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Abstract

Purpose—The ultimate intrinsic signal-to-noise ratio (UISNR) is normally calculated using 

electrodynamic simulations with a complete basis of modes. Here we provide an exact solution for 

the UISNR at the center of a dielectric sphere, and assess how accurately this solution 

approximates UISNR away from the center.

Methods—We performed a mode analysis to determine which modes contribute to central 

UISNR – ζ(r → 0). We then derived an analytic expression to calculate ζ(r → 0) and analyzed its 

dependence on main magnetic field strength, sample geometry and electrical properties. We 

validated the proposed solution against an established method based on dyadic Green’s function 

simulations.

Results—Only one divergence-free mode contributes to ζ(r → 0). The UISNR given by the 

exact solution matched the full simulation results for various parameter settings, while calculation 

speed was approximately 1000 times faster. We showed that the analytic expression can 

approximate the UISNR with < 5% error at positions as much as 10–20% of the radius away from 

the center.

Conclusion—The proposed formula enables rapid and direct calculation of UISNR in the central 

region of a sphere. The resulting UISNR value may be used, for example, as an absolute reference 

to assess the performance of head coils with spherical phantoms.
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INTRODUCTION

Ultimate intrinsic signal-to-noise ratio (UISNR) is the largest SNR allowed by 

electrodynamic theory for a given sample geometry and set of electrical properties, 

independent of the particulars of radiofrequency (RF) coil design (1–4). Therefore, UISNR 

provides an absolute benchmark for evaluating the performance of RF detector coils (5,6). 

The UISNR can be calculated, for example, via a current mode expansion and dyadic 

Green's functions (DGF) (3,7–9). Such a method also enables derivation of the ideal current 

patterns associated with UISNR (7), which constitute the best possible arrangement of 

currents on a specified surface encircling a body, and which can be used as guidelines to 

optimize coil design (10,11).

Uniform dielectric spheres with average brain electrical properties have been used as 

approximations of the human head in UISNR simulations (1,7–9). In fact, analytic solutions 

for the electromagnetic field can be found in the case of a simple object geometry, which 

results in rapid electrodynamic simulations. While numerical simulations can handle a 

realistic heterogeneous head model, they are time consuming, and their numerical 

complexity grows as the number of modeled sources increases, which generally precludes 

their use with a full basis to calculate the UISNR. Recently, a novel approach based on 

volume integral equations (VIE) has been proposed to calculate the UISNR in a realistic 

head model (12). Although relatively rapid, the VIE-based calculations require a graphics 

processing unit (GPU) to handle the ultimate basis set, as well as proficiency with the 

MARIE (MAgnetic Resonance Integral Equation suite) open source software (13,14). 

Furthermore, the results described in (12) suggest that a uniform sphere with average brain 

electrical properties is a good approximation of a human head for UISNR calculations. 

However, even performing DGF simulations with a uniform sphere could be challenging 

without access to existing software and/or experience in using it. Kopanoglu et al. derived an 

analytic formula to approximate the UISNR in an homogenous sample of arbitrary shape 

(15). However, the proposed formula is applicable only when the distance of the voxel of 

interest from the sample surface is smaller than the wavelength, which limits its validity to 

superficial positions, therefore preventing most practical use, since coil designers are usually 

interested in assessing and maximizing central SNR.

Initial work on ideal current patterns (7) showed that the optimal current distribution 

resulting in maximum SNR at the center of a uniform sphere consists of two large 

distributed loops rotating around the z axis (i.e., the direction of the main magnetic field B0) 

at the Larmor frequency. Further, it was shown that the shape of these ideal current patterns 

did not change with B0. This suggests that only few modes likely contribute to the UISNR in 

the central region, compared to thousands of modes at other voxel positions (1,16). 

