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Abstract

Optically levitated micro- and nanoparticles offer an ideal playground for investigating photon—-phonon interactions
over macroscopic distances. Here we report the observation of long-range optical binding of multiple levitated
microparticles, mediated by intermodal scattering and interference inside the evacuated core of a hollow-core
photonic crystal fibre (HC-PCF). Three polystyrene particles with a diameter of 1 um are stably bound together with an
inter-particle distance of ~40 um, or 50 times longer than the wavelength of the trapping laser. The levitated bound-
particle array can be translated to-and-fro over centimetre distances along the fibre. When evacuated to a gas pressure
of 6 mbar, the collective mechanical modes of the bound-particle array are able to be observed. The measured inter-
particle distance at equilibrium and mechanical eigenfrequencies are supported by a novel analytical formalism
modelling the dynamics of the binding process. The HC-PCF system offers a unique platform for investigating the rich

optomechanical dynamics of arrays of levitated particles in a well-isolated and protected environment.

Introduction

Since Ashkin’s first report of the acceleration and
trapping of microparticles by optical forces’, the use of
optical tweezers has developed into a standard technique
for biological manipulation and pico-Newton force sen-
sing™®, to mention just two examples from a wide range of
applications. In recent years, the emerging field of “levi-
tated optomechanics” has attracted increasing interest. An
optically tweezered particle, especially at low gas pressure,
is isolated from the external environment, resulting in
very low mechanical damping. This leads to very-high
mechanical Q-factors and permits particle rotational
speeds in the MHz range®”. Recent advances include the
use of feedback or cavity cooling of the centre-of-mass
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temperature towards the mechanical ground state®™'’,

permitting  experimental tests of fundamental
physics'>™'*, and the use of individual levitated particles
as point sensors'>'®. Optical binding between arrays of
trapped particles adds an additional dimension, and will
result in rich dynamics, enabling access to collective
coupling between high-Q mechanical oscillators and,
potentially, simultaneous cooling of the mechanical
motion of multiple particles.

Multiple trapping sites have previously been created
using interference'” and holographic tweezers'®, allowing
the formation of a lattice of trapped microparticles. In
these experiments, there is typically very-little multiple
scattering between particles—a necessary prerequisite for
optical binding'®~??, which can only occur if the scattered
field from one particle strongly interacts with the other
particles in the array, and vice-versa. In a 1D particle
array, such as the one studied here, binding is possible
because the optical fields propagate bidirectionally along
the array.
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Fig. 1 Schematic of the experimental set-up. SMF, single mode fibre; HWP, half-wave plate; PBS, polarising beam splitter; MO, microscope

objective; PD, photodiode; MS, microscope system; PSD, position-sensing diode; PID, proportional-integral-differential controller; EOM, electro-optical
modulator; P, polarizer. Inset: scanning electron micrograph of the HC-PCF
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The majority of 1D optical binding experiments to date
have been performed in free space over distances that are
limited by the Rayleigh range of the focusing optics.
However, to control and measure the collective binding
dynamics of such arrays, it is necessary to manipulate and
monitor individual particles within the array without
perturbing the other degrees of freedom, which requires
extended inter-particle distances and, therefore, long-
range interactions between trapped particles. In recent
years, the optical binding range has been extended using
non-diffracting Bessel beams®" or by trapping particles in
the evanescent field at the surface of a multimode glass
microfibre®*, These experiments were however conducted
in a liquid environment, resulting in strongly damped
collective dynamics. In evanescent field-based traps, par-
ticles are in physical contact with the microfibre (not
levitating), giving rise to additional damping terms>®, In
addition, external spatial light modulators were used in
those experiments to create binding sites, limiting the
stability and power handling of the system.

