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Abstract

A hallmark of the development of cancer is its ability to avoid detection and elimination by the 

immune system. There are many identified mechanisms of this immune evasion that can be 

measured both phenotypically and functionally. Functional studies directly show the ability of the 

tumor microenvironment to suppress immune responses, typically measured as lymphocyte 

proliferation, cytokine production or killing ability. While a direct measurement of function is 

ideal, these assays require ex vivo activation which may not accurately mimic in vivo conditions. 

Phenotypic assays can directly measure the distribution and activation of immune cell types 

rapidly after isolation, preserving the conditions present in the patient. While conventional flow 

cytometry is a rapid and well established assay, it currently allows for measurement of only 12–14 

parameters. Mass spectrometry-based flow cytometry, or CyTOF, offers the ability to measure 3-

fold more parameters than conventional optical-based modalities providing an advantage in depth 

of analysis that can be crucial for precious human samples. The goal of this report is to describe 

the system our group has developed to measure both the phenotype and function of immune cells 

in the bone marrow of patients with acute myeloid leukemia. We hope to explain our system in the 

context of previous studies aimed at measuring immune status in tumors and to inform the reader 

as to some experimental approaches our group has found useful in developing the basic data 

required to rationally pursue immune-based therapies for patients with cancer.
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1. Introduction

Immune evasion is intrinsic to the development of cancer and is also a mechanism that 

cancer cells utilize to avoid chemotherapeutic killing and propagate relapse (Hanahan and 

Weinberg, 2011; Son et al., 2017). Different mechanisms of immune evasion have been 

described in detail for solid tumors. These include expansion of suppressive cell types such 

as regulatory T cells (Tregs), M2 macrophages, and myeloid derived suppressor cells 

(MDSC), production of immunosuppressive cytokines, and alterations in the expression of 

stimulatory and inhibitory ligands, known as immune checkpoints. Any of these 

mechanisms may lead to the dysregulation and exhaustion of the immune cells normally 

responsible for tumor killing. Conversely, interventions aimed at blocking these pathways 

may support tumor clearance. Specifically, immune checkpoint inhibitors have shown 

remarkable efficacy in several solid and hematological malignancies (Topalian et al., 2012; 

Hodi et al., 2010; Ansell et al., 2015; Reck et al., 2016; Bellmunt et al., 2017; Nghiem et al., 

2016; Swain et al., 2015). Measurement of the immune microenvironment (IME) of tumors 

holds the potential to rationally predict which type of immune-based therapy, or 

immunotherapy, may be efficacious in a specific tumor type. Because immunotherapies have 

been shown to be efficacious as a cancer treatment, there has been a push from both the 

clinical and pharmaceutical realms to initiate clinical trials as rapidly as possible. While 

exciting, this urgency may lead to a lack of mechanistic basis for the immune intervention 

being tested. Clinical trials with little or no pre-clinical rationale are destined to result in low 

response rates in tumors where only specific subset of patients may benefit. Poorly targeted 

trials risk low response rates or high rates of adverse effects that could negatively impact the 

field. Therefore, to design appropriate therapeutic interventions that target immune evasion, 

elucidating the IME of each cancer type is critical.

2. Mass cytometry to assess hematological malignancies

Since its development, the high parameter capabilities of mass spectrometry-based flow 

cytometry (mass cytometry) have been used to characterize the hematopoietic system 

(Bendall et al., 2011; Bendall et al., 2012; Newell et al., 2012; Whiting et al., 2015; Bandura 

et al., 2009; Nicholas et al., 2016). Defining the various subsets of developing and mature 

hematopoietic cell types requires the measurement of a large number of parameters due to 

the complex phenotypes of blood cells. For example, in order to identify hematopoietic stem 

cells in mice, a combination of 6 markers (e.g. Sca-1, c-KIT, CD34, FLT-3, CD48, CD150) 

plus a lineage marker “dump gate” of 5 more mature markers (e.g. CD11b, GR1, B220, 

CD3, TER119) are required. In order to identify myeloid and lymphoid precursors several 

more markers must be added to this combination (e.g. IL-7R, FcγR). In humans, a similar 

number of markers are needed to identify the same subsets (Chao et al., 2008; Kiel et al., 

2005). Due to spectral overlap, this number of markers strains the capabilities of 

conventional fluorescence-based flow cytometry (commonly referred to as FACS, an 

acronym for “Florescence-Activated Cell Sorting”) and limits one’s ability to add additional 

phenotypic or functional parameters on top of cellular identification. An obstacle inherent to 

human research is the biologic heterogeneity between individuals. This difficulty is even 

more pronounced in the study of leukemia where many subclones may be present. These 

limitations make the expanded panels available in mass cytometry appealing for complex 
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hematologic evaluations. Due to this advantage, several groups have used mass cytometry to 

assess the cellular and immune make up in patients with heme malignancies including 

lymphoma (Wogsland et al., 2017), multiple myeloma (Baughn et al., 2017), and CML 

(Gullaksen et al., 2017; Bandyopadhyay et al., 2017) (Table 1).

