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Abstract

Purpose—To develop a fast and automated volume-of-interest (VOI) prescription pipeline 

(AutoVOI) for single-voxel MR spectroscopy (MRS) that removes the need for manual VOI 

placement, allows flexible VOI planning in any brain region, and enables high inter- and intra-

subject consistency of VOI prescription.

Methods—AutoVOI was designed to transfer pre-defined VOIs from an atlas to the 3D 

anatomical data of the subject during the scan. The AutoVOI pipeline was optimized for 

consistency in VOI placement (precision), enhanced coverage of the targeted tissue (accuracy) and 

fast computation speed. The tool was evaluated against manual VOI placement using existing T1-

weighted datasets and corresponding VOI prescriptions. Finally, it was implemented on two 

scanner platforms to acquire MRS data from clinically-relevant VOIs that span the cerebrum, 

cerebellum and the brainstem.

Results—The AutoVOI pipeline includes skull stripping, non-linear registration of the atlas to 

the subject’s brain, and computation of the VOI coordinates and angulations using a minimum 

oriented bounding box algorithm. When compared against manual prescription, AutoVOI showed 

higher intra- and inter-subject spatial consistency, as quantified by generalized Dice coefficients 

(GDC), lower intra- and inter-subject variability in tissue composition (gray matter, white matter 

and cerebrospinal fluid) and higher or equal accuracy, as quantified by GDC of prescribed VOI 

Address correspondence to: Young Woo Park, Korea Advanced Institute of Science and Technology (KAIST), FMRI center (N23), 
291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea, ywpark84@gmail.com, Phone: (+82)-10-6390-7070. 

Code availability statement
The implementation and source code of the AutoVOI will be made freely available at http://www.cmrr.umn.edu/downloads.

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2019 November 01.

Published in final edited form as:
Magn Reson Med. 2018 November ; 80(5): 1787–1798. doi:10.1002/mrm.27203.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cmrr.umn.edu/downloads


with targeted tissues. High quality spectra were obtained on Siemens and Philips 3T systems from 

6 automatically prescribed VOIs by the tool.

Conclusion—Robust automatic VOI prescription is feasible and can help facilitate clinical 

adoption of MRS by avoiding operator dependence of manual selection.
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Introduction

The acquisition of single-voxel Magnetic Resonance Spectroscopy (MRS) data in the human 

brain currently involves the manual selection of the volume-of-interest (VOI) by MR 

technologists, clinicians such as radiologists, or scientists. This process requires an 

understanding of neuroanatomy as well as familiarity with MRS acquisition processes. 

Consistent VOI prescription within and across subjects is crucial to minimize variability in 

metabolite quantification that results from inconsistencies in VOI position and tissue 

composition. Achieving high consistency in VOI prescriptions across subjects is particularly 

challenging due to anatomical variations between subjects (1). The issue can be exacerbated 

when the data are acquired at multiple sites and/or by different technologists. Hence, the use 

of automated VOI prescription is highly desirable to reduce the operator-induced variability 

in volume selection for MRS.

Existing automated prescription methods for MR imaging on clinical scanners, such as the 

Siemens (Erlangen, Germany) AutoAlign (2), align scout images of a subject to predefined 

landmarks (3) or an average atlas (4), and guarantee that the subsequent images are acquired 

in a consistent orientation. Such methods facilitate consistent VOI prescription in follow-up 

scans of the same subject in both single-voxel (5,6) and multi-voxel MR spectroscopic 

imaging (MRSI) applications (7). However, they do not guarantee that any particular brain 

structure is aligned across subjects due to inter-individual anatomical variability. They also 

require manual VOI prescription during the initial reference scan. Another automated VOI 

prescription method for single-voxel MRS computes VOIs by registering pre-segmented 

brain regions and calculating the tightest fitting oriented bounding box (8) around the 

segmented region-of-interest (ROI). However, this approach requires lengthy off-line 

processing of brain segmentation and thereby is unlikely to be feasible within the clinical 

workflow. Additionally, it only allows prescription of VOIs in structures that can be 

segmented.