Following this observation, the aim of this work was to perform a mode analysis to establish 

which current modes maximize SNR at the center of the sphere, and to determine whether it 

is possible to use these modes to derive an analytic expression for the UISNR at the center of 

the sphere.
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THEORY

Given a complete basis set of current modes Kl,m,

Kl, m = ∑l = 0
∞ ∑m = − l

l W l, m
(M)Xl, m(θ, ϕ) + W l, m

(E)r × Xl, m(θ, ϕ), [1]

defined on a spherical surface of radius b, the resulting electric (E) field inside a dielectric 

sphere of radius a < b can be calculated as E(r) = iωμ∫AḠ(r,r′) · K(r′)dA′ (17). In these 

expressions, i is the imaginary unit, l, m are the expansion indices, Xl,m is a vector spherical 

harmonic of order (l,m), ω is the angular frequency, μ is the magnetic permeability of the 

dielectric material composing the sphere, Ḡ(r,r′) is the branch of the DGF corresponding to 

the region indicated by r, and W l . m
(M) and W l . m

(E)  are the series expansion coefficients 

representing divergence-free and curl-free surface current contributions, respectively. The 

left circularly polarized component of the magnetic field (B) can be derived from E by using 

Maxwell’s equations and, defining WT = [W l, m
(M) W l, m

(E)], can be written as (7)

B1
−(r) = Bx(r) − iBy(r)

= − iμ0k0kinb2 ∑
l = 0

∞
∑

m = − l

l
WTT

Nl, m(kin, r)
x

− iNl, m(kin, r)
y

Ml, m(kin, r)
x

− iMl, m(kin, r)
y

= ∑
l = 0

∞
∑

m = − l

l
WTS .

[2]

where, T is a transformation matrix that accounts for boundary conditions at the surface of 

the sphere, S is a matrix that contains the complex signal sensitivities associated with each 

mode, k0
2 = ω2μ0ε0 and kin

2 = ω2εrε0μ + iωμ0σ are the complex wave numbers in free space 

and inside the sphere, respectively, where ε0 is the electric permittivity of free space, and εr 

and σ are the relative permittivity and the electric conductivity of the dielectric material 

composing the sphere, respectively. We approximated the permeability μ of the dielectric 

sphere with the permeability μ0 in free space, μ~μ0, which is a valid assumption for common 

in vivo situation. Note that harmonic time variation is assumed for all fields and currents, 

although the common factor e−iωt is omitted from the equations for convenience.

The vector wave functions Ml,m and Nl,m in Eq. [2] are defined as (7)
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Ml, m(kin, r) = 1
−i l(l + 1)(∇ × jl(kinr)Y l

m(θ, ϕ)r),

= jl(kinr)Xl, m(θ, ϕ),

[3a]

Nl, m(kin, r) = 1
kin

∇ × Ml, m(kin, r), [3b]

where jl is a spherical Bessel function of order l, r (radial), θ (polar), and ϕ (azimuthal) are 

spherical coordinates, and Y l
m is a scalar spherical harmonic of order (l, m). From Eq. [2] we 

see that, since the matrix T is diagonal (7), the divergence-free component of the signal 

sensitivity (S) depends only on Nl,m, whereas the curl-free component depends only on 

Ml,m.

The UISNR ζ at any position r0 inside the sphere can be calculated as (1):

ζ(r0)
ω0M0

4kBTS · S(r)HΨ mode
−1 S(r) 0, 0

−1 , [4]

where M0 is the equilibrium magnetization, ω0 is the Larmor frequency, kB is Boltzmann’s 

constant, TS is the absolute temperature of the sample, and Ψmode is the modes’ noise 

covariance matrix associated with the noise equivalent resistance. The “0,0” subscript 

indicates the diagonal element corresponding to target position r0. The ideal current patterns 

corresponding to ζ(r0) can be derived by performing a weighted sum of the individual 

current modes Kl,m using the SNR-optimal reconstruction weights 

Wopt = SHΨ mode
−1 S

−1
SHΨ mode

−1  (7).

Mode analysis and analytic formula for the UISNR at the center of the sphere

The signal sensitivity (Eq. [2]) inside the dielectric sphere is determined by the vector wave 

functions Ml,m and Nl,m in Eq. [3]. At the sphere center (r → 0), it can be shown (Appendix 

A) that Ml,m(r → 0) = 0,∀(l,m) and Nl,m(r → 0) = 0,∀(l,m), except for the three modes 

(1,1), (1,0) and (1,−1), for which the following expressions hold:

N1, 1(r 0) = 1
6π

−i
2, 1

2 , 0 , [5a]

N1, 0(r 0) = 1
6π (0, 0, i), [5b]
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N1, − 1(r 0) = 1
6π

i
2, 1

2 , 0 . [5c]

However, substituting these quantities into Eq. [2], we see that only N1,1 contributes to the 

signal sensitivity at the center, which means that the corresponding UISNR ζ(r → 0) is 

completely determined by one divergence-free current mode. This explains why the ideal 

current patterns for a voxel at the sphere center do not change shape with field strength, but 

only differ by an azimuthal phase shift (Figure 1): the patterns must always conform to the 

mode pattern, multiplied by a complex scalar weight that changes with field strength and 

other parameters.