Acute myeloid leukemia (AML) is the most common hematologic malignancy in adults with 

over 19,000 patients diagnosed each year. Only 25% of patients are cured of their disease at 

5 years and this survival rate has plateaued despite intensive chemotherapeutic regimens 

(Deschler and Lubbert, 2006). This poor prognosis and the considerable side effects from 

conventional cytotoxic chemotherapies have created an impetus to explore novel treatments 

such as immunotherapies.

There have been several publications that have utilized mass cytometry to evaluate the 

heterogeneity and dynamic changes of the tumor phenotype in patients with AML, both 

before and after chemotherapy (Behbehani et al., 2015; Ferrell et al., 2016; Diggins et al., 

2015). Mass cytometry has also been successfully utilized to investigate signaling pathways 

in AML tumor cells (Han et al., 2015; Fisher et al., 2017; Levine et al., 2015). For example, 

mass cytometry has been used to associate the functional maturity of AML cells to their 

surface phenotype and demonstrate that an “immature” signaling profile associates with 

poor outcome (Levine et al., 2015). An additional example of this type of analysis was 

recently reported by a group who was able to identify potential signaling pathway targets in 

patients with myelofibrosis and AML and overlay cell activation status into a hematopoietic 

map (Fisher et al., 2017). A similar strategy has been used to investigate the signaling 

impacts of mTOR and bromodomain inhibitors on leukemic stem cell populations in patients 

with AML (Zeng et al., 2016; Saenz et al., 2017). Despite these excellent investigations into 

AML cell phenotypes, there remain several questions regarding the role of the immune 

system in the development and relapse of AML in a large cohort of patients. What are the 

cell populations that make up the immune microenvironment in AML? Are T cells 

dysfunctional in AML? Is AML amenable to immune checkpoint inhibition? Our group set 

out to answer these questions by developing a comprehensive system that integrates mass 

cytometry with functional studies to define the IME and T-cell functional status in a large 

cohort of patients with AML. We present our data here as an example of how we have 

chosen to use mass cytometry to answer questions regarding the immune system in AML. 

The focus of this review is not from the perspective of a lab that developed techniques or 

innovates in the field of mass cytometry, but rather that of a general user navigating the 

issues that result from the large amounts of data generated by mass cytometry and how to 

integrate disparate data types.

3. Experimental design

We developed a multifaceted study employing phenotypic and functional approaches to 

comprehensively examine the role of T-cell dysfunction in immune evasion and the 

development of AML. We have based our study design around mass cytometry as its ability 

for deep characterization is ideal to assess phenotypic characteristics that can serve as 

surrogates for mechanisms of T-cell dysfunction. These phenotypic characteristics include 

the activation profile, differentiation status, and checkpoint expression of T cells along with 
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other associated lymphoid and myeloid immunosuppressive cell subsets. As an example, our 

group is interested in detailing the relative abundance of T cell subtypes resident in the bone 

marrow of patients with AML, specifically, naive and memory subtypes (identified by 

CD45RA and CCR7) along with the presence of Tregs. Tregs are critical for the initiation 

and maintenance of immune tolerance in both humans and mice (Josefowicz et al., 2012). It 

is hypothesized that Tregs are a central player in immune evasion in solid tumors and several 

studies have documented their presence and function in AML (Shenghui et al., 2011; Ustun 

et al., 2011; Szczepanski et al., 2009; Ersvaer et al., 2010; Kanakry et al., 2011). Tregs can 

be functionally identified based on their ability to suppress the proliferation of other T cells. 

Phenotypically, Tregs can be identified based on surface markers (i.e. CD3, CD4, CD25, CD 

127) and/or by the presence of the nuclear transcription factor FOXP3 (Liu et al., 2006). The 

extended panels of mass cytometry are ideal for the identification of the complex phenotypes 

of T cells with several visualization tools that are available to aid in appreciating relative 

cellular proportions such as sunburst plots, clustering programs such as SPADE and methods 

that display high dimensional data in 2 parameter plots like viSNE (Diggins et al., 2015; Qiu 

et al., 2011) (Fig. 1).

