-1 overexpression on the efflux is not observed
in CHOP cells [36]. Caveolins are not expressed in RAW
264.7 cells and caveolin-1 expression stimulates cholesterol
efflux to HDL but not to apoA-I or to plasma [17, 36, 122].
In THP-1-derived macrophages, the knockdown of caveolin-
1 by antisense DNA inhibits cholesterol efflux to apoA-I with
minimal effect on the efflux of PL [37]. A reduced cholesterol
efflux to serum is observed in Cos-1 cells transfected with
dominant-negative mutant of caveolin-1 that is not trans-
ported to the PM [123]. Transfection to express caveolin-1 in
HepG2, hepatocyte cell line that does not express caveolin-1,
results in an increased efflux to human plasma or apoA-I but
not to cyclodextrin [36].

Contrary to stimulatory effect of caveolin-1 on cholesterol
efflux observed in the most other cell cultures, mouse
embryonic fibroblasts from caveolin-1 knockout mouse have
an increased efflux to apoA-I compared to the cells from

Journal of Lipids

wild type animal. Induction of ABCAI gene expression by
LXR agonist increases this difference. Caveolin-1 disruption
partly prevents apoA-I from its internalization into the cells
and degradation. It is proposed that high curvature of the
PM at the neck of caveolae is an attractive site for apoA-I
binding to PM and the bound apoA-I is subjected to uptake
and degradation [124].

4. Molecular Mechanisms of Cholesterol Efflux

Four major pathways mediate cholesterol efflux from cell
plasma membrane and the contribution of the particular
pathway varies depending on the cell type and extracellular
acceptor nature (Table 2). These pathways include two ABC-
transporters, ABCAI and ABCGI, along with SR-BI and
passive aqueous diffusion [125]. All the proteins mediating
efflux from PM to extracellular acceptor are also involved
in the intracellular cholesterol traffic and cholesterol dis-
tribution between various intracellular pools. The aqueous
diffusion occurs for any cells; however, its contribution to
the total cholesterol efflux for most of the type of cells is
relatively small. All three proteins interact with other proteins
at cholesterol efflux and the most significant pairs are given on
Figure 2.

4.1. Aqueous Diffusion. Cholesterol can diffuse between
membranes of cells, liposomes, and emulsions through the
aqueous phase. The efficiency of nondirectional diffusional
transfer of cholesterol is determined by the cholesterol
capacity of the membrane and the kinetic factors—the rate
of desorption and the concentration gradient. Cholesterol
molecules desorbed from membranes are absorbed by var-
ious acceptors: plasma lipoproteins, plasma albumin and
globulins, liposomes, and microemulsions, as well as specific
molecules such as cyclodextrins [126].

When measuring cholesterol exchange rate between
donor (6.25mg/ml) and acceptor (0.4 - 9.0 mg/ml) single
layer liposomes consisting of 20% cholesterol and 80%
phospholipids that were separated by a dialysis membrane,
the kinetics corresponded to a first-order reaction, which is
characteristic of cholesterol transfer by the mechanism of free
diffusion ((1) and (2)). The rate-limiting step in the exchange
was the rate of cholesterol desorption [127]. However, this
behavior is characteristic only for low concentrations of vesi-
cles (< 3mM). The kinetics of the second order, characteristic
for the collision mechanism, is observed at high cholesterol
concentrations [128] ((3)-(4)):

D-Ch «— D + Ch, @

A + Ch «— A-Ch, (2)
D-Ch + A «— D-Ch-A, 3)
D-Ch-A «— D + A-Ch, (4)

