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Abstract
Background Known coronary artery disease (CAD) risk scores (e.g., Framingham) estimate the CAD-related event risk rather
than presence/absence of CAD. Artificial intelligence (AI) is rarely used in this context.
Aims This study aims to evaluate the diagnostic power of AI (memetic pattern-based algorithm (MPA)) in CAD and to expand its
applicability to a broader patient population.
Methods and results Nine hundred eighty-seven patients of the Ludwigshafen Risk and Cardiovascular Health Study (LURIC)
were divided into a training (n = 493) and a test population (n = 494). They were evaluated by the Basel MPA. The Btraining
population^ was further used to expand and optimize the Basel MPA, and after modifications, a final validation was carried out
on the Btest population.^ The results were compared with the Framingham Risk Score (FRS) using receiver operating curves
(ROC; area-under-the-curve (AUC)). Of the 987 LURIC patients, 71% were male, age 62 ± 11 years and 68% had documented
CAD. AUC of Framingham and BASELMPA to diagnose CAD in BLURIC training^ were 0.69 and 0.80, respectively. AUC of
the optimized MPA in the training and test cohort were 0.88 and 0.87, respectively. The positive predictive values (PPV) of the
optimizedMPA for exclusion of CAD in Btraining^ and Btest^were 98 and 95%, respectively. The PPVofMPA for identification
of CAD was 93 and 94%, respectively.
Conclusions The successful use of the MPA approach has been demonstrated in a broad-risk spectrum of patients undergoing
CAD evaluation, as an element of predictive, preventive, personalized medicine, and may be used instead of further non-invasive
diagnostic procedures.
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LURIC Ludwigshafen Risk and Cardiovascular
Health Study

MPA Memetic pattern-based algorithm
PPPM Predictive, preventive, and personalized

medicine
MCV Mean corpuscular volume of red blood cells
MCHC Mean corpuscular hemoglobin concentration

of red blood cells
INR International normalized ratio (anticoagulation)
GGT Gamma-glutamyl transferase
ALAT Alanine aminotransferase
ASAT Aspartate aminotransferase
LDL Low-density lipoprotein
HDL High-density lipoprotein
H+ Healthy patients/individuals

(coronary artery disease excluded)
CAD+ Patients with coronary artery disease
TP True-positive result
FP False-positive result
AUC Area under the curve

Introduction

Risk scores, incorporating risk factors of coronary artery
disease (CAD) are widely used for risk stratification in
cardiology [1–4].

The Framingham Risk Score (FRS) [2] or the Prospective
Cardiovascular Münster study (PROCAM) [3, 4] score pro-
vide risk stratification regarding the occurrence of cardiovas-
cular events within a time period of up to 10 years.

Other risk scores have incorporated additional variables
(e.g., high-sensitive troponin, C-reactive protein) to improve
CAD risk prediction [5, 6].

However, little is known and available to predict the pres-
ence or absence of CAD in a particular individual, even
though a patient-tailored approach in the context of predictive,
preventive, personalized medicine (PPPM) should be the fo-
cus [7–10], especially using easily available patient data.

Using combined statistical methods and artificial intelli-
gence strategies (memetic pattern-based algorithms (MPA)),
it becomes feasible that CAD can be either diagnosed or ex-
cluded with an accuracy as high as 98% [11].

This is possible thanks to readily available clinical param-
eters and routine laboratory testing combined with latest arti-
ficial intelligence (AI) modeling. Risk scores currently used
were developedmainly on the basis of logistic regression [12],
Cox proportional hazards regression [13], and accelerated fail-
ure time analysis [1, 14, 15]. Today’s newer Bintelligent sta-
tistical modeling processes^ carry the potential to improve the
prediction of presence or absence of CAD [16–19]. Such pro-
cesses do not rely on a single statistical method but rather on
combining a multitude of statistical learning methods and

utilizing an evolutionary learning optimization process to de-
velop an optimal combination and parameterization of these
methods and to choose the patterns (Bmemetic profiles^) rel-
evant for the diagnosis or exclusion of CAD.