Mass cytometry is a powerful tool to profile a series of multiple markers across various cell 

types. We take advantage of this ability by characterizing the immune checkpoint receptors 

and their ligands, which play a role in immune evasion. These molecules are typically 

expressed in response to inflammatory stimuli as a normal negative feedback loop to limit T-

cell activation during inflammation and maintain peripheral tolerance. Studies have shown 

that some cancers may be able to upregulate ligands that engage checkpoint receptors on T 

cells as a mechanism to inactivate T cells and lead to tumor escape. By targeting the immune 

checkpoint complex with blocking antibodies, the inhibitory signals can be disrupted, 

allowing T cells to perform their normal function. While CTLA-4 and PD-1 are the two 

most well-described checkpoint receptors, there are numerous others including TIM-3, 

VISTA, LAG3, BTLA. Given the heterogeneity of expression of these receptors and their 

ligands, the comprehensive panels available with mass cytometry are ideal for detailed single 

cell characterization (Fig. 2).

3.1. Antibody panel development

Commercially designed and manufactured panels are available for use but our group chose 

to design four unique panels tailored to our project’s specific goals. Each panel contains 

specific metal-conjugated antibodies as well as a viability stain (i.e. cisplatin or rhodium) to 

distinguish live from dead cells and a DNA intercalator (i.e. iridium) to identify cells and 

separate singlets from doublets.

In addition to commercially available panels, individual metal-conjugated antibodies are 

available for hundreds of different human and mouse markers. As mass cytometry use 

becomes more widespread, the list of markers available for purchase should continue to 

rapidly expand. Similar to FACS, there are several benefits to choosing commercially 

available antibodies. Specifically, these include quality assessments to determine the 

appropriate concentration and specificity by validating with control cell lines. It is not 
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always possible to find markers that are commercially available and/or conjugated to the 

desired metal isotope. Custom conjugation kits and services are available and easy to use.

While mass cytometry allows for measurement of more parameters than FACS, multiple 

panels may still be needed to answer a particular question. Our first panel was designed to 

identify T cells and their major subtypes (naive, effector memory, central memory, effector, 

and Tregs) (Table 2). Our second panel was designed to further characterize the functional 

capacity of T cells by intracellular staining for several cytokines after overnight stimulation 

with anti-CD3 followed by inhibition of Golgi protein transport with brefeldin A. Our third 

panel is focused on myeloid cells and their major subsets (granulocytes, M1/M2 

macrophages, monocytes, and MDSCs) along with the leukemic blast cells (Table 3). 

Additional markers were included in each panel to characterize the activation status of the 

cells of interest and quantify the surface density of immunologically relevant receptors and 

their ligands.

Stromal components in the bone marrow are critical for normal hematopoietic stem cell 

function (Morrison and Scadden, 2014). In recent years, a large body of literature has 

developed showing that the non-hematopoietic stromal components of tumors have a major 

impact on tumor development and survival (Turley et al., 2015; Hanahan and Coussens, 

2012). The contribution of stromal components has been well-studied in leukemia where 

they appear to be important for leukemic cell proliferation, survival and chemotherapeutic 

resistance (Tabe and Konopleva, 2014). For these reasons, we designed a fourth panel to 

identify stromal components present in the bone marrow of patients with AML. Staining 

with this panel was initially performed on the fresh bone marrow aspirates. However, due to 

the low recovery of stromal cells, our group is in the process of utilizing cultured stromal 

cells isolated from patient bone marrow samples.

When creating unique panels, it is critical to plan markers and their paired metal isotopes in 

advance for several reasons. Background noise, isotope impurity, and signal detection 

optimization are all technical issues that can arise during development and lead to inaccurate 

results. Experts and online tools are available to prevent and/or reduce these issues (https://

www.fluidigm.com/productsupport/cytof-helios). We begin our panel design by identifying 

which markers are commercially available. These markers serve as a framework that can be 

filled in with custom conjugated markers. For those that are not commercially available we 

then either have them conjugated and tested by Fluidigm or conjugate and test ourselves. 

Optimization and troubleshooting of antibody metal conjugates is similar to the procedures 

used for conventional flow cytometry antibodies. After conjugation antibodies should be 

tested on samples where expression of the target is known. Ideally, new conjugates should be 

tested on biological tissues with expression levels similar to those to be stained in the actual 

experiments as this will yield realistic estimation of staining intensity. If staining intensity is 

low, rare or unknown we will often use AML cell lines with known expression of the antigen 

of interest. Finally, for antigens where the expression pattern in actual patient tissues or cell 

lines is unknown we have used expression via mammalian expression plasmids to determine 

a positive signal. More details of issues to be considered around panel design have been 

published and should be referred to when starting to design a new panel (Leipold et al., 

2015).