The feasibility of automated prescription of MRSI volumes and outer volume suppression 

(OVS) slices was shown using affine registration of an atlas to the subject while the subject 

is in the scanner (9–13). Affine registration was preferable for these applications due to its 

speed and the time limitations during clinical scans. However, affine registration may not 

sufficiently capture local anatomical variations within the brain. Such variations are more 

critical for VOI selection in single-voxel spectroscopy than for MRSI that allows 

retrospective selection of ROI within the investigated volume. There is currently no method 

to automatically prescribe VOIs for single voxel MRS without reference to manual VOI 
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prescription during a baseline acquisition. To eliminate the need for manual VOI 

prescription, we set out to develop an on-line automated VOI prescription tool, named 

AutoVOI, for single-voxel MRS that can capture inter-individual anatomical variability by 

leveraging recent improvements in computational efficiency of non-linear registration 

methods.

To allow flexibility in VOI planning, we designed the tool to transfer VOIs defined on an 

atlas to subject space during the scanning session. Design criteria included inter-subject 

consistency of VOI placement (precision), optimal coverage of the targeted tissue (accuracy) 

and fast computation speed. To address precision, we compared inter-subject consistency of 

VOI prescription using affine (linear with translation) and non-linear (b-spline) registrations 

of the atlas to the subject’s brain. We hypothesized that non-linear registration would be 

necessary to accommodate variations in anatomical features. We further investigated inter-

subject consistency of VOI content (gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF)). To address accuracy, we investigated overlap of automatically 

placed VOIs with the targeted tissue obtained from state-of-the-art segmentation tools. To 

address speed, we tested the feasibility of completing the AutoVOI pipeline, including 

registration, computation of the VOI coordinates and angulation, and transfer between the 

scanner and the computation server, within the constraints of a clinical scan (under one 

minute). Once the components of the AutoVOI pipeline were optimized based on these 

criteria, we determined if AutoVOI improves precision and accuracy of VOI prescription 

over manual placement by expert MRS investigators and MR technologists, using 100 

existing T1-weighted MPRAGE datasets and corresponding VOI prescriptions from prior 

publications (14–17). Finally, we implemented the AutoVOI pipeline on two widely used 

clinical scanner platforms (Siemens and Philips) and acquired in vivo MRS data from 6 

clinically-relevant VOIs that span the cerebrum, cerebellum and the brainstem.

Methods

Design and Optimization of the AutoVOI

The proposed AutoVOI pipeline, shown in Figure 1, utilizes registration-based automatic 

prescription that aligns an atlas to the 3D T1-weighted MPRAGE structural scan of a subject 

in the scanner. AutoVOI uses 3D T1-weighted data that are typically taken for VOI 

prescription in MRS acquisitions. However, it can be extended to any other MR contrasts 

(e.g. T2-weighted) as long as good registration performance can be achieved. Prior to 

running registration, the T1-weighted data undergo preprocessing steps (Figure 1a). Then, a 

brain atlas is registered to the subject’s brain data to estimate the transformation parameters 

from atlas (generic or custom) to the subject’s space (Figure 1b). The VOI mask(s), defined 

once on the atlas by an expert, are transformed to the subject space using the parameters 

obtained from the registration step (Figure 1c). Multiple VOIs can be computed in a single 

run as the same registration parameters can be applied to different VOI definitions. After 

transformation, each VOI mask is converted into a 3D point cloud, and the coordinates, 

angulations and size of the VOIs are computed using a minimal oriented bounding box 

(OBB) algorithm (18) (Figure 1d). Finally, the position, dimension and orientation of the 

cuboid-shaped OBB are exported to the MR scanner. For the VOI dimensions, users can 
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choose between values computed from the OBB estimation or a predetermined value. In this 

study, the dimensions of the VOIs were set to predetermined values, as is common in MRS 

studies.

To build the pipeline, we first investigated if any preprocessing of the head MRI data was 

necessary (Step 1, Figure 1a) and evaluated existing brain extraction routines for this 

purpose (19–21). For the registration step (Step 2, Figure 1b), we evaluated registration 

algorithms for speed, and thereby for feasibility to utilize them online during a clinical scan. 