In a high-risk patient population undergoing coronary an-
giography, it has been demonstrated that the MPA provided a
high diagnostic accuracy for CAD (AUC= 0.824) [11].

Since it is unclear whether theMPA provides similar results
in other patient populations (e.g., with lower risk of CAD or
known CAD), the aims of our study were as follows:

1. To apply and validate the original Basel MPA model [11]
on a different patient population (Ludwigshafen Risk and
Cardiovascular Health Study (LURIC) training popula-
tion) [20] and to compare the results with the results of
the Basel MPA study [11];

2. To optimize the Basel MPAmodel using the LURIC train-
ing population with the goal of coping with differences in
the distribution of the baseline variables used, caused by
the method of how these factors were measured;

3. To test the modified and optimized model on the LURIC
validation population for predicting the presence or ab-
sence of angiographically documented coronary artery
stenosis;

4. To assess the optimized model’s accuracy in two indepen-
dent low-risk population simulations.

Methods

Patient populations

The study complies with the Declaration of Helsinki, the re-
search protocol has been approved by the locally appointed
ethics committees, and informed consent has been obtained
from the subjects.

BASEL MPA population [11]

Data of 245 patients were used to build the MPA, and data of
128 further patients were used for its validation. No patient
had prior or acute CAD. All patients had been referred to the
hospital for CAD evaluation and underwent coronary
angiography.

Ludwigshafen Risk and Cardiovascular Health Study
population [20]

Of the 987 patients, data of 493 patients (training population)
were used to test the BASEL MPA in this LURIC cohort
(without knowing the CAD status of the LURIC training pop-
ulation) and then to optimize the MPA. Data of 494 LURIC
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patients (test population) were used to test and validate the
modified BASEL MPA.

Simulated patients.

The virtual low-risk sample of more than 30,000 patient re-
cords was generated by combining 20,000 virtual normal pa-
tients (normality defined on the basis of characteristics of low-
risk healthy individuals in the BASELMPA and LURIC stud-
ies and reconciled with expert information about the normal
ranges of each input factor) with patients generated on the
basis of the LURIC study sample in a proportion which de-
livers 23% CAD prevalence in the generated sample. The
generated sample was used to further test the reliability of
the MPA in a low-risk population.

Procedures

Patient evaluation

All BASEL and LURIC patients underwent a standardized
evaluation including patient history, physical examination,
12-lead electrocardiogram (ECG), blood tests, and coronary
angiography. Patient history focused on patient symptoms
(chest pain, shortness of breath, and their character and sever-
ity if present), CAD risk factors, and medication. Patient
height, weight, and blood pressure were determined.
Laboratory variables included hematology (white blood cells,
MCV, MCHC, INR), electrolytes (chloride, potassium, sodi-
um, phosphate), enzymes (pancreatic amylase, alkaline phos-
phatase, creatinine kinase, GGT, ALAT, ASAT), metabolites
(bilirubin, urea, uric acid, creatinine), lipids (cholesterol,
HDL, LDL), as well as glucose, proteins, high sensitive tro-
ponin T, and coagulation variables (INR).

Importantly, no stress test data (e.g., no ergometry, tread-
mill, or cardiac imaging data) was used.

Based on these data, the risk scores were calculated. The
outcome measure for this evaluation was presence or absence
of CAD (stenosis) defined by standard diagnostic coronary
angiography. Coronary angiography was performed by stan-
dard Judkins technique.

Presence of at least one coronary artery stenosis > 50% by
visual interpretation was considered a significant stenosis.
Coronary angiographies were analyzed independently, and
invasive cardiologists were blinded to MPA results.

Application of the MPA

Since in the BASEL MPA patients had no prior CAD, the
algorithm was applied to the LURIC training population
(n = 493), in which there were patients with prior CAD (the
CAD status of the LURIC training population, however, was

not provided to the modelers at this first step). In the second
step, data of the LURIC and BASEL populations were used to
focus the algorithm on different patient populations to be
tested.