The fact that only one mode survives at the center of sphere enables derivation of an analytic 

expression for ζ(r → 0), which is given by

ζ(r 0) =
ω0M0

4kBTS · 3π ·
σω0

2

∣ kin ∣2
· ∫ 0

a ∣ j1(kinr) ∣2r2dr

. [6]

The solution of the integral in Eq. [6] is given by

∫
0

a

∣ j1(kr) ∣2r2dr =
a2{k∗ j0(k∗a) j1(ka) − k j0(ka) j1(k∗a)}

k2 − k ∗ 2 . [7]

Details of the derivation are provided in Appendix B. The analytic expression in Eq. [6] 

explicitly shows the dependence of ζ(r → 0) on the sphere radius (a) and on the electrical 

properties of the sphere (via the wave number).

METHODS

To validate the analytic solution, we investigated the dependence of ζ(r → 0) on main 

magnetic field strength B0 and compared the results with corresponding DGF simulation 

results, with expansion order lmax = 55 (6,272 modes in total, evenly distributed between 

curl-free and divergence-free modes). The dielectric properties of the sphere, εr and σ 
(1,7,18), were calculated as the average of gray and white matter properties for each 

operating frequency (Table 1). We also tested the case with conductivity σ equal to 10−5 Ω
−1·m−1 to approximate the lossless condition as in (1). Furthermore, we used the analytic 

expression to study the dependence of ζ(r → 0) on the sphere radius (a) and the radius of 

the surface where the current distribution is defined (b). We then investigated how the 

UISNR ζ(r) varies with the distance r from the center, either in the x–y plane or along the z-

axis (direction of B0), and determined the extent of the region within which the UISNR 
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could be approximated by the analytic solution at the center, ζ(r → 0). Finally, we 

computed an experimental performance map for a 32-element 3 Tesla head coil array by 

approximating the UISNR at every voxel with the central UISNR obtained with the analytic 

formula. We compared the result with an accurate performance map based on full DGF 

simulations, to evaluate the error of the approximation in a practical situation. The 

experimental SNR map of the 32-element array was available from previous work (5), 

whereas the scaling factors needed to calculate the performance maps are described in 

Appendix C.

RESULTS

Figure 2 shows the double-logarithmic plots of ζ̃(r → 0) vs. B0 for B0 = 0.5 – 12 T, 

replicating the plots in fig. 6 of Ref (1). The tilde in ζ̃ indicates that the UISNR values were 

normalized by (2a)3 before plotting (Appendix C). Note that the behavior of ζ̃(r → 0) based 

on the analytic solution (solid lines) was consistent, up to a scaling factor (Appendix C), 

with the results in (1), which were computed using a multipole field expansion. Furthermore, 

the values obtained with the analytic solution traced exactly the values calculated with full 

DGF simulations (data points). Figure 2 shows that ζ̃(r → 0) is approximately linear with 

respect to B0 at low B0 values, and increases nonlinearly as ~(B0)n with an exponent n > 1 at 

high B0 values, which is compatible with published results (1). In the case of average brain 

tissue (Figure 2a), this effect was more pronounced for a small sphere radius, whereas for 

the large spheres (a = 25 cm and 32.5 cm) the relationship remained approximately linear 

also at ultra-high field.