where A is the acceptor, Ch is the cholesterol, and D is the
donor.
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FIGURE 2: Protein-protein interactions involved in cholesterol efflux by cholesterol transporters. Data for human ABCAL (a), ABCGI (b), and
SR-BI (SCARBI) (c) molecules were imported from STRING database with Cytoscape STRING plugin. Confidence cutoff for interactions
was chosen as 0.95, 0.7, and 0.8, respectively. (a) apoA-I is the major protein component of HDL; PPARA is a nuclear receptor, transcription
factor, key regulator of lipid metabolism; NRIH2 is an oxysterols receptor LXR-beta-nuclear receptor that regulates cholesterol uptake;
NRIH3 is an oxysterols receptor LXR-alpha-nuclear receptor that regulates homeostasis and cholesterol uptake. (b) NRIH3 and NRIH2 are
mentioned above; MATK is a megakaryocyte-associated tyrosine-protein kinase that could play a significant role in the signal transduction of
hematopoietic cells. PCP4 is a Purkinje cell protein 4 that plays an important role in synaptic plasticity, regulating calmodulin function; ABCG2
is an urate exporter that is able to mediate the export of protoporhyrin IX and implicated in the efflux of numerous drugs and xenobiotics;
apoE is an apolipoprotein that mediates the binding, internalization, and catabolism of lipoprotein particles; SR-B1 (SCARBI) is a receptor
for different ligands, receptor for HDL. (c) apoA-I and apoE are mentioned above; ABCAI and ABCGI play a role in HDL metabolism; apoB
is a major protein component of chylomicrons, VLDL, and LDL; PPARG is a nuclear receptor that controls the peroxisomal beta-oxidation
pathway of fatty acids and regulates adipocyte differentiation and glucose homeostasis; PDZK1 is a PDZ domain containing scaffolding
protein; THBSI is a thrombospondin-1, adhesive glycoprotein, that mediates cell-to-cell and cell-to-matrix interactions, binds heparin.

When measuring the rate of intermembrane cholesterol
transfer, the following deviations from the diffusion mech-
anism were observed: (1) the rate of cholesterol transfer
from erythrocytes to acceptors was inversely related to the
size of the acceptor; (2) the rate of cholesterol transfer
from erythrocytes to the erythrocyte ghosts increased with
the addition of plasma, while the opposite effect could be
expected due to competition between ghosts and plasma

components that act as cholesterol acceptors; (3) the rate
of transfer decreased upon the dilution of the mixture of
erythrocytes and ghosts but did not obey the second-order
kinetics; (4) cholesterol in the membranes of the bovine
retina rod cells is not in equilibrium with the cholesterol
of the plasma and its content increased after incubation
with plasma; (5) the deviation of transfer kinetics from the
diffusion model can not be explained by the presence of a
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non-stirred layer, since the transfer rate of lysolecithin was
three orders of magnitude higher. The authors suggested a
combined model of the primary activation of cholesterol
(Ch') in the donor membrane in the first-order kinetics
followed by the formation of the donor-acceptor complex in
second-order kinetics [129] ((5)-(7)):

D-Ch «— D-Ch’, (5)
D-Ch' + A «— D-Ch’-A, (6)
D-Ch'-A «— D + Ch'-A. (7)

A similar model was proposed for the transfer of choles-
terol from erythrocytes to HDL,, HDL;, or LDL, when the
cholesterol exchange rate is nonlinearly dependent on the
concentration of lipoproteins at their low concentrations
and reaches a plateau at high concentrations of lipoproteins.
In this model, the cholesterol transfer from erythrocytes is
determined by the collision mechanism at low concentrations
of acceptors, while the diffusion of cholesterol in the erythro-
cyte membrane to the specific sites of lipoprotein adsorption
becomes rate limiting at high concentrations of acceptors
[130].

However, the transfer of cholesterol between vesicles and
reconstituted HDL (rHDL) was not consistent with aqueous
diffusion or collision mechanisms. It was suggested that
apoA-I of rHDL interacts with vesicles, which facilitates the
transfer of cholesterol, and the interaction depends on the
conformation of the apolipoprotein. This model was consis-
tent with the data on the transfer of cholesterol from vesicles
to rHDL with different amounts of apoA-I and explained the
effect of the composition of rHDL and vesicles on the rate
of cholesterol transfer [131]. Opposite, the collision mech-
anism at cholesterol exchange between vesicles and rHDL
(apoA-I-containing nanodiscs) was discarded in the work of
Matsuzaki et al. The authors postulated the importance of
the diffusion mechanism with cholesterol dissociation from
the vesicles as a rate-limiting step of the cholesterol transfer.
Interestingly, the rate of dissociation of cholesterol from
rHDL bilayer was higher than the rate of dissociation from
the bilayer of liposomes with similar composition [132]. The
authors suggested that it might be explained by denser bilayer
packing in rHDL. Another reason may be the appearance of
“active” cholesterol in the nanodiscs due to the heterogeneity
of the distribution of cholesterol in discoidal lipoproteins.
Such heterogeneity we found in the reconstituted particles
containing various apolipoproteins [133].