Next, we tested the effect of registration algorithm on inter-subject VOI prescription 

consistency (precision) by comparing inter-subject variability in prescription of three VOIs 

of high relevance for neurodegenerative diseases with affine and non-linear (b-spline) 

registration. VOIs covering the posterior cingulate cortex (PCC, 20×20×20mm3), left 

hippocampus (LHC, 13×12×26mm3) and cerebellar vermis (Vermis, 10×25×25mm3) were 

defined on the T1-weighted MNI152 brain atlas with 1 mm3 spatial resolution (22,23), using 

anatomical landmarks employed by previous studies (14,15,24). The MNI ICBM 152 6th 

generation atlas is an average of 152 T1-weighted MRI scans, and is available from the MNI 

website and FSL (25). T1-weighted MPRAGE data of 19 subjects (8 females, age 31±8) 

from three different 3T scanners were utilized: 7 from a Siemens Trio 3T at the University of 

Minnesota - Center for Magnetic Resonance Research (CMRR), 5 from a Siemens Verio 3T 

at the Korea Advanced Institute of Science and Technology (KAIST), and 7 from a Philips 

Achieva 3T at Johns Hopkins University (JHU). All datasets had a spatial resolution of 1 

mm3, and were acquired with TR/TI/TE = 2530/1100/3.65ms (Trio), 1900/900/2.48ms 

(Verio), and 3000/1100/3.78ms (Achieva). All subjects were enrolled after giving informed 

consent approved by the Institutional Review Board at each participating institution. All 

shared datasets were de-identified to meet HIPAA compliance.

The final steps for computing VOI coordinates involve transformation of the VOI mask from 

the atlas to the subject space (Step3, Figure 1c), followed by conversion of the transformed 

mask to the point cloud format, and OBB computation (Step 4, Figure 1d). We compared 

singular value decomposition (SVD) and polygonal surface-based (18) minimization method 

(brute-force method) for OBB computation.

The precision and accuracy metrics that were used during the design and evaluation of the 

tool are described below, under “Metrics for evaluating VOI prescription performance”.

Comparison of AutoVOI Performance with Manual VOI prescription

For an objective performance assessment of AutoVOI against manual placement, 100 3D 

T1-weighted datasets and respective manual VOI prescription results from previously 

published studies (14–17) were used, where the VOIs were prescribed without the 

knowledge that the manual placement was going to be compared to an automated method.

First, datasets from two studies on test-retest reproducibility of MRS data acquisitions were 

used to measure inter- and intra-subject spatial consistency and accuracy of AutoVOI vs. 

manual placement by expert MRS investigators. The first study involved MRS scans of LHC 

on 10 subjects with each subject scanned twice (14). The second study involved MRS scans 

of PCC and Vermis with six subjects each scanned four times (15).
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Next, MRI data from healthy elderly subjects and VOI prescriptions by MR technologists 

were used to evaluate the performance of AutoVOI in a clinical setting. The VOIs were 

prescribed by one of three technologists for each MRS acquisition in this existing dataset 

(16,17). As the elderly brain usually presents atrophy, this analysis utilized both the MNI152 

atlas, which was generated from a younger cohort, and a custom atlas generated from elderly 

subject images. 3D T1-weighted MPRAGE datasets for 62 healthy elderly subjects (age 

80±6) from two previously published studies (16,17) were utilized for this analysis. Of 

these, 30 datasets were used to generate the custom atlas, and the remaining 32 were used 

for quantifying the performance of AutoVOI with custom and MNI152 atlas against manual 

VOI prescriptions by MR technologists. The Advanced Normalization Tools (ANTS) (26) 

was used to construct the elderly brain atlas, by spatial normalization of the 30 elderly 

datasets. The elderly atlas then underwent skull stripping with ROBEX (21).

System integration and multi-vendor in vivo testing

In vivo MRS data were acquired using the pipeline on a Siemens 3T Prisma scanner 

(CMRR), and a Philips 3T Achieva scanner (JHU). A dedicated processing server installed 

at CMRR (Intel Xeon E5-2650@2.6 Ghz, 64 GB-RAM, NVIDIA Tesla K80 24 GB graphics 

card) ran AutoVOI. The AutoVOI pipeline was integrated on these systems such that once 

AutoVOI is initiated, a batch script running on the MR console PC securely transmits 

compressed NIFTI files to the processing server. NIFTI files without patient information 

were chosen as the format for file transfer in order to meet HIPAA compliance. The batch 

script periodically checks the status of computation (on the server) after transmission, and 

retrieves the computed VOI coordinates to the MR console once the VOI calculation is 

finished. The pulse sequence then reads the text file containing the VOI coordinates, and 

allows the MR operator to select and review the VOI before deciding whether to proceed or 

to adjust the automatically prescribed VOI.