Lamble et al. Page 5

J Immunol Methods. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.fluidigm.com/productsupport/cytof-helios
https://www.fluidigm.com/productsupport/cytof-helios


3.2. Functional correlates and mechanistic studies

A hallmark of tumor-mediated suppression of adaptive immune responses is impaired 

proliferative and cytokine production capacity by T cells. We have developed an ex vivo 

system to test these functional parameters. For our functional assays, total bone marrow 

mononuclear cells are labeled with Cell Trace Violet (Life Technologies). The labeled cells 

are then incubated in anti-CD3-coated plates. We intentionally leave out CD28 agonistic 

antibodies, which are common in T cell proliferation assays, so that the cumulative co-

stimulatory or co-inhibitory signals are supplied by the surrounding tumor cells. For our 

assays, cells are harvested after 5 days of culture and the T-cell proliferative capacity is 

assessed by FACS. At the time of harvest, the supernatant from the culture is removed and 

frozen. A multiplex bead-based assay is performed on these supernatants to measure the 

presence of various cytokines. These cytokines help profile the skewing of T-cell phenotypes 

in the context of the IME. To further define the mechanism behind any immune suppression, 

these same assays are performed in the presence of immune checkpoint inhibitors (e.g. 

antibodies against PD-1, CTLA-4).

Our preliminary results suggest that samples can be subcategorized based on the 

proliferative capacity of their T cells (Fig. 3). Samples in which T cells have reduced 

proliferation and or cytokine production may represent immune dysfunction. We designed 

our study with the goal of correlating the phenotypic data generated from mass cytometry 

with the functional data. Mechanisms that can be identified by mass cytometry and may 

correlate with our functional findings include T-cell exhaustion, skewed T-cell 

differentiation, checkpoint expression or increased immunosuppressive subsets. Analyses to 

establish these correlates are currently underway.

3.3. Strategies to overcome obstacles related to evaluating hematologic malignancies 
with mass cytometry

Many mass cytometry studies of patient samples (peripheral blood or bone marrow) 

successfully utilize protocols that yield good results from viably frozen cell samples. A well-

developed method for studying AML cells by mass cytometry on frozen samples is available 

from Zeng et al. (2017). While assessing banked frozen patient samples with mass 

cytometry permits greater convenience with regard to planning and batching experiments, 

the focus on fresh cells likely provides a more accurate snapshot of the in vivo biology being 

measured. Beyond reduced cell recovery, studies have shown that assessment of frozen 

samples via cytometry leads to variable cell subset representation based on surface marker 

expression (Lemieux et al., 2016). Improved cell recovery from frozen samples can be 

achieved by optimal sample preparation (Gaudilliere et al., 2014).

Cell numbers can remain an issue even with fresh samples due to variable and unpredictable 

sample procurement. Our group has optimized procedures using a first generation mass 

cytometer and has found cell recovery is one of the biggest limitations. Using mass 

cytometry, other researchers have found cell numbers as low as 10,000 are sufficient to 

identify the representative distribution of plentiful cells (Yao et al., 2014). While it is 

possible to identify highly representative cell phenotypes in small samples, the reality 

remains that rare cell populations of interest require a large number of input events for valid 
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interpretation. This can be an issue when it comes to a limited resource such as the human 

bone marrow that we study.

Up to 70% of cells can be lost during data acquisition in a first generation mass cytometry 

instrument due to the imprecise nature of nebulizer sample spray patterns. Taking this loss 

into account, our protocol calls for a starting cell count of 3 × 106 per panel. Helios 

instruments have claimed improved efficiency up to 60%. These numbers may be further 

improved by using third party fluidics upgrades. An additional strategy that can be 

implemented to increase cell recovery is designing panels that are limited to surface markers 

and consolidating intracellular or intra-nuclear markers to a single panel, similar to our T-

cell cytokine panel. Staining protocols for these latter conditions require harsher buffers and 

additional washes that can further reduce cell recovery.

An additional obstacle created by restricting our study to fresh samples is the logistical 

issues involved in clinical acquisition, especially over long-term projects. Staining and 

running samples independently over a multi-year project provides the advantage of capturing 

the biology more closely associated with each individual sample but it also leads to the 

potential for increased variability in staining and acquisition. Studies involving banked 

samples can overcome some of this variability by using barcoding technology. Using mixes 

of palladium isotopes or cisplatin, up to 20 samples can be stained and analyzed together in 

one tube and the individual identity of each sample can be retrieved during data analysis 

(Zunder et al., 2015; McCarthy et al., 2017).