Here we report long-range optical binding of a chain of
levitated particles inside the core of an evacuated hollow-
core photonic crystal fibre (HC-PCF). When the funda-
mental mode is launched into the HC-PCF, particle-
induced scattering to higher-order guided modes results
in an intermodal interference pattern, and a landscape of
periodically distributed trapping potentials, within which
subsequent particles can be trapped. The binding forces
vary as the particles move relative to each other, and
stable trapping and binding of a chain of particles results
for configurations that locally minimise the free energy of
the system. By offering modal fields that are tightly con-
fined over the entire fibre length, i.e., an infinite Rayleigh
length, HC-PCF permits trapped particles to interact over
distances orders of magnitude longer than the trapping
wavelength, limited only by fibre and scattering loss. The
absence of viscous damping at low gas pressure makes it

possible to observe, for the first time, the collective
dynamics of a bound-particle chain—an important first
step towards “levitated collective optomechanics”.

Materials and methods

The experimental set-up is sketched in Fig. 1. Light
from a pulsed Ti:sapphire laser (800 nm wavelength, 80
MHz repetition rate, 60 fs 1/e half-width pulse duration)
was delivered to the set-up through a 15m long single
mode fibre (SMF, with group velocity dispersion f, = 40
fs/(m.THz)). This caused the pulses to broaden to 1/e
half-width durations of ~14.4 ps at the output of the SMF,
with a frequency chirp of ~0.5 THz/ps. The pulses were
split at a polarising beam splitter (PBS) and coupled into
the opposite ends of an 8 cm length of HC-PCF with a
core diameter of 7.8 um, which was mounted inside a
vacuum chamber. The counter propagating trapping
beams were orthogonally polarised to prevent the for-
mation of intensity interference fringes. A 96:4 beam
splitter (BS1) and photodiode (PD) were used to monitor
the transmitted power at one end of the HC-PCF. A
medical nebuliser was used to inject polystyrene particles
(typical diameters of 1 pm) into a dual-beam trap placed
close to the fibre input face®* (see Supplementary Infor-
mation S1). Once trapped, a particle was propelled into
the hollow core by adjusting the beam splitter to increase
the forward power. Subsequent particles were launched
into the fibre using the same technique (see Supplemen-
tary Media S1). Once the desired number of particles had
been launched, the chamber was sealed and pumped out
to a pressure of a few mbar.

Results and discussion

When light is launched into the HC-PCEF, it is difficult
to avoid weak excitation of higher-order modes (HOMs).
Even a few percent of HOM power will cause strong
intermodal interference, which, however, fades away with
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Fig. 2 Intermodal interference induced by trapped particles inside the HC-PCF. a With one particle already loaded inside the HC-PCF, the
temporal variation in transmitted power is measured as the second particle enters the fibre and approaches the first one. b Zoom into the time
interval between 0.4 and 0.6 s, showing the fade-out of intermodal beating around the fibre endface. ¢ Zoom into the time interval from 4.3 to 4.5,
when the second particle approaches the first one. The red-dashed line is an exponential fit to the intermodal beating envelope

distance due to a combination of the group velocity walk-
off and pulse chirp. Thus, when a single particle is laun-
ched into the core, the transmitted power will fluctuate as
the particle passes through the interference pattern,
eventually stabilising once the particle reaches a position
where the stationary interference between the HOM
pulses has faded away. The fade-away length can be
written in the form (see Supplementary Information S2):

\/17@71(1 +(L/Lp)?)

VG To
ZF = )

(1)

AVG(L/LD)

where L, = 15°/| 82| is the dispersion length in the SMF, 7,
is the 1/e half-width pulse duration at the laser, L is the
SMEF length, Avg is the group velocity difference between
the HC-PCF modes and V¢ is the mean group velocity
(spectral broadening due to self-phase modulation in the
SMEF has been neglected, but is expected to be small). For
the experimental parameters, zr = 1.5 mm.