Healthy participants (N=5; all male, age= 39±13 years) were scanned to acquire MR spectra 

from clinically relevant VOI on the Siemens (CMRR, N=2) and Philips (JHU, N=3) 

platforms. Subjects were scanned after giving informed consent approved by the 

Institutional Review Board. MRS data were acquired from VOIs automatically prescribed by 

AutoVOI in PCC, LHC, Vermis, right cerebellar white matter (CBWM, 17×17×17 mm3), 

pons (16×16×16 mm3) and right putamen (Putamen, 10×25×11 mm3). Following first and 

second order B0 shimming, MR spectra were acquired using the modified semi-LASER 

(sLASER) sequence (27) (TR/TE = 5000/30ms, 64 transients), as described previously (17). 

Unsuppressed water scans were obtained for eddy current correction (24). Single-shot 

spectra were corrected for eddy-current, frequency and phase variations prior to summation 

using MRspa (28). These data were acquired with the purpose of demonstrating feasibility 

of utilizing the AutoVOI on different scanner platforms and spectra are therefore provided 

for visual comparisons only rather than for a quantitative analysis.

Metrics for evaluating VOI prescription performance

The goal of automated VOI prescription is to achieve superior inter- and intra-subject 

consistency, and greater accuracy over manual prescriptions. To reflect this, we employed 
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the following quantitative metrics to evaluate spatial consistency, consistency in VOI 

composition and accuracy of VOI prescription.

Spatial consistency

Normalization: In order to evaluate the spatial consistency of VOI prescription, VOIs 

prescribed either by AutoVOI or human experts have to be normalized to a standard space to 

measure their overlap. Elastix (29), based on the Insight Toolkit library (30), was chosen as 

an independent normalization technique for the purpose of this evaluation, in order to avoid 

normalizing masks with BROCCOLI (31), since AutoVOI utilizes BROCCOLI within the 

pipeline.

For inter-subject VOI spatial consistency analysis, non-linear registration was used for 

normalization of head data and transformation of VOI masks to account for structural 

variations in different subjects. Rigid registration was used for intra-subject analyses as no 

anatomical changes are expected between scan sessions of the same subject. All head data 

underwent skull stripping with ROBEX (21) prior to registration. ROBEX was chosen as an 

independent skull stripping technique for the purpose of this evaluation as it was less prone 

to errors on atrophied brains than BET2 (19) used in the AutoVOI pipeline.

Generalized Dice Coefficient: The Dice coefficient (32) is a metric commonly used to 

evaluate the overlap between binary masks, and can be calculated from the Tannimoto (TC, 

also known as Jaccard) coefficient (33). However, AutoVOI requires spatial resampling (e.g. 

interpolation) of the atlas VOI masks to adapt them to each subject’s anatomy and the 

resulting masks contain fractional values (non-binary), which the Dice and TC cannot 

handle. Hence, we used the modified forms of Dice and TC that consider fractional labels, 

and are respectively referred to as the generalized Dice coefficient (GDC) (34) and the 

generalized Tannimoto coefficient (GTC), as defined in Equations 1 and 2, to quantify the 

spatial overlap between a large number of fractional masks. The GDC and GTC values are 

computed as follows,

GDC = 2(GTC)
(GTC + 1) [1]

and

GTC =
∑pairs, k∑voxels, iMIN(αik, βik)
∑pairs, k∑voxels, iMAX(αik, βik)

with α, β ∈ N
2 N = number o f normalized masks

[2]

where GTC is computed as the sum of fuzzy intersections (MIN) over the sum of fuzzy 

unions (MAX) for every pair (α, β) from the set of N normalized masks. Equation 2 is a 
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special case of Equation 2 in Crum et al (34). Like Dice and TC, GDC and GTC are 

intended to have the minimum value of 0 when none of the masks overlap, and the 

maximum value of 1 when there is a complete overlap for all masks.

Consistency of VOI composition—The tissue composition of the prescribed VOI 

provided another metric for consistency of VOI selection. Contributions of WM, GM and 

CSF to each VOI were analyzed using the tissue segmentation module of SPM12 (35). 

Standard deviation (SD) in the tissue fraction estimation across subjects was calculated to 

assess the compositional consistency of the selected VOIs.