In the third step, the algorithm was applied to the Btest^-
LURIC population (n = 494).

And in the last step, the algorithm was applied to the vir-
tually created low-risk-patient sample (n = 30,303) and the
validity of results was confirmed analytically by using a mod-
ified Monte-Carlo simulation [21].

Statistical methods

For standard statistical analyses, continuous variables are de-
scribed as the mean (± standard deviation) or median as ap-
propriate, and for binary categorical variables, the count and
the percentage value is shown.

The chi-square test was used to compare proportions for
dichotomous variables. The Student’s t test was used to com-
pare means ± standard deviation for continuous variables. The
Wilcoxon-Mann-Whitney test was used for the troponin and
ALAT, since this test was more suitable for the variables’
distribution.

The modeling and optimization method description

The MPA modeling process is a multilayer, multiple method
process including the following methods from the field of
pattern recognition and machine learning [22–32]:

& Ensemble tree methods based on classification and regres-
sion tree

& Logistic regression and ensemble logistic regression
methods

& Voting Algorithms for ensembles of classifiers
& Automated search for non-linear functional combinations

of attributes relevant for the CAD question
& Univariate scaling, categorization and risk mapping

methods
& Self-organizing maps for clustering and classification
& Evolutionary optimization method

The approach was implemented as an autonomous model-
ing process and was able to detect complex patterns and in-
herent relationships in the data. An evolutionary optimization
process iteratively combined variables of the input data, their
univariate or multivariate functional transformations, and
weak classifiers, which were built with methods like decision
trees, logistic regressions, clustering, categorization, or risk
mapping. Thousands of unique models were evaluated in the
course of optimization. Evaluated models were built from
multiple layers where the output of one method or transfor-
mation could be the input for another. The capability to
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combine various pattern detection methods leads to a higher
pattern detection quality and ability to find complex, non-
linear dependencies in the data.

The unique ability of this approach is to fix the desired
sensitivity/specificity prior to modeling and therefore to steer
the modeling process in the desired direction allowing to build
models with very low false-positive or false-negative rates.

Simulated low-risk patients

The results of the BASEL/LURIC model validation were
projected to a low-risk patient population.

The primary difference between the high-risk and the gen-
erated low-risk-patient population was that a much larger
number of patients without CAD was included in the sample.
The difference between the samples was on the healthy pa-
tients’ side while the CAD-positive patients’ scoring results
were expected to be the same. This led to changes in expected
values of the true-positive (TP) rate of the H+ (CAD excluded)
diagnostic decision (the percent of healthy individuals the H+
model will identify as healthy) and the false-positive (FP) rate
of the CAD+ (CAD is present) diagnostic decision (the per-
cent of healthy patients the CAD+model will identify as sick).
Other parameters as the FP rate of the H+ diagnostic decision
(the % of sick patients the H+ model will identify as healthy)
and the TP rate of the CAD+ diagnostic decision (the % of
sick patients the CAD+ model will identify as sick) are left
unchanged from the prospective validation results performed
in the second step.

For the analysis of the low-risk population results, in the
first step, the score distribution of MPA for LURIC on healthy
individuals’ sample was modeled with the logit function of the
sum of two normal distributions, and additionally, the simula-
tion of distribution parameters on the basis of characteristics
known about the low-risk patient population. p value for K-S
test of uniformity distributions was 0.996 when comparing the
observed and modeled distributions. By assuming CAD prev-
alence in the general population to be 23%, the share of high-
risk patients sent to a cardiologist to be 20%, and the score
provided by the MPA for healthy patients decreasing propor-
tionally to the prevalence of CAD in the low-risk population
sample, we were able to define a number of constraints and
perform the simulation which has constructed more than
3,000,000 of possible distributions and estimated the worst
case of model error for the given cut-off point. (modified
Monte-Carlo simulation).