The sensitivity of the central UISNR with respect to changes in sphere radius ∂aζ(r → 0) 

and current radius ∂bζ(r → 0) is shown in Figure 3. These quantities can be calculated 

directly from the analytic formula in Eq. [6]:

∂aζ(r 0) = − ζ(r 0) ·
∣ j1(kina) ∣2a2

2∫ 0
a ∣ j1(kinr) ∣2r2dr

, [8a]

∂bζ(r 0) = 0, [8b]

Note that also in this case the analytic results (solid lines) agree with the results from full 

DGF simulations (data points). For B0 < 7 T, the rate of change of the central UISNR with 

respect to the sphere radius (∂aζ(r → 0)) increases monotonically until ζ(r → 0) reaches a 

minimum and remains constant for larger object size (Figure 3a). For B0 ≥ 7 T, ∂aζ(r → 0) 

instead oscillates for small sphere radii, likely due to wavelength effects, and the higher the 

field strength, the larger is the sphere radius for which ζ(r → 0) reaches its minimum 

values. On the other hand, ζ(r → 0) is constant with respect to the radius (b) at which the 

surface current distribution is defined (Figure 3b), as predicted by the analytic solution (Eq. 

[8b]).
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Figure 4 shows that using the formula for the UISNR at the center to approximate the 

UISNR for a voxel at an intermediate position r (0 < r
a < 1) on the x–y plane (Figure 4a), or 

along the z-axis (Figure 4b), yields an error < 5 % if r
a < 10 − 20 %. At high field, the range 

of r
a  with an error < 5 % is similar to the case at low field. In other words, at high field, the 

UISNR at the center can approximate the UISNR at an intermediate position within a region 

comparable to the case at low field. The error grows approximately exponentially as the 

voxel of interest approaches the surface of the sphere.

Figure 5 compares experimental coil performance maps for a 32-element head coil array (5), 

obtained with a full DGF simulation (Figure 5a) or by approximating UISNR at every voxel 

with the value provided by the exact solution (Figure 5b). The profile plots in Figure 5c 

indicates that the analytic formula is accurate in a region surrounding the center, whereas the 

error grows exponentially closer to the surface, as predicted by the simulation results in 

Figure 4, and shown by Figure 5d.

DISCUSSION

Here we have derived an analytic expression to directly calculate the UISNR at the center of 

a dielectric sphere. This analytic formula allows one to explicitly investigate UISNR 

behavior as a function of main magnetic field strength, sample geometry and electrical 

properties. For example, note that the radius of the surface current distribution (b) does not 

appear in the formula, and full DGF simulation results confirm that ζ(r → 0) is, in fact, 

constant with respect to b. This is a potentially counterintuitive result, since, according to 

traditional “fill-factor” arguments or common experience with close-fitting coil arrays, one 

might expect deep-lying SNR to decrease with increasing distance of the receive coil surface 

from the body. The fact that central UISNR does not depend upon the radius of the receiving 

surface can be understood considering that a) the electric conductivity of air is zero, 

therefore expanding the gap between the sample and the current-carrying surface does not 

introduce additional losses that would reduce UISNR, and b) any change in body noise with 

changing b is directly canceled by a corresponding change in signal for the single surviving 

mode (see Appendix B). Note that this result is valid only for UISNR at the center and when 

the current-bearing surface completely encircles the object. (At some point, it should be 

noted, coil noise would become significant, and SNR would be degraded in practice, for 

large current-carrying surfaces with large stretches of conductive material, but this 

degradation relates to concrete considerations of coil engineering rather than to fundamental 

electrodynamics (19).) The radius-independence (for receiving surface b) of central UISNR 

is in fact a more general result which applies to a range of geometries other than the current 

spherical configuration (3,19), but it arises in a comparatively transparent fashion in our 

analytical formula for the sphere. Recent work has shown that moving the current surface 

away from the sample only affects the phase of the ideal current patterns, due to propagation 

delay (20). In fact, the shape of the ideal current patterns cannot change with increasing b, 

since it is always the same current mode that contributes to the UISNR at the sphere center, 

as we have mathematically proven in this work. Pfrommer and Henning have also reported 

that the UISNR in a dielectric sphere does not depend on the radius of the surface current 
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distribution (9). They have also shown that UISNR is not affected by the presence of an 

encircling RF shield, independently of the shield radius and electric conductivity.