Accuracy of VOI prescription—In addition to inter- and intra-subject spatial/

compositional consistency analysis, VOI’s GDC with targeted ROI was measured to assess 

the accuracy of the VOI prescription (Figure 2). Each 3D T1-weighted MPRAGE dataset 

underwent automated cortical segmentation using FreeSurfer (36) to obtain anatomical 

labels. Using the cortical parcellation results with Destrieux atlas (a2009) (37), binary masks 

of PCC with Precuneus and LHC on each subject were generated. Then, GDC overlap 

between the binary ROI mask and VOI mask generated from either AutoVOI or manual 

prescriptions were computed for each subject. Mean, SD and coefficient of variance (CV) 

were computed. Note that unlike spatial consistency, ROI overlap and tissue fraction 

analyses do not require any spatial normalization, and are performed in each individual 

subject’s native space.

Results

Design and Optimization of the AutoVOI

To build the AutoVOI pipeline, we first tested the need for preprocessing of subject’s T1-

weighted MRI data to minimize registration errors. We found that registration errors were 

frequent if the images contained unwanted anatomical regions such as neck and shoulders. 

Therefore, skull stripping was deemed necessary in the pipeline (Step 1, Figure 1a). 

Advanced brain extraction routines, such as BET (which includes BET2 and BETsurf) (19), 

BEaST (20) and ROBEX (21) were tested but ultimately not considered suitable for the 

AutoVOI pipeline due to time constraints. BET2 with robust option (38) was chosen as the 

routine to remove any unnecessary regions outside the brain. Although BET skull stripping 

method satisfied the design time constraints, it was vulnerable to incorrect center-of-mass 

estimations. Therefore, an automated routine using FSLROI, a tool within FSL (25), was 

added prior to skull stripping to automatically remove additional problematic areas such as 

the lower neck, shoulders or phase-wrap artifact of the nose (Supporting Figure S1).

For the atlas-to-brain registration module (step 2, Figure 1b), computation speed was a 

critical consideration. To execute AutoVOI within a time comparable to manual VOI 

prescriptions, the target computation time was set to be within one minute on a regular 

desktop PC. Therefore standard registration programs such as FLIRT (39) and FNIRT (40) 

of the FSL (25) suite, SPM12 (35) or AFNI (41) were not suitable. Instead, GPU-based 

registration methods Elastix (29) and BROCCOLI (31), respectively based on the Insight 

Toolkit (ITK) library (30) and OpenCL (42), were considered as they offer fast non-linear 

registration. Ultimately, BROCCOLI was used with 5 iterations of affine and 3 iterations of 
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non-linear registrations, as it offered a good compromise between speed and VOI 

prescription performance.

We then compared linear and non-linear registration methods to evaluate if non-linear 

registration provided improvement over affine registration in precision and accuracy of VOI 

prescription, justifying the extra time needed for non-linear registration. The time spent for 

registration, using BROCCOLI, was around 1.2 seconds for affine registration only and 1.7 

seconds for full registration including non-linear registration. Non-linear (b-spline) 

registration provided higher GDC values, thus better inter-subject overlap, over affine 

registrations for three clinically-relevant VOIs (PCC, LHC and Vermis) tested with 19 T1-

weighted datasets obtained from a healthy adult cohort (Figure 3a). For WM/GM/CSF tissue 

fraction estimations, lower SD values were obtained with non-linear (compared to affine) 

registration in 2 of the 3 VOIs (PCC and LHC) with the remaining third VOI (Vermis) 

having a comparable SD, confirming lower or equivalent inter-subject variance in VOI tissue 

content of select regions (Figure 3b). ROI overlap with targeted tissue showed no significant 

differences between affine and non-linear registrations in PCC (0.24±0.03 for both affine 

and non-linear, p=0.84 paired, two-tailed Student’s t-test) and LHC (0.4±0.03 for both affine 

and non-linear, p=0.95 paired, two-tailed Student’s t-test). Because of the improvement in 

spatial and compositional consistency provided by non-linear over affine registration and 

because GPU-based non-linear registration could be executed within our time constraint, we 

chose to proceed with non-linear registration for step 2 of the AutoVOI pipeline.

For the OBB computation, the brute-force method (18) was chosen over SVD as it 

consistently yielded a tighter fitted volume. Furthermore, it was practical to use the brute-

force method because the polygonal representation of the warped VOI mask contains a 

relatively small number of triangles. Nonetheless, the convex hull using the quickhull 

algorithm (43) was used to decrease the number of triangles used in the OBB calculation. 

The overall time for computing OBB was between 1 to 2 seconds.

The average processing time for the entire pipeline, including read and write processes of 

NIFTI files, on 19 datasets was 32.5±4.2 sec with NVIDIA GTX650 graphics card and 

20.9±5.6 seconds with NVIDIA GTX1060 graphics card, with the BROCCOLI affine and 

non-linear registration step taking less than two seconds to complete.