In addition to the analytic simulation, a simulation based on
generating random multivariate patient data was performed.
The patient sample, based on randomly generated healthy in-
dividuals combined with actual LURIC data was used for
analyzing the score distribution and estimating the number
of true positives and false positives in each cut-off point.

Results

The following variables were most predictive in the popula-
tion used to develop the CAD-MPA (BASELMPA): age, sex,
weight, height, chest pain, and shortness of breath. CAD risk
factors include diabetes, smoking, systolic blood pressure, and
diastolic blood pressure. Laboratory values include glucose,
total cholesterol, LDL cholesterol, HDL cholesterol, ASAT,
ALAT, alkaline phosphatase, bilirubin, GGT, globulins, sodi-
um, chloride, phosphate, creatine kinase, troponin, interna-
tional normalized ratio (INR), urea, creatinine, white blood
cells, and mean corpuscular hemoglobin (MCH). ECG param-
eters are pathologic Q-wave, repolarization anomalies, and
current medications used: intake of betablocker, oral
anticoagulation, a cholesterol-lowering drug, or of a platelet
inhibitor.

In the optimized MPA, a few variables could even be elim-
inated from the model without a loss of diagnostic accuracy
(ASAT, GGT, sodium, chloride, phosphate, creatine kinase,
international normalized ratio (INR)).

Table 1 summarizes and compares the BASEL and LURIC
baseline patient data. The BASEL population was older than
the LURIC population. As per definition, the LURIC patients
more frequently had known prior CAD (prior myocardial in-
farction or another CAD event) and a higher cardiovascular
risk profile than the BASEL population (in the BASEL pop-
ulation patients with known or acute CAD were excluded
from the study). With respect to the laboratory test results,
the significantly higher troponin level in the LURIC popula-
tion has to be mentioned.

Table 2 depicts the baseline data comparison of LURIC
training and test patients. These two populations were almost
identical, except that there were more male patients in the
training than in the test population.

Of the 987 LURIC patients, 71% were male, and the mean
age was 62 ± 11 years. Coronary angiography revealed signif-
icant coronary stenosis in 68% of the patients.

The results of the comparison between LURIC and the
simulated low-risk patients is depicted in Table 3.

It is evident that patients created by simulation had a much
lower-risk profile than the LURIC population. The simulated
low-risk population was younger, had less severe chest pain,
less medication, and was closer to a Bnormal^ population.

Predictive value of the MPA

In Fig. 1a–c, the predictive values of the algorithms to diag-
nose coronary artery disease are summarized for the two
LURIC populations and the simulated low-risk patients. By
combining the data of Basel and LURIC and modifying the
algorithm, the predictive results improved. (Increase of AUC
from 0.8 to 0.88 as shown by the receiver operating curves, p
value < 0.001). For the simulated low-risk patients, the
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predictive value was excellent with an AUC > 0.9. Table 4
provides the results in further detail.

Importantly, the risk score of the model discriminates two
diagnostic decisions (H+: CAD is excluded and CAD+: CAD
is present). Each of these decisions was evaluated as an

independent diagnostic test, and in every validation, all the
accuracy indicators (like sensitivity, specificity, PPV, NPV)
are shown for these two decisions.

By analyzing possible cut-off values and the corresponding
sensitivities and specificities, low- and high-risk

Table 1 Comparison of baseline
characteristics between the
BASEL and the entire LURIC
populations