A very similar effect is seen when two or more particles
are close enough to sit in their respective intermodal
interference patterns. Under these circumstances long-
range optical binding can be observed. To explore these
effects, we launched a 1-pm-diameter polystyrene particle
into the fibre, followed by a second similar particle 0.5 s
later (Fig. 2a, b). The power ratio was adjusted so that the
second particle moved towards the first one. The

transmitted power at the photodiode is plotted against
time over a 5s interval in Fig. 2a. The effects of inter-
modal interference are seen at 0.5s and 4.4 s, with mag-
nifications of the responses in each case shown in Fig. 2b,
c. As expected, intermodal interference causes the trans-
mitted power to oscillate as the second particle moves
away from the input face (Fig. 2b). After 0.55s, the
transmitted power becomes constant. Then, at 4.36 s, the
first particle begins to be disturbed by the intermodal
interference created by the second particle (Fig. 2c). The
oscillations increase in amplitude until the two particles
become stably bound, when the modulation in the
transmitted signal once again becomes constant. An
exponential fit (dashed-red curve) to the envelope of the
oscillations yields a decay time of ~0.9 s, which, given that
the average speed of the particles is ~1.5cm/s, corre-
sponds to a fade-out distance of ~1.35mm, in good
agreement with the above analysis.

Three particles were then launched into the fibre in
sequence, and after several attempts and adjustments, it
was found that these particles were optically bound. Fig-
ure 3a shows optical images of the bound-particle array at
equilibrium, captured through the side of the HC-PCF by
using a CCD camera. The particles are spaced by 40 + 3
um, and the uncertainty is caused by the finite width of
the intensity peaks at the CCD. Assuming that there are
several elementary charges on each particle'!, we estimate
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Fig. 3 Thermally driven collective motion of the bound-particle array. a A series of snapshots of the bound-particle array during one period of
the breathing mode, captured with a high-speed camera. b-d Spectra for the mechanical motion of the three bound particles. The blue curves are
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the inter-particle Coulomb forces to be several atto-
Newton, which will displace the particles from their
equilibrium positions by only a few tens of femtometres,
which is negligible compared to the inter-particle
distance.

Thermally driven vibrations for the bound-particle array
(driven by Brownian motion) were resolved at a pressure
of 6 mbar by using a high-speed video camera (20,000
frames per sec). Figure 3a shows 9 consecutive frames at
time intervals of 50 s (see Supplementary Media S2 for
the video). During the measurement, electronic feedback
was used to stabilise the particle array within the field of
view of the imaging system using a position-sensing diode
(PSD) to generate a signal proportional to the centre-of-
mass motion of the particles. This was then fed back via a
PID controller to the EOM.

The “breathing” mode of the bound particles, in which
the two outer particles move out-of-phase while the
central particle is stationary, can be directly observed in
the video frames (Fig. 3a). The peak-to-peak amplitude for
the vibrations is ~5 um according to the scale bar in the
video. The spectra for the thermally driven centre-of-mass
motion of particles 1, 2 and 3 are plotted in Fig. 3b-d
using data extracted from the high-speed video. The red-
solid curves are Lorentzian fits to the individual spectral
peaks. For particles 1 and 3, a strong peak occurs at 2.3
kHz (the frequency of the breathing mode), while for
particle 2, a much weaker peak appears at 3.9 kHz, related
to the case in which the central particle moves out-of-
phase with the two outer particles (see the analysis below).
Note that these distinct resonances can only be resolved
at a low gas pressure, when gas-related viscous damping is
suppressed.

Experimentally up to five particles have been success-
fully bound to form an array moving to-and-fro along the
fibre (see Supplementary Media S3 for the video). Here,
using three bound particles as an example, we develop
scattering matrix analysis to calculate the forces acting on
each particle, and, thus, identify configurations that result
in stable binding. We represent the complex amplitudes
of individual modes in the system by a column vector v,
which is normalised so that v.v* =1, meaning that the
power in the i-th mode is p; = |v;|*P,, where P, is the total
power. The modes are assumed to form a complete
orthogonal set. Particle-induced scattering between inci-
dent and transmitted modes can then be described by v,
= [S]-vin, where [S] is the scattering matrix and v;, and
Voue are column vectors, the elements of which are the
complex amplitudes of the incident and scattered modes.
Orthogonality allows us to write the scattering coefficient
from incident mode i to forward-scattered mode j in the
form:

S I A sim; dA
"L, Il dA

where integration is over the transverse plane, m,(x, y) is
the transverse field distribution of the i-th mode and s;(x,
) is the scattered field distribution immediately after the
particle, which we calculate by 3D finite element
modelling.