Performance evaluation against manual prescription

We next evaluated if VOI prescription with AutoVOI improved inter- and intra-subject 

consistency (precision) and accuracy in PCC, LHC and Vermis over expert manual VOI 

prescriptions (Table 1) using data from two test-retest reproducibility studies (14,15). Intra-

subject spatial consistency was higher, as indicated by higher GDC values, with AutoVOI 

vs. manual prescription for all 3 VOIs (Table 1a). Inter-subject spatial consistency was 

higher with AutoVOI for 2 of 3 VOIs, specifically for PCC and LHC, likely because of the 

ease of manual placement of VOIs in the vermis based on anatomical landmarks. 

Consistently, inter-subject analysis of tissue content showed very low SD in GM and WM 

fractions (1–2%) in the vermis, leaving little room for improvement with AutoVOI (Table 

1b). On the other hand, consistent improvement in the SD of GM and WM content was 

apparent in PCC and LHC, where SD in GM and WM fractions were higher (3–5%) with 
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manual prescription. A similar improvement in SDs of CSF fractions was not apparent with 

AutoVOI vs. manual prescription. To evaluate accuracy of prescription, VOI overlap with 

the PCC and LHC masks generated by FreeSurfer was computed; vermis was not included 

in this analysis because it is not generated by FreeSurfer. This analysis showed higher 

coverage of PCC ROI across subjects with AutoVOI than manual prescription, as well as 

lower inter-subject CV of GDC values for both PCC and LHC (Table 1c).

An existing dataset from an elderly cohort (16,17) allowed evaluation of the AutoVOI tool 

against manual prescription by multiple MR technologists, the ultimate targeted user base 

for the tool. AutoVOI using either MNI152 or a custom elderly atlas showed substantially 

improved GDC values (Figure 4a), higher overlap with the targeted tissue in PCC (Figure 

4b) and lower variability in tissue content (Figure 4c) over manual prescription by MR 

technologists. The custom atlas showed marginal advantages over MNI152 atlas with higher 

GDC and smaller variability in ROI overlap. Note that automatic segmentation in FreeSurfer 

failed in 6 datasets, hence these were not included in the ROI overlap analysis. In addition, 

BET skull stripping failed in one dataset, omitting the cerebellum, and therefore was not 

included in the analysis. Finally, registration of one dataset to the MNI152 atlas failed 

(outlier VOI mask in Figure 4a), however that particular dataset was left in the analysis since 

the registration was successful with the custom atlas.

System integration and multi-vendor in vivo testing

AutoVOI was implemented on 3T Siemens and Philips systems for in vivo data acquisition 

at two sites (CMRR, JHU). The processing time of AutoVOI for a single VOI prescription 

was ~50 seconds with ~10 seconds spent for AutoVOI computation and ~40 seconds for file 

preparations and transmission between MR consoles at the two institutions and the 

processing server at CMRR. If more than one VOI were requested, ~10 seconds were added 

to the total computation time for each additional VOI. This was comparable to time required 

for manual prescriptions, which involves additional steps such as 3D re-slicing of image data 

before performing manual prescriptions of VOIs.

The six clinically-relevant VOIs that were defined on the MNI atlas for these in vivo 
acquisitions were prescribed consistently on both systems (Figure 5) and spectra of 

comparable quality were obtained from these automatically prescribed VOIs (Figure 6).

Discussion

In this study, we have developed a tool that can automatically prescribe VOIs for single 

voxel MRS data acquisitions within 1 minute during an MRS scan session and with high 

intra- and inter-subject consistency. The proposed tool was tested for precision and accuracy 

on existing T1-weighted datasets from published studies with varying imaging parameters. 

In addition, in vivo testing was performed on Siemens and Philips 3T systems to 

demonstrate the feasibility of automated prescription of clinically-relevant VOIs. The 

proposed atlas-based AutoVOI tool with non-linear registration yields higher inter- and 

intra-subject precision and accuracy compared to manual prescription.
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Non-linear registration was chosen for the AutoVOI pipeline because it yielded more 

consistent results than affine registration across subjects, with higher GDC values for spatial 

overlap, and lower SD values for the estimated tissue (WM/GM/CSF) fractions (Figure 3). 