Our derivation demonstrates that there are no curl-free contributions to ζ(r → 0), as it was 

previously shown using full DGF simulations (9). This, and the fact that the only mode 

contributing to ideal current patterns associated with UISNR at the center of a sphere forms 

large distributed loops (Figure 1), suggests that arrays of loop coils are a reasonable choice 

to maximize central SNR for head imaging at all field strengths (8). This observation is valid 

only if the current distribution is defined on a spherical surface, as in this work. In fact, 

recent work (21) has shown that since in a spherical geometry all points on the surface are 

equidistant from a central spin, the optimal receive currents that maximize performance at 

the center are closed and create loop-like patterns at all field strengths. Nevertheless, electric 

dipoles, which also have a divergence-free component (6,22), can still capture a substantial 

portion of the available central SNR at ultra-high field, if the current-bearing surface is not a 

complete sphere (23,24). At ultra-high field, electric dipole arrays can even exceed loops’ 

performance in maximizing central SNR in the case of body-size objects, for which the 

receive elements are normally arranged on a cylindrical surface (6,7,21).

Kopanoglu et al. suggested UISNR ∝ a−2.5 to approximate the dependence of UISNR on the 

sphere radius a (15), in cases where wavelength effects are small, i.e. where a
λ ≪ 1, with λ 

being the wavelength of electromagnetic field inside the sample. This simple power law can 

also be derived by performing Taylor expansions of spherical Bessel functions in Eq. [7] 

with respect to ka for |ka| ≪ 1. To further demonstrate this relationship, we used the 

simulation results from Figure 3 to show how ζ(r → 0) varies with a in a logarithmic scale 

(Figure 6). At low field (long λ), ζ(r → 0) is, in fact, approximately proportional to a−2.5, as 

shown by the red dashed line in Figure 6. On the other hand, at high field (short λ on the 

order of a), ζ(r → 0) completely deviates from the simple power law, due to significant 

wavelength effects.

We showed that the formula for ζ(r → 0) could be used to approximate the UISNR in a 

region surrounding the center with an acceptable error < 5 % (Figure 4). By properly scaling 

the formula in Eq. [6] to account for pulse sequence and system parameters (5), it is possible 

to assess the absolute SNR performance of actual head coils at the center of a spherical 

phantom, without running any simulations. In fact, Figure 5 shows that an accurate estimate 

of the performance of a 32-element head coil can be obtained over an extended region 

surrounding the center. Since coil designers are often interested in maximizing central SNR, 

the proposed UISNR formula could be useful to predict or evaluate the performance of coils 

being developed, by using simulated or experimental SNR maps, respectively. Furthermore, 

the analytic expression for the UISNR enables one to rapidly investigate UISNR as a 

function of various parameters, such as magnetic field strength, sphere radius and electrical 

properties, providing additional insights for coil design. Although the same information 

could be derived from full DGF simulations, our proposed formula can be used by anyone, 

without the need for simulation software, and it is approximately a thousand times faster 

than DGF in calculating UISNR.

Lee et al. Page 8

Magn Reson Med. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although a uniform dielectric sphere is a common and useful model for the human head, 

differences between realistic heads (25) and sphere models have been observed in simulation 

results (12), which showed that the UISNR increases faster with B0 in the sphere than in the 

head model. However, these differences were negligible for a voxel at the center, suggesting 

that our proposed analytic formula could closely approximate the UISNR behavior at the 

center of a realistic human head model. A better estimation of the UISNR at other positions 

in the human head could be achieved using a symmetric ellipsoid, which is a better 

approximation of the actual geometry than a sphere. This would require deriving the DGF in 

a symmetric dielectric ellipsoid in prolate or oblate spheroidal coordinates, for which the 

wave function is separable (i.e., it can be calculated via separation of variables). Future work 

will focus on this derivation to investigate whether the UISNR in dielectric spheres or 

cylinders can be expressed as special cases of the general solution for the symmetric 

ellipsoid.