4.2. ABCAIL ABCAL is localized in the plasma membrane
and in late and early endosomes [134]. The LE-located ABCA1
seems to assist in efflux of LE pool of cholesterol [135]. It
was reported that overexpression of ABCAI prevents the
accumulation of cholesterol in LE and lysosomes in NPCl-
deficient, but not NPC2-deficient cells [136]. Another study
demonstrated that ABCALl participates in the cholesterol
traffic from PM to ER. The reduction of the ability of the
membrane to retain cholesterol after treatment by sphin-
gomyelinase leads to rapid flow of PM cholesterol inside the
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cell, its esterification, and inhibition of cholesterol synthesis
[72]. This PM to ER flow is mediated by ABCALI by about
50% in mouse embryonic fibroblasts. ABCA1 mutant lacking
ATPase activity is unable to provide the PM to ER cholesterol
transport [137]. Bioinformatics analysis of functional and
physical interactions of ABCALI reveals apoA-I and several
nuclear receptors (acting as transcriptional factors) as major
partners/modulators of ABCAI1 (Figure 2(a)).

ABCAL structure includes two hydrophobic transmem-
brane domains, each containing six «-helices, and two
hydrophilic domains, called nucleotide-binding folds [138].
ATP hydrolysis in two hydrophilic domains of ABCALI results
in a change in the protein conformation accompanied by
the transfer of the transported molecule to the outer part of
the membrane. ABCAL transports phosphatidylcholine,
phosphatidylinositol (4,5) bis-phosphate (PIP2) [44], and
less efficiently phosphatidylserine and sphingomyelin [139].
Recently we described the existence of two types of putative
cholesterol-binding motifs in ABCALI and their involvement
into binding of cholesterol molecules differently immersed in
lipid bilayer (Dergunov et al., 2018 submitted).

An increase in the cholesterol content in the cell, firstly,
inhibits ubiquitination and subsequent degradation of
ABCAL, thereby increasing the level of the ABCAI protein
[140] and, secondly, induces the expression of genes involved
in cholesterol efflux [68]. ABCA1 molecules undergo palmi-
toylation of cysteine residues 3, 23, 1110, and 1111. In the
absence of these modifications, the transporter molecules
remain inside the cell. The absence of any of these palmi-
toylation reduces cholesterol efflux from the cells [141]. Cho-
lesterol efflux mediated by ABCALI results in the formation
of discoidal HDL, containing two, three, or four molecules
of apoA-I per particle. Nascent HDLs are heterogeneous in
size and composition and contain the main classes of lipids
present in plasma membrane. In addition to discoidal HDL,
ABCAl-mediated efflux generates lipid-poor apoA-I with
one molecule of apolipoprotein [142, 143]. Cholesterol of
the plasma membrane can be replenished from endosomal
compartments in the minute range [144]. Importantly, a
direct relation between ABCAl-mediated cellular cholesterol
efflux and arterial-wall thickness exists that suggests the
inhibition of atherosclerosis progression by efflux increase
before the manifestation of symptomatic cardiovascular
disease [145]. However, some controversy exists on the
contribution of both common and rare ABCALI variants and
levels of HDL cholesterol to risk of ischemic heart disease in
the general population [146, 147]. Interestingly, stimulation
of macrophage mitochondrial ATP production resulted in
the increase of ABCAl expression and cholesterol efflux
with a concomitant decrease in aortic sinus lesion area in
atherosclerosis-prone mice, despite no changes in HDL
cholesterol [148]. Besides, the protective effect of ABCAL
pathway activation in reactive astrocytes at ischemic stroke
has been suggested [149].

The nature of the molecular interaction between various
cholesterol acceptors and ABCALI is controversial, and two
alternative models suggesting a direct protein-protein inter-
action or indirect association have been proposed. According
to the first model, the apoA-I and ABCA1 molecules interact
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[150, 151]. In the second two-site model, besides the direct
ABCAIl-apoA-I interaction, the existence of much more
pronounced association of the apolipoprotein with the lipid
phase near the transporter molecule is suggested [152]. Both
models recognize the significant contribution of the interac-
tion of apoA-I and membrane lipids in the ABCAIl-mediated
cholesterol efflux. ABCALI translocates phospholipids to the
exofacial leaflet of the plasma membrane bilayer that creates
membrane tension. Apolipoprotein-lipid interaction results
in the decrease of this tension [139]. The introduction of the
amphipathic helix of apoA-I into protrusion on the plasma
membrane [153], similar to the solubilization by apolipopro-
tein of multilayer vesicles [143, 154], leads to the dissoci-
ation of cholesterol and phospholipids in apolipoprotein-
lipid complexes from the plasma membrane. Note that the
complexes primarily include cholesterol, not contained in the
rafts [155].