We have shown that advanced methods, such as BROCCOLI registration algorithm, and the 

use of advanced graphics cards (GPU) make it possible to integrate fast non-linear 

registration methods into the pipeline, with minimal burden on the overall performance. 

Hence, for atlas-based automatic VOI prescription in multi-subject MRS studies, non-linear 

registration must be considered for consistent outcomes.

In the analysis of VOI prescription precision and accuracy against prescriptions by expert 

MRS investigators, AutoVOI showed superior or equivalent prescription performance in 

both inter- and intra-subject analyses. The advantages of AutoVOI over manual prescription 

were more profound in the prescription of PCC compared to LHC and Vermis. This could be 

due to the spatial spread of the ROI for PCC (Figure 2). As the region for PCC is generally 

large, manual VOI prescriptions for PCC are often not in oblique orientations, regardless of 

the position and orientation of the subject’s head. There was little improvement for the 

vermis VOIs with AutoVOI vs. expert prescription because the corners of the VOIs are well 

defined by the boundaries of the cerebellum, simplifying manual prescriptions. Therefore, 

greater benefits in spatial and compositional consistency and accuracy are expected when 

using AutoVOI for cerebral cortical regions that are more prone to variability in manual 

prescription, even by experts.

The advantages of AutoVOI against manual prescription were more apparent in the typical 

clinical setting where different MR technologists were involved in voxel placement 

depending on clinical schedules. Namely, AutoVOI prescriptions using either the MNI152 or 

custom elderly atlas showed benefits in all 3 metrics we used, demonstrating improved 

spatial and compositional consistency and accuracy over manual prescriptions. Importantly, 

the performance by MR technologists (Figure 4) was comparable to manual prescription on 

PCC by expert MRS investigators in the previous analysis (Table 1) based on GDC (14,15), 

because these neuroradiology MR technologists were well-trained to position this voxel (15–

17). Therefore, the improvements are likely to be more profound for technologists less 

familiar with the placement of particular VOIs. Between the atlases, AutoVOI with the 

custom atlas showed marginal improvement in inter-subject VOI prescription consistency in 

ROI overlap over the use of the standard MNI152 atlas. As the MNI152 atlas was created 

using brain data from a younger population, it lacks the characteristic atrophy seen in elderly 

subjects, which may decrease overall performance with this atlas. While this analysis 

demonstrated some benefits of using a custom atlas for the target cohort to facilitate robust 

automatic VOI prescriptions, it also showed that use of the standard MNI atlas allows 

acceptable automated prescription and that benefits over manual prescription are apparent 

even without the use of a custom atlas.

In-vivo tests at two institutions used AutoVOI running on a centralized server and 

demonstrated the potential to use AutoVOI in acquiring datasets with consistent voxel 

placement from sites with different MR systems. Executing AutoVOI in a central server 

ensures that all sites in a multi-site trial utilize the same VOI definitions and that any updates 

to the software are applied consistently and seamlessly across sites. Furthermore, secure data 
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transfer across sites was feasible within the targeted execution time for AutoVOI. However, 

the tool can also be utilized in single site studies and further developed and modified if 

desired.

Although this study demonstrated the feasibility of an automated VOI prescription method 

through off-line evaluations using existing datasets and in vivo data acquisition, some 

limitations remain. First, the present study lacks testing on disease cohorts with significant 

brain deformations. Specifically, alterations caused by vascular, structural or mass lesions in 

the brain could cause substantial alterations in the T1-weighted structural data, and could 

yield incorrect registration results with MNI152 atlas designed for healthy subjects. 

Development and application of disease-specific atlases containing anatomical information 

to the AutoVOI pipeline could help mitigate some of these issues.

Another limitation is that the analysis presented here used fixed VOI dimensions. The 

evaluations presented in this work have the VOI dimensions fixed to a predetermined value 

because the manual VOI prescriptions also had the same volume across subjects and it is a 

common practice to have a fixed volume when acquiring single voxel MRS data in clinical 

studies. In traditional MRS scan protocols, it is challenging to incorporate manual 

calculation of VOI volumes based on the subject’s head volume with high consistency 

during the VOI prescription and any changes in the VOI size that the operator implements 

are likely to be subjective. Since the registration step yields scaling factors and allows the 

computation of customized VOI size with ease, incorporation of variable VOI is also 

feasible in AutoVOI.