Signal intensity of mass cytometry instruments are variable over long runs of analysis. This 

can lead to difficulties in comparisons over long-term studies. Calibration beads are included 

with each sample to allow for normalization during runs (Finck et al., 2013). For another 

level of quality control (QC), we have a banked sample obtained via leukapheresis with a 

defined immunophenotype that is stained with a limited panel (i.e. CD45, CD3, CD4) and 

serves as a standard to compensate for further machine drift over multi-year projects. We 

chose our three markers based on high (CD3), intermediate (CD3), and low (CD45) staining 

intensity of our banked sample. This permits measurement of variability across staining 

intensity ranges. Limiting our control sample stain to 3 markers was purely an economic 

decision, in cases where more markers are economically feasible it would be preferable to 

include as many as possible. Finally, during panel development, our group utilized a strategy 

used in FACS and incorporated a core group of 14 well-established phenotypic markers in 

each panel. This allows for identification of basic cell types within each panel and serves as 

an additional QC for stains between panels.

3.4. Computational strategies to ensure rigor and reproducibility

Critical factors that must be considered in the analysis of mass cytometry data include: 1) 

management of multiple panels, 2) collection protocol, 3) disease heterogeneity, which 

contributes to technical variability, and 4) reproducibility in gating. To this end, we have 

developed a metadata-centric pipeline that merges both information from FCS files and 

patient-based clinical annotation into a single file manifest. Based on this manifest, files can 

be batch-processed by panel type, and files that do not pass QC procedures can be flagged at 

each step of analysis. The pipeline currently handles panel reconciliation, scale 
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transformation, quality control, automatic gating, and visualization of both fluorescence and 

percentage within populations of interest (Fig. 4). Where possible, we have implemented 

best practices that have been suggested by FlowCAP (Aghaeepour et al., 2016; Aghaeepour 

et al., 2013). Each step is visualized and each visualization can be faceted by clinical 

annotation to allow for exploration of questions based on the clinical annotation. We 

leverage existing Bioconductor packages for analysis, utilizing the flowCore (for loading 

FCS Files), flowWork-space/openCyto (for developing automated gating schema), and 

ncdfFlow (for on-disk processing of FCS files) packages (Finak et al., 2014; Hahne et al., 

2009; Finak et al., 2016).

With respect to QC, we initially assess staining variability by visually comparing staining 

for a marker within a panel for the entire set of samples. Violin plots are used because they 

allow for rapid visual comparison of distributions across many samples (Hintze and Nelson, 

1998). By comparing MFIs using a z-score, samples with abnormal staining can be flagged 

and identified early in the pipeline. Additionally, we compare the core marker expression 

across panels to assess potential intra-patient staining variability.

As previously mentioned, our experimental design requires fresh patient samples to be run 

immediately upon collection. For this reason, standardization methods such as barcoding 

cannot be used, as they require multiple samples to be mixed and barcoded, which is not 

possible with this experimental protocol. Additionally, because manual gating is highly 

subjective, we elected to utilize automated gating algorithms to identify cellular populations 

in our cohort. Automated gating is done leveraging the openCyto framework (Finak et al., 

2014). Automated gating has been shown to be dependable and reproducible through a 

number of flow Cap challenges (https://www.ncbi.nlm.nih.gov/pubmed/23396282, https://

www.ncbi.nlm.nih.gov/pubmed/25755118, https://www.ncbi.nlm.nih.gov/pubmed/

26447924, https://www.ncbi.nlm.nih.gov/pubmed/26861911). We used several auto-gating 

algorithms including flowClust (for singlet gating), mindensity (for 1 dimensional +/−), 

tailgate (for tails of populations), and flowDensity (for finding quadrant boundaries) for the 

gating scheme. The output of all algorithms was confirmed visually to ensure that they were 

appropriate. Due to inter-patient heterogeneity in AML, some subpopulations may not be 

present in each patient sample. To this end, we have incorporated error handling into the 

openCyto package, which allows for conditional gating of child populations when the parent 

population is not found. Selection of autogating algorithms and their associated parameters 

in openCyto requires multiple iterations of testing and visual comparison of the automatic 

gates. We compare our autogated populations with manual expert gating in order to assess 

the suitability of our parameters as an additional QC step.

Once populations are identified, we explore novel markers within a population to identify 

new phenotypes that exist within a subpopulation. Due to technical variability, we need to 

estimate positive and negative populations within a marker by automated gating on 1-

channel histograms within a patient sample. Within a cell population, such as T cells, we 

examine the presence of subtypes.

One drawback to using mass cytometry rather than FACS is that side scatter is not available 

to identify blast cells. To this end, we have developed a simple discrimination method using 
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t-SNE to compare AML patient samples with our set of healthy donor (HD) samples. For 

each HD sample, we sample 5% from each FCS file and concatenate these sampled rows to 

the AML sample in question. Graphed t-SNE is then run on this concatenated file. HD and 

normal immunologic cells from the AML samples group together, allowing for identification 

of the AML cells by drawing a contour gate around the HD and normal immunologic cells.