According to the model of the direct interaction between
the apolipoprotein and the transporter, the mechanism of the
ABCAIl-mediated efflux of cholesterol includes the following
steps: (1) diffusion of the transporter in a membrane and
ATP-dependent lipid flopping; (2) dimerization of the trans-
porter and fixation of the dimer in the membrane involving
the cytoskeleton; (3) the interaction of lipid-free apoA-I
with the dimer, followed by apolipoprotein-lipid interaction,
dissociation of the apolipoprotein-transporter complex, and
the release of the lipid-laden apoA-I into the extracellular
environment; (4) dissociation of the dimer with closing of
the ABCAI cycle [156]. The alternative model questions
the exclusiveness of the direct interaction of apoA-I and
ABCAL Experiments on human fibroblasts have shown that
most (90%) of the apoA-I molecules bind to the HCBS
(high capacity binding site), and not to ABCAL Interestingly,
HCBS is not a part of the lipid rafts. HCBS mainly consists
of phosphatidylcholine, and not sphingomyelin, and is not
associated with caveolin-1. PIP2 plays significant role in the
binding of apoA-I to the membrane, and PIP2 is transferred
to the exofacial leaflet of plasma membrane by the floppase
activity of ABCALI [44]. The disruption of the interaction of
the apolipoprotein with HCBS significantly reduced choles-
terol efflux on apoA-I. According to this model, ABCAl
generates HCBS, and the direct interaction of apoA-I with
ABCALI could stabilize the structure of ABCA1 [152, 157].
Wang et al. suggested the existence in ABCAI structure a
nonspecific low-affinity site of binding with apoA-I. This site
serves as a chaperone in the unfolding of the N-terminus
of the apolipoprotein, which is an important process in the
formation of HDL [158].

4.3. ABCGL. ABCQGL is another, along with ABCAl, ATP-
binding cassette transporter that participates in cholesterol
efflux in macrophages (Table 2). There is some inconsistency
in the data on ABCGI localization. In a recent study in CHO
and HeLa cell lines that were transfected to stably express
ABCGI fused with Myc tag or green fluorescent protein
(GFP), the transporter was distributed between PM and ER
pools. The PM pool increased after loading the cells with
cholesterol [159]. In another study of ABCGI-GFP fusion,
expressed in HeLa cells, the transporter was observed in PM
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and late endosomes [160]. However, another group, using
several approaches, found that intracellular endosomes are
the only sites of ABCGI localization, and ABCGI is not
observed in PM neither in murine peritoneal macrophages,
nor in CHO, Cos-7, and HEK293 cells transfected with
untagged or FLAG-tagged ABCGI [161, 162].

Structurally, ABCGI contains a hydrophobic transmem-
brane domain of six a-helices and a hydrophilic nucleotide-
binding folds domain. It resembles half of ABCAI transporter
and is called sometimes the half-transporter [163]. ABCG1
is palmitoylated at positions 26, 150, 311, 390, and 402. The
palmitoylation at Cys311 is critical for the localization of
ABCGI at the plasma membrane and for ABCGI-dependent
cholesterol efflux, while palmitoylation at other positions is
not essential for these processes [164]. In addition, tyrosine
Y667 of cholesterol-binding motif of ABCGI is functionally
important: the substitution of this tyrosine reduced the
efflux [165]. Interestingly, ABCGI, in addition to cholesterol,
transports sphingomyelin, and different structural motifs
are responsible for binding of these lipids. It was suggested
that sphingomyelin stimulates cholesterol efflux by ABCGI
via activation of its ATPase activity [166]. The cholesterol-
binding motif, which is important for the cholesterol efflux
activity of ABCGI, was also found in half-transporters
ABCG4 and ABCGS8 that mediate cholesterol efflux [165].
We predicted the presence of two types of cholesterol-
binding motifs in the ABCGI structure that mediate the
transport of different pools of cholesterol (Dergunov et al.,
2018 submitted).