CONCLUSION

We introduced an analytic formula to calculate the UISNR at the center of a dielectric 

sphere, which is rapid, accurate, and enables direct analysis of the dependence on B0, 

sample geometry and electrical properties. The analytic expression can approximate the 

UISNR near the center with an acceptable error: for a typical spherical phantom with radius 

equal to 8.5 cm, the UISNR would be valid within a central volume of approximately 2.6 

cm3. This work can enable people to rapidly calculate UISNR without running complex 

simulations and use it, for example, as an absolute reference to assess the performance at 

depth of head coils with tissue-mimicking spherical phantoms (5). The source code to 

calculate ζ(r → 0) based on Eq. [6] can be freely downloaded from http://cai2r.net/

resources/software/ultimate-intrinsic-snr-uniform-sphere.
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APPENDIX A

Mode analysis at the sphere center

By performing the curl operations in Eq. [3], the vector wave functions Ml,m and Nl,m in a 

spherical coordinate can be rewritten as:

Ml, m = 1
−i l(l + 1) θ

jl(kr)
sin θ ∂ϕY l

m − ϕ[ jl(kr)∂θY l
m] , [A1a]

Nl, m = 1
−i l(l + 1) r ·

jl(kr)
kr − cot θ ∂θY l

m − ∂θ
2Y l

m − 1
sin2 θ

∂ϕ
2 Y l

m + θ
jl(kr)

kr + ∂kr jl(kr)

∂θY l
m + ϕ

jl(kr)
kr + ∂kr jl(kr) ·

∂ϕY l
m

sin θ ,

[A1b]

where r̂, θ̂, and ϕ̂ are unit vectors in radial, polar, and azimuthal directions in the spherical 

coordinate system.

It is straightforward to prove that Ml,m(r → 0) = 0,∀(l,m) at the sphere center. By 

substituting ∂ϕY0
0 = 0 and ∂θY0

0 = 0 into the Eq. [A1a], we obtain M0,0(r → 0) = 0. For the 

cases when l > 0, Ml,m(r → 0) = 0 since lim
x 0+ jl(x) = δ0l, where δ is a Kronecker delta 

function. Hence, Ml,m(r → 0) = 0 and, therefore, Ml,m(r → 0)x − iMl,m(r → 0)y is always 

also zero, which means that none of the curl-free modes contribute to the signal sensitivity 

(Eq. [2]) at the center of the sphere.

The calculation of Nl,m(r → 0) will be separated into three cases: (a) l = 0, (b) l > 1, and (c) 

l = 1.

For l = 0, since Y0
0 is a constant, ∂θY0

0 = ∂θ
2Y0

0 = ∂ϕY0
0 = ∂ϕ

2 Y0
0 = 0, which, when substituted 

into Eq. [A1b], yields N0,0(r → 0) = 0.

For l > 1, lim
x 0+

jl(x)
x = 0, since jl(x) ≃ xl

(2l + 1)!! 1 − x2
2(2l + 3)  when x → 0+. Substituting into 

Eq. [A1b], we find Nl>1,m(r → 0) = 0.
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Finally, for l = 1, lim
x 0+

j1(x)
x = 1

3 . Therefore, substituting into Eq. [A1b], we obtain

N1, m(r 0) = 1
−i 2 r · 1

3 − cot θ ∂θY1
m − ∂θ

2Y1
m − 1

sin2 θ
∂ϕ

2 Y1
m + θ · 2

3 ∂θY1
m + ϕ

· 2
3

∂ϕY1
m

sin θ .

[A2]

Eq. [A2] shows that N1,m(r → 0) is non-zero at the sphere center and has a spurious 

orientation dependence on θ and ϕ. Since the unit vectors r̂, θ̂, and ϕ̂ also depend on θ and ϕ, 

to further simplify Eq. [A2], we can convert r̂, θ̂, and ϕ̂ to a fixed basis î, ĵ, and k̂ in 

Cartesian coordinates using the following relationships:

r = sin θ cos ϕ i + sin θ sin ϕ j + cos θ k,
θ = cos θ cos ϕ i + cos θ sin ϕ j − sin θ k,
ϕ = − sin ϕ i + cos ϕ j .

[A3]

Substituting Eqs. [A3] into Eq. [A2], and using the definition of spherical harmonic 

functions ( Y1
1 = 3

8π sin θ eiϕ, Y1
0 = 3

4π cos θ, and Y1
−1 = − Y1

1 ∗), we obtain a simplified 

expression for the three non-zero DGF modes at the sphere center shown in Eq. [5], which 

are constant vectors. Since the signal sensitivity is proportional to (Nl,m)x − i(Nl,m)y (Eq. 

[2]), there is only one divergence-free mode contributing to it at the sphere center: 

N1, 1(r 0)x − iN1, 1(r 0)y = −i
3π

.