4. Conclusion

Ex vivo research on rare human leukemia samples can provide valuable insight into the 

pathogenesis of the disease and potential therapeutic targets. Integrating functional studies 

with deep immune profiling gives a broad insight into the status of IME in patients with 

hematological malignancies. The ability to utilize the expanded panels available in mass 

cytometry is a strength over FACS that has led to our group successfully adopting this 

modality as our primary means of phenotypic analysis. We believe our strategy is 

generalizable to other hematological malignancies and we have begun applying the same 

techniques to acute lymphoblastic leukemia and chronic myelogenous leukemia. The 

pipeline, including autogating parameters and transformation scripts, as well as our 

protocols will be freely disseminated for others to use.
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Fig. 1. 
An example of T cell differentiation Identification by mass cytometry. A. Plots Identifying T 

cell subtypes of a healthy donor (left) and patient with AML (right). Differentiation of CD4 

T cells (top row) and CD8 T cells (middle row) can be further delineated into the following 

groups: Naïve (CCR7 + CD45RA +), effector (Eff CCR7 − CD45RA +), central memory 

(CM CCR7 − CD45RA +) and effector memory (CCR7 − CD45RA −). Treg (bottom row) 

gating scheme of CD4 T cells by expression of CD25 + CD127 −. B. Population Sunburst 

plots showing relative distributions of T cell subtypes based on gating shown In A (CD4 top. 
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CD8 bottom). C. viSNE plots showing populations of CD4 and CD8 T cells and Tregs. All 

plots generated in Cytobank.
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Fig. 2. 
Demonstration of immune checkpoints and activation markers distributed over 10 healthy 

(left) and 10 AML (right) bone marrow samples. Heat maps are distributed by first gating on 

CD4 (blue), CD8 (orange), and Treg (green) populations. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 3. 
Functional measurement of AML bone marrow T cells showing proliferation of CD3-gated 

cells after 5 days of culture via dilution of Cell Trace Violet. Histograms represent 

Individual AML bone marrow samples with T cells that are non-responsive (top row) or 

responsive to anti-CD3 stimulation (bottom row).
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Fig. 4. 
Mass cytometry pipeline. FCS files are processed, visualized and associated with clinical 

annotation. Each step of analysis (QC/data transformation, automated gating using the 

openCyto pipeline, and comparison of population percentages/marker expression) is 

visualized and assessed for potential impact on analysis.
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Table 1

Publications using mass cytometry to study hematological malignancies.

Author(s) (year) Title Summary of findings

Lakshmikanth et al. 
(2017)

Mass cytometry and topological data analysis 
reveal immune parameters associated with 
complications after allogeneic stem cell 
transplantation

This report identifies measurable parameters associated with 
complications post-allogeneic bone marrow transplant.

Baughn et al. (2017) Phenotypic and functional characterization of 
a bortezomib-resistant multiple myeloma cell 
line by flow and mass cytometry

This study used mass cytometry to identify phenotypic changes in a 
cell line associated with drug resistance.

Bandyopadhyay et al. 
(2017)

Cholesterol esterification inhibition and 
imatinib treatment synergistically inhibit 
growth of BCR-ABL mutation-independent 
resistant chronic myelogenous leukemia

This paper used mass cytometry to identify the signaling pathway 
targeted in patient samples treated with two drugs.

Chretien et al. (2017) Natural killer defective maturation is 
associated with adverse clinical outcome in 
patients with acute myeloid leukemia

Mass cytometry was used to identify specific subsets of NK cells 
associated with outcome in AML.

Gullaksen et al. (2017) Single cell immune profiling by mass 
cytometry of newly diagnosed chronic phase 
chronic myeloid leukemia treated with 
nilotinib.

Mass cytometry was used to track ongoing changes in cell 
populations of CML patients receiving the TKI inhibitor nilotinib

Fisher et al. (2017) Mass cytometry analysis reveals hyperactive 
NF Kappa B signaling in myelofibrosis and 
secondary acute myeloid leukemia

Myelofibrosis and secondary AML possess intracellular signaling 
phenotypes including the NFkB, MAP kinase, and PI3 kinase 
pathways, and JAK-STAT pathway exhibit constitutive signal 
activation and hypersensitivity to cytokine stimulation.