ABCGI expression results in the increase of the rate of
cholesterol desorption and in the increase of cholesterol pool
available for both efflux and esterification [167, 168]. The
major partners/modulators of ABCGI that were determined
by bioinformatics analysis are presented on Figure 2(b).
The expression of ABCGI is associated with an increase
in the efflux of cholesterol on HDL,, HDL,, LDL, SUV,
and rHDL, but not on lipid-free apoA-I and does not
affect cholesterol influx [167, 169]. Despite the massive lipid
accumulation in hepatocytes and in macrophages in mice
with targeted disruption of Abcgl gene and the promotion
of cholesterol efflux to HDL in human ABCGI-transgenic
mice, the plasma lipid level did not change in both cases
[169]. Moreover, ABCGL in the arterial wall might possess
a proatherogenic effect independently of any modulation of
HDL-C level [170]. ABCGI is not expected to attenuate foam
cell formation in early atherosclerosis lesions in humans [171]
but could protect from atherosclerosis by preserving vascular
endothelium from dietary cholesterol-induced dysfunction
[172]. There is no specific binding of the transporter to the
lipoprotein in ABCGIl-mediated efflux of cholesterol. For
SUV, LDL, and rHDL discs as cholesterol acceptors, the
kinetics of the ABCGl-mediated efflux corresponds to the
aqueous diffusion mechanism, and ABCGl increases the pool
of active cholesterol available for efflux. The kinetics of efflux
with HDL, and HDL, deviates from the kinetics for diffu-
sion, presumably due to the shielding by apolipoproteins of
cholesterol-accepting phospholipid patches. In experiments
with BHK cells, the size of the pool of cholesterol available
for efflux on HDL; as an acceptor was about 20% of total
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cell cholesterol. The expression of ABCGI increased the pool
size by 6-12% [167]. Neufeld et al. also observed the increase
of the pool of active cholesterol available for efflux. Both
PM- and late endosome-localized ABCGI contributed to
the stimulation of cholesterol efflux. LE-localized ABCGl
stimulated cholesterol transfer from the LE to PM, perhaps
by direct interaction between LE and PM membranes, and/or
in a process, mediated by nonvesicular cytosolic cholesterol
carrier proteins such as OSBP [160].

4.4. SR-BI. Scavenger receptor class B type 1 (SR-Bl1) belongs
to the superfamily of CD36 scavenger receptors. SR-BI is
highly expressed in the liver, where it participates in RCT
[173], in steroidogenic tissues (adrenal gland and ovary)
and mammary gland during lactation [174]. According to
the bioinformatics analysis of physical and functional inter-
actions, the most important SR-Bl protein partners are
apolipoproteins and proteins involved in HDL metabolism,
nuclear receptor PPARy, a scaffold protein PDZ domain
containing 1 (PDZKI) that controls SR-B1 level in liver [175,
176], and thrombospondin-1 (THBS1), a subunit of disulfide-
linked homotrimeric protein that binds components of
extracellular matrix and mediates cell-to-cell interactions
(Figure 2(c)). The expression of THBSI is downregulated by
HMG-CoA reductase inhibitor lovastatin [177].

SR-B1 molecule contains two hydrophobic domains and
an extracellular glycosylated domain [178]. The cytoplasmic
C-terminal domain of SR-B1binds to PDZ domains of PDZK1
protein [179]. SR-B1, being an HDL receptor, selectively
transfers cholesteryl ester molecules contained in HDL into
a cell without endocytosis and degradation of HDL particle
[180]. In addition to HDL, the receptor exhibits broad
ligand specificity for LDL, ox-LDL, and VLDL [181]. As the
diameter of HDL increases, the maximum binding value
B, .x increases, and the value of the dissociation constant K4
decreases; that is, the large HDL are the best ligands for SR-
BI [182]. Nevertheless, HDL binding to SR-B1 is about 150-
fold lower than the binding of LDL to LDL receptor. The
weaker binding and the faster dissociation of HDL from SR-
BI can explain why HDL does not undergo endocytosis. The
isotherm of binding of HDL to SR-B1 on the cell surface most
corresponds to the presence in SR-BI of one high affinity
and one low-affinity binding sites. The rate of cholesterol
transfer from HDL increases proportionally with their CE
content. The current model of SR-Bl action suggests CE
transfer between HDL and PM through the hydrophobic
channel along the concentration gradient [183]. This mech-
anism can be viewed as a facilitated diffusion. It is assumed
that the transfer of cholesterol similarly occurs through the
hydrophobic channel. However, SR-B1 also redistributes the
membrane pools of cholesterol, as evidenced by the increase
in the amount of cholesterol available for oxidation with
cholesterol oxidase [184]. Perhaps the cholesterol-binding
motifs predicted by us in the structure of SR-B1 (Dergunov
etal., 2018 submitted) are responsible for the redistribution of
cholesterol in the membrane.