2)

We now assume that back-scattering (which is very
weak for the experimental parameters) and material
absorption are negligible. We also assume that the particle
is trapped at the centre of the core (this seems to be a
good approximation since the launching beam is
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Fig. 4 Scattering matrix analysis of the binding process. a Sketch of the scattering matrix analysis illustrating the notation used. b Plots of the loci
along which the forces on the particles are zero. Red: particle 1, green: particle 2 and blue: particle 3. Stable and unstable trapping points when the
forces on all three particles are zero are indicated by green and red dots, respectively. ¢ Optical forces acting on the three particles as a function of

Gaussian) so that scattering occurs only to radially sym-
metric modes and that the Coulomb forces between the
particles and core wall are negligible. Figure 4a shows the
geometry of the three-particle system. The phase index,
group index and loss of the modes were calculated by
finite element modelling of the actual fibre microstructure
based on a high-resolution scanning electron micrograph.
Since linearly polarised LP(; modes of the order i > 3 were
found to have a very-high propagation loss, contributing
negligibly to optical binding, we included only the first
three lowest-order modes (i =1, 2, 3), resulting in a 3 x
3 scattering matrix.

Since binding is observed at ~4 cm from the fibre input
and the fade-out distance of intermodal beating is ~1.35
mm, the three incident modes will each independently
transfer momentum to the particles because their
instantaneous frequencies at each position along the fibre
are different and no stationary intermodal beat-pattern
can form. Additionally, since the pulse durations (ps) are
orders of magnitude shorter than the mechanical
response time of the particle (hundreds of us), the parti-
cles will respond to the vector sum of the resulting optical
momenta. Thus, each incident mode can be treated
independently. For the p-th incident mode, the modal
amplitudes on opposite sides of the first particle are (using
bracket notation to indicate left and right, respectively):

<v(1p) ’ -0

- Vin

W) = sI(v"] ()
for the second particle:

(W] = Palisiv

in

W = s1(v| (4)

and for the third particle:
(W] = PSS, V) = SI(W | 65)

The propagation matrix [Py;] between particle / and
particle k is diagonal, with elements (1, exp[iBi2(zi—2))],
explifi2(zx—2z1)]), where B,,=f,—f, is the propagation
constant difference between the LP, and LPy, modes (p
<q). The same analysis applies for the backward-
propagating modes. The launched amplitudes of the
three modes at the fibre input were estimated by calcu-
lating their overlap with a focused Gaussian beam (beam
waist ~2.5 pm), Yielding vfnl) = (0.982,0,0), l(,? =
(0,0.143,0) and v\> = (0,0,0.081).

To calculate the axial optical force 1?,’: on the k-th par-
ticle, for the incidence of the p-th mode on the first
particle, we first need to find the local intensity on each
side of the particle. This involves taking the modulus
squared of the sum of the local field amplitudes. The total
optical force on particle k exerted by forward-travelling
light is then given by:

L Py 2 2
Aoty (N (e b) e

where Py/2 is the total power incident in the forward
direction (an equal amount is incident in the backward
direction) and c is the speed of light in vacuo. The three-
element row-matrix N has elements that correct for the
overlap between the particle and individual mode shapes:

N; = \//:p](z)(MOir/ol)2ﬂrdr//:](2)(u0ir/a)2nm’r
(7)
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Table 1 Frequencies and shapes for the mechanical
modes

Q/2n (kHz) A, A, As
3.85 -0.30 091 -0.30
224 -0.71 0 071
0 0 0 0

where a is the core radius, a;, is the particle radius and u,
is the i-th zero of the Bessel function J,. For our experi-
mental parameters, N; =0.250, N, =0.362 and N3 =
0.412. The total optical force on pa&ticle k is found by
adding the complementary force F; exerted by the
backward-propagating  light (see  Supplementary
Information S3).