Wogsland et al. (2017) Mass cytometry of follicular lymphoma 
tumors reveals intrinsic heterogeneity in 
proteins including HLA-DR and a deficit in 
nonmalignant plasmablast and germinal 
center B-cell populations

Use of mass cytometry to obtain deep profiling of cell subsets 
enabled identification of biologically important features, such as 
tumor heterogeneity and loss of nonmalignant B-cell subsets.

Saenz et al. (2017) Novel BET protein proteolysis-targeting 
chimera exerts superior lethal activity than 
bromodomain inhibitor (BETi) against post-
myeloproliferative neoplasm secondary 
(s)AML cells

In secondary AML cells utilizing mass cytometry coupled to 
SPADE algorithm clustering of the data, authors demonstrate 
treatment with ARV-825 (compared with OTX015), caused marked 
attenuation of BRD4, c-Myc and p-Rb, while inducing more p21 in 
the CD34 + stem/ progenitor cells.

Zhou et al. (2017) Combined inhibition of β-catenin and Bcr-
Abl synergistically targets tyrosine kinase 
inhibitor-resistant blast crisis chronic myeloid 
leukemia blasts and progenitors in vitro and in 
vivo

Combined inhibition of β-catenin and Bcr-Abl tyrosine kinase 
overcomes Bcr-Abl-dependent and -independent TKI resistance, 
targets BC-CML progenitors and BM niche components, and 
impairs engraftment potential of LSC.

Carter et al. (2016) Combined targeting of BCL-2 and BCR-ABL 
tyrosine kinase eradicates chronic myeloid 
leukemia stem cells.

Mouse models of CML were treated with combined ABL inhibitor 
and Bcl-2 inhibitor. The authors used mass cytometry to track what 
cell type is the major target of inhibitor treatment.

Ferrell et al. (2016) High-dimensional analysis of acute myeloid 
leukemia reveals phenotypic changes in 
persistent cells during induction therapy

Longitudinal assessment of the impact of treatment on the cellular 
milieu of the AML patient’s marrow and blood Using mass 
cytometry and computational analysis AML subpopulation 
dynamics in the early therapy response. Data indicated AML 
“persister” cells can become significantly less phenotypically stem-
like immediately following treatment

Zeng et al. (2016) MLN0128, a novel mTOR kinase inhibitor, 
disrupts survival signaling and triggers 
apoptosis in AML and AML stem/progenitor 
cells

Investigated mTOR inhibition on AML, using mass cytometry 
combined with SPADE and viSNE analyses to evaluate phenotypic 
heterogeneity of AML and AML stem/progenitor cells, and 
measure the altered intracellular molecules triggered by stimuli and 
inhibitors. Data indicate MLN0128 is a potent mTORCl/C2 
inhibitor that selectively targeted the AKT/mTOR pathway in 
AML.

Romee et al. (2016) Cytokine-induced memory-like natural killer 
cells exhibit enhanced responses against 
myeloid leukemia

Results indicate that memory-like NK cells are distinguishable 
from control NK cells from the same individual. IL-12, IL-15, and 
IL-18-induced memory-like NK cells exhibited enhanced triggering 
against AML regardless of KIR to KIR-ligand interactions, 
resulting in an expanded NK cell pool of AML-reactive effector 
cells.
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Author(s) (year) Title Summary of findings

Levine et al. (2015) Data-driven phenotypic dissection of AML 
reveals progenitor-like cells that correlate 
with prognosis

Identified separate “functional” intracellular immaturity and surface 
phenotype in pediatric AML. The data shows that functional 
signaling immaturity correlates with poor outcome.

Hansmann et al. 
(2015)

Mass cytometry analysis shows that a novel 
memory phenotype B cell is expanded in 
multiple myeloma

Demonstrate high-dimensional cytometry data on the human 
immunologic landscape of peripheral blood cells across most of the 
known developmental stages of multiple myeloma (multiple 
myeloma, asymptomatic myeloma, MGUS, and healthy 
individuals).

Han et al. (2015) Single-cell mass cytometry reveals 
intracellular survival/proliferative signaling in 
FLT3-ITD-mutated AML stem/progenitor 
cells

Using mass cytometry technique LSC surface markers and 
intracellular phosphoproteins in primary AML samples where 
characterized yielding multiple functional signaling pathways in 
antigen-defined subpopulations of AML.

Behbehani et al. 
(2015)

Mass cytometric functional profiling of acute 
myeloid leukemia defines cell-cycle and 
immunophenotypic properties that correlate 
with known responses to therapy

This study suggests that known chemotherapy sensitivities of 
common AML subsets are mediated by cell-cycle differences 
among LSCs and provides a basis for using in vivo functional 
characterization of AML cells to inform therapy selection.