Itis important that the influx of the CE correlates with the
binding of HDL, while the efflux of cholesterol continues to
increase after the receptor is saturated with the lipoprotein.
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Perhaps this is due to the SR-Bl-induced redistribution
of the cholesterol membrane pools in favor of the efflux
by the diffusion mechanism or because of collisions [182].
Some artificial chimeric receptors with partial substitution of
the SR-BI1 sequence by the sequence of another SR-B class
receptor CD36 retain the ability to efflux cholesterol even
with significantly decreased binding of HDL. These chimeric
receptors also retained the ability of SR-BI to increase the
cholesterol pool accessible to cholesterol oxidase [185]. Func-
tional analysis of SR-B1 mutants shows that various activities
of SR-B1, such as CE influx, cholesterol efflux, redistribution
of membrane pools of cholesterol, and HDL binding, are
partly independent due to the presence of mutations that
affect some of the activities and do not affect others [185-188].

5. Conclusion

The gradient of cholesterol concentration between plasma
membrane and the membranes of intracellular organelles is
maintained by constant redistribution of the cholesterol in
energy-dependent vesicular traffic and energy-independent
transport by lipid transfer proteins. Vesicular traffic plays
just a minor role in the cholesterol transfer from the site
of synthesis (ER) to PM; however it plays the central role
in endocytosis of LDL-delivered cholesterol. The fractions
of fast- and slow-exchanging pools of cholesterol are deter-
mined by the membrane lipid composition and the kinetics of
the association and dissociation of the cholesterol complexes
with other membrane lipids, such as in lipid rafts, which
are stable in some range of the cholesterol/phospholipid
ratio in the membrane. Just partly exposed into the aqueous
phase cholesterol molecules that are not incorporated to lipid
complexes are available to the fast escape from the membrane,
which is the rate-limiting event in the aqueous diffusion
pathway in cholesterol efflux. The facilitated diffusion along
the concentration gradient through the hydrophobic tunnel
occurs in the cholesterol efflux mediated by SR-Bl. ABCGI-
mediated cholesterol efflux is supposedly determined by the
increase of the pool of active cholesterol that is available for
the transfer from the membrane to lipoproteins by aqueous
diffusion. Active cholesterol may originate from the specific
cholesterol-binding motifs in ABCGI structure at membrane
interface. ABCAl-mediated efflux occurs due to the floppase
activity of the transporter powered by the hydrolysis of
ATP. ApoA-I binding to the cell surface is essential in the
ABCAIl-mediated cholesterol efflux; however it is not clear
yet whether apoA-I binds to ABCALI or to the lipid phase
of plasma membrane. A number of intracellular processes
determine the availability of the cholesterol for the efflux to
extracellular acceptors.

Abbreviations and Designations

ACAT: Acyl-coenzyme A:cholesterol
acyltransferase

acLDL: Acetylated low-density lipoprotein

apoA-I: Apolipoprotein A-I

CE: Cholesteryl ester

ER: Endoplasmic reticulum
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ERC: Endocytic recycling compartment

HCBS: High capacity binding site

HDL: High density lipoprotein

HEK: Human embryonic kidney

HMGCR-3: Hydroxy-3-methylglutaryl coenzyme A
reductase

LD: Lipid droplet

LDL: Low-density lipoprotein

LDLR: LDL receptor

LE: Late endosome

L-FABP:  Liver fatty acid-binding protein

LTP: Lipid transfer protein

LXR: Liver X receptor

MCSs: Membrane contact sites

OSBP: Oxysterol-binding protein

PI4P: Phosphatidylinositol-4-phosphate

PIP2: Phosphatidylinositol (4,5) bis-phosphate

PL: Phospholipid

PM: Plasma membrane

rHDL: Reconstituted high density lipoproteins

SCAP: SREBP cleavage-activating protein

SCP-2: Sterol carrier protein 2

SM: Sphingomyelin

SR-BI: Scavenger receptor class B type 1

SREBP: Sterol regulatory element-binding protein

STARD:  StAR related lipid transfer domain
containing proteins

TGN: Trans-Golgi network

VAP: Vesicle-associated membrane
protein-associated protein

VLDL: Very density lipoprotein.
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