APPENDIX B

Analytic expression for the UISNR at the sphere center

The most important step in deriving an analytic expression for the UISNR is to calculate the 

term SHΨ mode
−1 S 0, 0

−1
 in the denominator of Eq. [4]. The noise covariance matrix can be 

expressed as Ψmode = TRLTT, where (7,8)
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RL = σ ∣ ωμ0k0b2 ∣2

∫
0

a

∣ jl(kinr) ∣2r2dr 0

0 1
∣ kin ∣2∫

0

a

∣ ∂r[r jl(kinr)] ∣2 + l(l + 1) ∣ jl(kinr) ∣2 dr

.

[B1]

Since both T and RL are diagonal matrices, then also Ψmode is diagonal. We can rewrite

SHΨ mode
−1 S 0, 0

−1 = ∣ μ0k0kinb2 ∣−2(FHRL
−1F)0, 0

−1 , [B2]

where we have used S = (−iμ0k0kinb2)TF (see Eq. [2]). Since only the N1,1 mode contributes 

to the signal sensitivity at the sphere center (Appendix A), we can simplify the previous 

expression as:

SHΨ mode
−1 S 0, 0

−1 ∣
r 0

= 3π · σω2

∣ kin ∣2
· ∫

0

a

∣ j1(kinr) ∣2r2dr . [B3]

Substituting into Eq. [4], we obtain the expression for the UISNR at the sphere center shown 

in Eq. [6].

Note that the solution of the integral in Eq. [7] is valid only for k ∉ ℝ. For the case of k ∈ ℝ, 

the solution is:

∫
0

a

∣ j1(kr) ∣2r2dr = 2−4πa3(ka)2

5 Γ 5
2

2 · F2 3 2, 5
2; 5

2 , 7
2 , 4; − (ka)2 , [B4]

where 2F3 is the generalized hypergeometric function.
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Appendix C

Scaling factors between the plots in Figure 2 and those in fig. 6 of 

Wiesinger et al. (1)

Based on Eq. [25], Eq. [B7] and Eq. [B8] in Ref.(1), the quantity plotted by Wiesinger et al. 

in their fig. 6, ζWiesinger, relates to the UISNR, ζ, in our Eq. [4] via

ζWiesinger = ζ ·
FOV3 nk · 4kBTs

γ
M0
B0

, [C1]

where the field-of-view FOV is equal to the dielectric sphere’s diameter (FOV = 2a), nk is 

the number of k-space samples, γ is the gyromagnetic ratio of the water hydrogen proton, 

and the constant

M0
B0

= Nγ2ℏ2I(I + 1)
3kBTs

,

where N = 6.691 × 1028 m−3 is the number of water hydrogen per unit volume, ħ is Planck’s 

constant divided by 2π, and I = 1/2 is the spin quantum number of the water hydrogen 

proton. Since in (1) the value of nk is not given, the exact scaling factor in Eq. [C1] cannot 

be calculated. For this reason the values on the y-axis of Figure 2 (normalized central 

UISNR ζ̃ = ζ·FOV3) are different from those in fig. 6 of Ref (1), although the shape of the 

plots is identical.

Scaling factors used to compare simulated UISNR with experimental SNR 

in Figure 5

To compare the SNR obtained by experiments with the simulated UISNR, we scaled UISNR 

values by the system and sequence-related parameters in Table 2, following the method 

described in (5):

ζ′(r0) = ζ(r0) ·
Vvoxel NacqNEX sin θ

F Δ f
,

where Vvoxel is the voxel volume, Nacq is the number of the sampled k-space data, NEX is 

the number of the signal averages, θ is the flip angle, F is the system noise factor, and Δf is 

the receiver bandwidth.
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Figure 1. 
A time snapshot of the ideal current patterns associated with the UISNR at the center of a 

sphere, for B0 = 1.5 T, 3 T, 7 T, and 11 T. The ideal current patterns form two large 

distributed loops, centered on the x–y plane (θ = 90°) and separated by 180 degrees in the 

azimuthal direction, which rotate in the same sense about an axis that precesses around the 

direction of the main magnetic field (z). Ideal currents are the same in all cases, except for a 

phase shift, which is clearly visible in the 2D “unwrapped” view of the spherical surface 