Basel (n = 378) LURIC (n = 987) p value

Female sex 129 (34%) 291 (29%) 0.11

Age (years) 66 ± 10 62 ± 4 < 0.001

Patient with prior MI event 0 (0%) 283 (29) < 0.001

Patients with prior CAD event 0 (0%) 445 (45) < 0.001

Height (cm) 170 ± 9 170 ± 9 0.426

BMI (kg/m2) 27.8 ± 4.9 27.5 ± 4.0 0.249

Systolic blood pressure (mmHg) 142 ± 22 141 ± 24 0.543

Diastolic blood pressure (mmHg) 82 ± 12 81 ± 12 0.234

Typical angina 197 (52%) 358 (36%) < 0.001

Atypical angina 3 (1%) 90 (9%) < 0.001

Asymptomatic 104 (28%) 314 (32%) 0.14

Shortness of breath 177 (47%) 374 (38%) 0.003

Non-smoker 175 (46%) 349 (35%) < 0.001

Prior smoker 151 (40%) 424 (43%) 0.344

Current smoker 51 (13%) 214 (22%) 0.001

Diabetes 92 (24%) 399 (40%) < 0.001

Statin 206 (55%) 461 (47%) 0.012

Oral anticoagulant 43 (11%) 69 (7%) 0.011

Platelet inhibitors 308 (81%) 706 (72%) < 0.001

ACE or ATII inhibitors 201 (53%) 540 (55%) 0.653

Calcium antagonist 81 (21%) 155 (16%) 0.015

Betablockers 246 (65%) 626 (63%) 0.612

Diuretics 134 (35%) 288 (29%) 0.029

Nitrates 44 (12%) 317 (32%) < 0.001

Troponin (pg/ml; median (interquartiles)) 4 (0–10) 11 (5–26) < 0.001

Pancreas amylase (μkat/l) 0.48 ± 0.28 0.33 ± 0.15 < 0.001

Alkaline phosphatase (μkat/l) 1.12 ± 0.32 1.12 ± 0.42 0.926

ALAT (μkat/l median (interquartiles)) 0.38 (0.30–0.55) 0.37 (0.28–0.59) 0.604

Bilirubin (μmol/l) 10 ± 5 11 ± 7 < 0.001

Urea (mmol/l) 6.9 ± 2.9 6.6 ± 2.7 0.113

Uric acid (μmol/l) 350 ± 98 303 ± 106 < 0.001

Cholesterol (total) (mmol/l) 4.7 ± 1.2 5.0 ± 1.0 < 0.001

LDL (mmol/l) 2.6 ± 1.0 2.7 ± 0.8 0.109

HDL (mmol/l) 1.3 ± 0.4 1.3 ± 0.4 0.164

Protein (total) (g/l) 73 ± 6 69 ± 5 < 0.001

Albumin (g/l) 39 ± 3 44 ± 6 < 0.001

Glucose (mmol/l) 7.0 ± 3.3 6.3 ± 2.0 < 0.001

White blood cells (× 1012/l) 7.29 ± 1.87 7.17 ± 2.08 0.306

MCHC (g/l) 350 ± 11 341 ± 11 < 0.001

ECG, evidence of q-waves 36 (9.52%) 186 (18.84%) < 0.001

The Chi-square test was used to compare proportions for dichotomous variables. The Student’s t test was used to
compare means ± standard deviation for continuous variables. TheWilcoxon-Mann-Whitney test was used for the
troponin and ALAT, since this test was more suitable for the variables’ distribution. A p value < 0.05 means that
the Basel and LURIC population are significantly different with respect to the particular baseline variable
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classifications could be defined for patients, reflecting a broad
patient-risk spectrum from screening to symptomatic level,
from outpatient to inpatient level. Five risk classes were built
taking into account these low- and high-risk populations. In
the low-risk patient population, the prevalence of CAD was

0.2, 2.7, 31.5, 79, and 93.4% for the very low-, low-, medi-
um-, high-, and very high-risk groups, respectively. The per-
centage of patients in these risk groups was 47.6, 16.8, 16.5,
4.6, and 14.6% for the very low-, low-, medium-, high-, and
very high-risk groups, respectively.