A necessary (but insufficient) condition for binding
occurs when the optical forces acting on all three particles
are simultaneously zero. Figure 4b plots the lines of zero
optical force on each particle as a function of the inter-
particle distances d;, and dp3. The diagonal line repre-
sents the symmetric configuration when di, =dy3=4d,
and Fig. 4c plots the three forces vs. d in this case. All
three forces are simultaneously zero at two positions, one
of which is unstable (red dot) and the other is stable
(green dot). This predicts an inter-particle binding dis-
tance of d =44.6 um, in good agreement with the mea-
surements. These binding positions are found to be
relatively insensitive to the launched beam waist at each
end of the fibre (in agreement with experiment), i.e.,
a change in beam waist from 2.5 to 2pum results in
the predicted inter-particle distance varying from 44.6 to
48.1 pm.

The stiffness of the optical springs in each particle trap
can be straightforwardly calculated by partial differentia-
tion of the forces with respect to the particle displace-
ment, resulting in a stiffness tensor [K]:

ST SV ST - g% - g% - ?3_2
K= |k kn ks |=|-8 - &
ka1 ks ka3 — %3 — g% - 2_12
—0.10 0.08 0.016
—| 013 —026 013 |pN/um
0.016 0.08 —-0.10

(8)

The components of the tensor are numerically calcu-
lated using the above model for di, = dy3 = d and Py = 50
mW. The asymmetry of [K], e.g., k122kz1, is caused by the
fact that particles 1 and 2 scatter differently to particle 3,
so that for the same values of displacement (Az; = Az,),
AF,=AF,. From Eq. (8) we can obtain the equation of
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motion for the collective oscillations
A(t)+ [M]'[K] - A(t) =0, where [M] is a diagonal
matrix with elements given by the mass of each particle
(5.86 x 107*°kg). The mechanical frequencies and shapes
of the eigenmodes can then be calculated (Table 1), where
Ay represents the oscillation amplitude of the k-th particle
of the corresponding eigenmode. The calculated eigen-
frequencies agree with the observations with no free
parameters. This theoretical model may be extended to
analyse the case with more than three bound particles and
to study the collective dynamics with external driving or
dissipative terms.

Conclusions

In summary, multiple polystyrene microparticles can be
optically bound by intermodal interference within the
evacuated core of a HC-PCF, where protected from
environmental disturbance, their collective vibrational
modes can be resolved. By adjusting the trapping pulse
chirp and duration as well as the fibre dispersion, the
binding length (40 pm in the experiments reported here)
can be increased, potentially allowing particle binding
over centimetre distances. By further increasing the
average power of the pulsed trapping laser, it will be
possible to achieve stable trapping and binding of particles
tens of nanometre in diameter and to increase the number
of bound particles within the array. Currently the lowest
gas pressure is set by the increasing instability of optically
trapped particles in vacuum®'* 1%, By using electronic
feedback to stabilise the mechanical motion at ultralow
pressure, it should be possible to reach higher mechanical
Q-factors and to explore cooling to the ground-state,
nonlinear coupling and synchronisation of the motion of
multiple particles. Finally, the whole assembly of particles
can be moved to-and-fro along the HC-PCF, which may
enable potential applications in remote sensing, with the
bound-particle array being propelled into a region where
external perturbations are present. A bound-particle array
offers more mechanical degrees of freedom than a single
trapped particle in a HC-PCF, suggesting more complex
forms of flying particle sensors'®. In addition, versatile
multi-sensors can be constructed by binding particles
with different physical properties.
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