Finally, optimization of the AutoVOI code and imaging parameters could further enhance 

speed and accuracy as the current AutoVOI pipeline utilizes existing registration algorithms 

intended primarily for functional MRI or voxel-based morphometry analyses. Imaging 

parameters of the reference structural 3D data, such as resolution, TE, TI and TR, could 

bring further performance enhancements in both reducing the computation time as well as 

improving the inter-subject consistency (44). Migration of the aforementioned advanced 

skull stripping techniques to GPUs may also improve registration speed and accuracy.

Conclusion

Here we demonstrated the feasibility of a fast and consistent inter-subject automatic VOI 

prescription. We have shown higher intra- and inter-subject spatial consistency and accuracy 

with AutoVOI over manual VOI prescription, which are expected to be of benefit in future 

clinical trials with single-voxel MRS as an outcome measure for accurate assessment of 

treatment efficacy. We expect that automation of VOI prescription will enhance the ability of 

MR technologists to acquire high quality MRS data by reducing operator dependence, and 

thus will lead to increased adoption of MRS in clinical settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of automatic VOI prescription for single-voxel spectroscopy. (a) DICOM images 

of the subject’s head are used to create a NIFTI file of the skull-stripped brain data. (b) 

Running the registration of the atlas to the skull-stripped subject’s brain yields 

transformation parameters from atlas space to subject space. (c) Transformation of VOI 

masks from atlas space to subject space using the transformation obtained from the 

registration. (d) Computation of VOI coordinates, angulation and size and writing of this 

information to the file that enables MRI scanners to retrieve and use any of the computed 

VOI in the pulse sequence.
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Figure 2. 
Visual description of ROI coverage analysis shows how the FreeSurfer segmentation result 

with Destrieux atlas (a2009) (a) is used to create a binary ROI mask (b). Once the binary 

ROI mask is obtained, GDC between the ROI and VOI mask is computed for the PCC and 

LHC prescription results.
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Figure 3. 
Spatial consistency and GDC values of the normalized (a) posterior cingulate (PCC), left 

hippocampus (LHC) and cerebellar vermis (Vermis) prescriptions for affine and non-linear 

registration show that non-linear registration leads to higher inter-subject consistency over 

affine registration, as indicated by minimal areas of dark blue pixels and higher GDC values 

than those with affine registration. SD of VOI tissue fraction estimations (b) show that non-

linear registration has lower variability than affine registration, confirming greater inter-

subject consistency.
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Figure 4. 
Comparison of AutoVOI against manual prescriptions of a posterior cingulate cortex voxel 

by three rotating MR technologists in an elderly cohort (N=32). AutoVOI was run both with 

the MNI atlas and a custom elderly atlas generated from 30 independent elderly datasets. 

The precision of VOI prescription was improved with AutoVOI vs. manual prescription 

based on greater spatial overlap, as shown by higher GDC values (shown in the corner of 

each panel) (a) in AutoVOI. Improved accuracy was shown by higher mean overlap with 

intended ROI (b) using AutoVOI. Precision of VOI prescription was also enhanced with 

lower tissue content variability (c) between subjects. The custom atlas shows features 

commonly seen among elderly subjects including enlarged ventricles and head posture that 

is tilted backwards. The custom atlas allowed small improvement in inter-subject 

consistency (slightly higher inter-subject GDC and smaller SD in ROI overlap) compared to 

standard MNI152 atlas.
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Figure 5. 
Atlas definitions for six clinically-relevant VOIs (PCC - posterior cingulate cortex/LHC - 

left hippocampus/Vermis - cerebellar vermis/CBWM - right cerebellar white matter/Pons/

Putamen - right putamen) over the MNI152 atlas (a), and AutoVOI prescriptions on (b) 

Siemens and (c) Philips systems that were based on these definitions.
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Figure 6. 
MR Spectra acquired from the six VOIs (PCC - posterior cingulate cortex/LHC - left 

hippocampus/Vermis: cerebellar vermis/CBWM - right cerebellar white matter/Pons/

Putamen - right putamen) shown in Fig. 5 prescribed using AutoVOI on (b) Siemens and (c) 

Philips 3T systems at the University of Minnesota - Center for Magnetic Resonance 

Research (CMRR) and Johns Hopkins University (JHU) respectively. Spectra were acquired 

with a semi-LASER (sLASER) pulse sequence at TR/TE = 5000/30ms and 64 transients. 

Spectra were apodized with line broadening (1 Hz) and Gaussian multiplication (σ=0.12 s) 

for display purposes.
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