Table 2 Baseline characteristics
of the LURIC patients
(comparison of the training and
validation population)

Training LURIC (n = 493) Test LURIC (n = 494) p value

Female sex 130 (26%) 161 (33%) 0.038

Age (years) 62 ± 11 63 ± 11 0.211

Patients with prior MI 131 (27%) 152 (31%) 0.165

Patients with prior CAD event 211 (43%) 234 (47%) 0.168

Height (cm) 170 ± 8 170 ± 9 0.103

BMI (kg/m2) 27 ± 4 28 ± 4 0.495

Systolic blood pressure (mmHg) 140 ± 25 142 ± 24 0.066

Diastolic blood pressure (mmHg) 81 ± 12 82 ± 11 0.458

Typical angina 166 (34%) 192 (39%) 0.103

Atypical angina 43 (9%) 47 (10%) 0.748

Asymptomatic 173 (35%) 141 (29%) 0.032

Shortness of breath 182 (37%) 192 (39%) 0.572

Non-smoker 177 (36%) 172 (35%) 0.772

Prior smoker 211 (43%) 213 (43%) 0.971

Current smoker 105 (21%) 109 (22%) 0.83

Diabetes 199 (40%) 200 (40%) 1

Statin 227 (46%) 234 (47%) 0.724

Oral anticoagulant 36 (7%) 33 (7%) 0.796

Platelet inhibitors 340 (70%) 366 (74%) 0.087

ACE or ATII inhibitors 265 (54%) 275 (56%) 0.589

Calcium antagonist 78 (16%) 77 (16%) 0.989

Betablockers 303 (61%) 323 (65%) 0.225

Diuretics 146 (30%) 142 (29%) 0.818

Nitrates 163 (33%) 154 (31%) 0.571

Troponin (pg/ml; median (interquartiles)) 12 (5–27) 10 (6–25) 0.426

Pancreas amylase (μkat/l) 0.33 ± 0.17 0.33 ± 0.13 0.331

Alkaline phosphatase (μkat/l) 1.14 ± 0.47 1.12 ± 0.37 0.758

ALAT (μkat/l median (interquartiles)) 0.40 (0.28–0.59) 0.37 (0.25–0.56) 0.076

Bilirubin (μmol/l) 11 ± 6 11 ± 7.5 0.462

Urea (mmol/l) 6.6 ± 2.4 6.6 ± 2.9 0.988

Uric acid (μmol/l) 301 ± 102 304 ± 108 0.652

Cholesterol (total) (mmol/l) 4.8 ± 1.1 5.1 ± 1.0 0.047

LDL (mmol/l) 2.7 ± 0.8 2.7 ± 0.8 0.108

HDL (mmol/l) 1.3 ± 0.4 1.3 ± 0.4 0.870

Protein (total) (g/l) 68 ± 5 69 ± 6 0.414

Albumin (g/l) 44 ± 6 44 ± 6 0.409

Glucose (mmol/l) 6.1 ± 1.8 6.4 ± 2.1 0.026

White blood cells (× 1012/l) 7.22 ± 2.18 7.13 ± 1.98 0.487

MCHC (g/l) 341 ± 12 341 ± 11 0.735

ECG, evidence of q-waves 94 (19%) 92 (19%) 0.923

The Chi-square test was used to compare proportions for dichotomous variables. The Student’s t test was used to
compare means ± standard deviation for continuous variables. TheWilcoxon-Mann-Whitney test was used for the
troponin and ALAT, since this test was more suitable for the variables’ distribution. A p value < 0.05 means that
the LURIC training and test population are significantly different with respect to the particular baseline variable
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Table 3 Baseline characteristics
of the randomly generated low-
risk patients compared with the
LURIC population

Simulated low-risk
population (n = 30,303)