Amir et al. (2013) viSNE enables visualization of high 
dimensional single-cell data and reveals 
phenotypic heterogeneity of leukemia

Evaluation of AML diagnosis and relapse samples supports that the 
cells first gain CD34 and subsequently acquire highly diverse 
abnormal combinations of lineage-specific markers without 
attenuation of CD34
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Table 2

Mass cytometry panel designed to focus on T-cell phenotypes in human bone marrow samples.

Marker Common Clone Metal
isotope

Purpose

CD45 LCA HI30 141Pr Hematopoietic marker

CD19 HIB19 142Nd B-cell marker

CD 127 IL-7R A019D5 143Nd T-cell subtyping

CD38 ADPRC1 ΗΓΤ2 144Nd Myeloid marker

CD 4 RPA-T4 145Nd T-cell marker

CD 8 RPA-T8 146Nd T-cell marker

CD11c Integrin Bu 15 147Sm Dendritic cell marker

CD16 FcgRIII 3G8 148Nd Low affinity Fc receptor

CD25 IL-2R 2A3 149Sm Tregulatory cell and activation marker

CD223 LAG3 874501 150Nd Checkpoint receptor

CD278 ICOS C398.4A 151Eu Activation marker

CD66b 80H3 152Sm Granulocyte marker

CD45RA HI100 153Eu T-cell subtype

TIM 3 F38–2E2 154Sm Checkpoint receptor

CD27 L128 155Gd T-cell activation marker

CD14 HCD14 156Gd Monocyte marker

CD 134 0×40 ACT35 158Gd Checkpoint receptor

CD357 GITR 621 159Tb T-cell activation marker

CD28 CD28.2 159Tb Activation marker

CD 152 CTLA4 14D3 161Dy Checkpoint receptor

FoxP3 259D/C7 162Dy T-regulatory cells

CD272 BTLA MIH26 163Dy Checkpoint receptor

CD 185 CXCR5 51505 164Dy T-follicular helper cells

CD40 5C3 165Ho APC costimulatory protein

CD44 BJ18 166Er T-cell activation marker

CD 197 CCR7 G043H7 167Er T-cell subtype

Ki-67 Ki-67 168Er Proliferation marker

CD33 WM53 169Tm Myeloid marker

CD 3 UCHT1 170Er T-cell marker

CD20 2H7 171Yb B-cell marker

HLA-DR MHCII L243 173Yb MHC class II receptor

TIGIT MBSA43 174Yb Checkpoint receptor

CD279 PD-1 EH12.2H7 175Lu Checkpoint receptor

CD56 R19–760 176Yb NK marker
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Table 3

Mass cytometry panel designed to detect both normal and leukemic myeloid cell populations in the bone 

marrow of patients with AML.

Marker Common
Name

Clone Metal
isotope

Purpose

CD45 LCA HI30 141Pr Hematopoietic marker

CD19 HIB19 142Nd B-cell marker

CD117 cKIT 104D2 143Nd Immature marker

CD38 ADPRC1 HIT2 144Nd Myeloid marker

CD4 RPA-T4 145Nd T-cell marker

CD8 RPA-T8 146Nd T-cell marker

CD11c Integrin Bu 15 147Sm Dendritic cell marker

CD16 FcgRIII 3G8 148Nd Low affinity Fc receptor

CD34 581 149Sm Stem cell marker

CD86 B7–2 IΤ2.2 150Nd T-cell costimulatory marker

CD123 IL-3R 6H6 151Eu Myeloid marker

CD66b 80H3 152Sm Granulocyte marker

TIM3 F38–2E2 153Eu Checkpoint receptor

CD163 GHI/61 154Sm M2 macrophage marker

CD14 HCD14 156Gd Monocyte marker

CD135 FLT3 BV10A4H2 158Gd Myeloid marker

CD115 CSF1R 9–4D2–1E4 159Tb Myeloid marker

CD13 WM15 159Tb Myeloid marker

CD80 B7–1 2D10.4 162Dy T-cell costimulatory marker

TGF 658922 163Dy Immunosuppressive
cytokine

Arginase MHN2–25 164Dy Immunosuppressive
enzyme

Notch2 JES3–9D7 165Ho Cell fate molecule

IL-10 ICRF44 166Er Immunosuppressive
cytokine

CD11b 18/P-Stat6 167Er Myeloid marker

pStat6 2D10.4 168Er Signaling molecule

CD33 WM53 169Tm Myeloid marker

CD3 UCHT1 170Er T-cell marker

CD20 2H7 171Yb B-cell marker

CD15 W6D3 172Yb Myeloid marker

HLA-DR L243 173Yb MHC class II receptor

CD274 PD-L1 29E.2A3 175Lu Checkpoint ligand

CD56 R19–760 176Yb NK marker
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