(bottom row).
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Figure 2. 
UISNR at the sphere center as a function of main magnetic field strength B0, calculated 

using the analytic formula (solid lines) and full DGF simulations (data points). The radius of 

the dielectric sphere a was set to 5, 15, 25 and 32.5 cm. Surface current radius b was kept 

constant at 35 cm. The dashed line is a reference line with a slope n = 1. Dielectric 

properties of the sphere were set to (a) average brain tissue, or (b) approximately lossless 

conditions (σ = 10−5 Ω−1·m−1). The tilde in ζ̃(r → 0) indicates that the UISNR ζ(r → 0) 

was normalized by (2a)3 (Appendix C) to validate the plots against those shown in fig. 6 of 

previous work (1), which calculated central UISNR with multipole expansions. The plots 

were found to be identical, except for a scaling factor ~ 7 × 104 .
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Figure 3. 
(a) ∂aζ(r → 0) with a fixed b = 35 cm and (b) ∂bζ(r → 0) with a fixed a = 5 cm based on 

analytic solutions (solid lines) and full DGF simulations (data points). The dielectric 

properties were set to values in the average brain tissue. At high field ≥ 7 T, ∂aζ(r → 0) 

oscillates for small sphere radii a, probably due to wavelength effects. At 14 and 20 T, the 

oscillation happens at a very negative ∂aζ(r → 0)~ −1014, and was not shown in this figure 

(a).
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Figure 4. 

The error ≡ ζ(r) − ζ(r 0)
ζ(r 0)  associated with using the analytic expression for the central voxel 

to approximate UISNR at positions away from the center. The error is shown as a function of 

the normalized distance r
a  from the sphere center. The dielectric properties were set to values 

in the average brain tissue. The dielectric sphere radius a was set to 8.5 cm, and the surface 

current radius b was set to 9.5 cm. The normalized distance r
a  was varied either along the (a) 

x–y plane or (b) z axis. The horizontal solid line indicates an error of 5%.
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Figure 5. 
Coil performance of a 32-element head array as a percentage of the UISNR for a central 

axial slice through a homogeneous spherical phantom (σ = 0.97 Ω−1·m−1, εr = 81.3) at 3 

Tesla. (a) Coil performance map where each pixel represents the experimental SNR divided 

by its corresponding UISNR value, scaled to account for sequence and system related 

parameters (5). (b) Approximated performance map, where the experimental SNR at every 

pixel is divided by the UISNR value at the center, calculated using the exact formula and 

scaled appropriately. The scaling factor is discussed in Appendix C. The approximated map 

provides an accurate estimate of coil performance along an extended central region, with 

less than 5% error for pixels that are within ~14% of the sphere radius a (c,d).
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Figure 6. 
UISNR ζ(r → 0) at the sphere center as a function of sphere radius a with a fixed b = 35 cm 

for B0 = 1.5 T, 3 T, 7 T, 11 T, 14 T and 20 T, based on the analytic formula (solid lines) and 

full DGF simulations (data points). The dielectric properties were set to values in the 

average brain tissue. Dashed lines show the approximate dependence of UISNR on ~ a−2.5, 

suggested by Kopanoglu et al for low field strengths. (15).
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Table 2

Dielectric properties, constants and scaling factors (5) used to calculate ζ(r → 0) in Eq. [6] and compare it 

with the experimental SNR of a 32-element head array (Figure 5).

Larmor frequency
ω0
2π

123.22 MHz

Equilibrium magnetization M0 9.03 × 10−3 A·m−1

Boltzmann constant kB 1.381 × 10−23 J·K−1

Sample temperature Ts 298 K

Conductivity σ 0.97 Ω−1·m−1

Relative permittivity εr 81.3 -

Vacuum permittivity ε0 8.85 × 10−12 C2·N−1·m−2

Magnetic permeability μ~μ0 1.2566 × 10−6 Wb·A−1·m−1

Voxel volume Vvoxel 1.2 × 10−8 m3

Receiver bandwidth Δf 51.2 kHz

Flip angle θ 0.3421 rad

Noise factor F 1.22 -

Signal averages NEX 1 -

Acquired data points Nacq 256 × 128 -
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