LURIC (n = 987) p value

Female sex 13,052 (43%) 291 (29%) < 0.001

Age (years) 57 ± 12 62 ± 11 < 0.001

Patients with prior MI 2924 (10%) 283 (29%) < 0.001

Patients with prior CAD event 4626 (15%) 445 (45%) < 0.001

Height (cm) 172 ± 9 170 ± 9 < 0.001

Systolic blood pressure (mmHg) 134 ± 20 141 ± 24 < 0.001

Diastolic blood pressure (mmHg) 77 ± 8 81 ± 12 < 0.001

Typical angina 6534 (22%) 358 (36%) < 0.001

Atypical angina 2927 (10%) 90 (9%) 0.609

Asymptomatic 11,282 (37%) 314 (32%) 0.001

Shortness of breath 6055 (20%) 374 (38%) < 0.001

Non-smoker 14,342 (47%) 349 (35%) < 0.001

Prior smoker 8668 (30%) 424 (43%) < 0.001

Current smoker 7293 (24%) 214 (22%) 0.091

Diabetes 6329 (21%) 399 (40%) < 0.001

Statin 4804 (16%) 461 (47%) < 0.001

Oral anticoagulant 905 (3%) 69 (7%) < 0.001

Platelet inhibitors 7366 (24%) 706 (72%) < 0.001

ACE_od_ATII inhibitors 5718 (19%) 540 (55%) < 0.001

Calcium antagonist 1648 (5%) 155 (16%) < 0.001

Betablockers 6468 (20%) 626 (63%) < 0.001

Diuretics 3001 (10%) 288 (29%) < 0.001

Nitrates 3325 (11%) 317 (32%) < 0.001

Troponin (pg/ml; median (interquartiles)) 1 (0–5) 11 (5–26) < 0.001

Pancreas amylase (μkat/l) 0.33 ± 0.13 0.33 ± 0.15 0.950

Alkaline phosphatase (μkat/l) 1.12 ± 0.32 1.12 ± 0.42 0.936

ALAT (μkat/l median (interquartiles)) 0.37 (0.30–0.45) 0.37 (0.28–0.59) < 0.001

Bilirubin (μmol/l) 9 ± 4 11 ± 7 < 0.001

Urea (mmol/l) 5.7 ± 1.8 6.6 ± 2.7 < 0.001

Uric acid (μmol/l) 289 ± 74 303 ± 106 < 0.001

Cholesterol (total) (mmol/l) 5.0 ± 1.0 5.0 ± 1.0 0.320

LDL (mmol/l) 2.9 ± 0.9 2.7 ± 0.8 < 0.001

HDL (mmol/l) 1.4 ± 0.3 1.3 ± 0.4 < 0.001

Protein (total) (g/l) 73 ± 5 69 ± 5 < 0.001

Albumin (g/l) 43 ± 4 44 ± 6 < 0.001

Glucose (mmol/l) 5.6 ± 1.4 6.3 ± 2.0 < 0.001

White blood cells (× 1012/l) 6.8 ± 1.45 7.17 ± 2.08 < 0.001

MCHC (g/l) 344 ± 8 341 ± 11 < 0.001

ECG, evidence of q-waves 2062 (7%) 186 (19%) < 0.001

Prevalence of coronary artery disease
(coronary angiography results)

6970 (23%) 668 (68%) < 0.001

As the compared sample sizes are very different, the one-sample tests were used for calculating p values, taking
the mean and the median of the simulated low-risk population as a given value. The one sample Chi-square test
was used to compare proportions for dichotomous variables. The one-sample Student’s t test was used to compare
means for continuous variables. The one-sample Wilcoxon-Mann-Whitney test was used for the troponin and
ASAT variable, being more suitable for the variable’s distribution. A p value < 0.05means that the simulated low-
risk population and LURIC population are significantly different with respect to the particular baseline variable
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In the high-risk patient population, the prevalence of CAD
was 3.4, 22.4, 53.2, 79.7, and 93.4% for the very low-, low-,
medium-, high-, and very high-risk group, respectively. The
percentage of patients in these risk groups was 9, 5.9, 28.8,
13.5, and 42.9% for the very low-, low-, medium-, high-, and
very high-risk groups, respectively.

For the low-risk population, the cut-off point selection dif-
fered from the high-risk population. The reason is that in the
low-risk population, the diagnostic test should select patients
with elevated CAD risk with very high sensitivity, even at the
cost of having lower specificity, so that these patients could be
further evaluated and are not missed in the diagnostic process.

On the basis of these results, this approach could be used as
a very useful tool to evaluate pretest probability of CAD and
to decide how to further proceed in the diagnostic and thera-
peutic process. A suggested decision-making process is
depicted in Fig. 2.

If an individual patient has been defined as Bvery low risk
of having a coronary artery stenosis,^ the prevalence of CAD
was very low, between 0.22 and 3.4%, and no further evalu-
ation regarding CAD would be necessary.

If an individual patient has been defined to be Bvery high
risk,^ the prevalence of CAD was 93.4%. A patient in this
category may be referred directly to invasive coronary
angiography.

Discussion

Artificial intelligence algorithms provide the possibility for
our patients to accurately diagnose or exclude CAD

(stenosis) based on readily available clinical and laboratory
variables. A memetic pattern-based algorithm (MPA) was first
developed enrolling a patient populationwithout prior CAD in
Basel. The MPAwas optimized with an evolutionary learning
process which was then validated in the Basel CAD study
[11]. The Basel MPA has been further expanded, optimized,
and validated in the current study by incorporating data from
the LURIC study.

The refined MPA proved to better discriminate between
patients with versus patients without angiographically docu-
mented CAD than the FRS. The diagnostic accuracy of the
refined Basel algorithm provided even better results after in-
corporation of the LURIC data, resulting in comparable or
even better predictive results than those provided by other
non-invasive diagnostic tests with respect to CAD diagnosis
(Table 5).

The gold standard to diagnose or exclude CAD still re-
mains invasive coronary angiography. A large number of
non-invasive tests including stress ECG, stress echocardiog-
raphy, myocardial perfusion scintigraphy, positron emission
tomography (PET), as well as computed tomography and
magnetic resonance imaging-based techniques are available
to evaluate individual patients with respect to the presence
or absence of CAD.

Understanding the multifactorial nature of cardiovascular
disease and the interrelation of risk factors as reflected by
recent CAD scores and new statistical methods, as used in
the MPA, should lead to accurate diagnoses and avoiding
unnecessary and expensive invasive and non-invasive proce-
dures, particularly in patients at low CAD probability. The
model developed in the BASEL CAD study [11] and

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

TP
R

FPR

LURIC-training population

Framingham Risk
Score

Basel MPA

Optimized Basel MPA

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

TP
R

FPR

LURIC-test population

Framingham Risk
Score

Basel MPA

Optimized Basel MPA

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

TP
R

FPR

Low risk patients’ sample

Framingham Risk
Score

Basel MPA

Optimized Basel MPA

a b c

Fig. 1 a–c Comparison of the higher diagnostic accuracy of an MPA-
based approach with the accuracy reached by the FRS. In addition, the
BASELMPA could be optimized by incorporating LURIC data, resulting
in an even higher predictive value. a Comparison of three models in the
LURIC-training population: the blue line is the ROC of the Framingham
Risk Score (AUC= 0.666), the green line is the ROC of the Basel MPA
(AUC = 0.8), and the red line is the ROC of the optimized Basel MPA
(AUC = 0.879). b Comparison of three models in the LURIC test

population: the blue line is the ROC of the Framingham Risk Score
(AUC = 0.690), the green line is the ROC of the original Basel MPA
(AUC = 0.798), and the red line is the ROC of the optimized Basel
MPA (AUC= 0.874). c Comparison of three models in the low-risk pa-
tients’ sample: the blue line is the ROC of Framingham (AUC = 0.838),
the green line is the ROC of the original Basel model (AUC = 0.952), and
the red line is the ROC of the optimized MPA model (AUC= 0.972)
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expanded and optimized in the current study was designed
specifically for this task on the basis of the unique character-
istics of the MPA modeling processes and artificial intelli-
gence. It demonstrates how artificial intelligence can be incor-
porated in the CAD evaluation process. The evaluation of
readily available patient data by the MPA results in a
patient-tailored approach providing an accurate result for the
individual patient. Based on this result that delivers the

patient’s pretest probability of CAD, further individual patient
evaluation and therapy can be planned. The MPA therefore
could be broadly used in daily clinical practice (e.g., by family
doctors, general practitioners, and cardiologists; in the out-
and in-patient setting) and decision making as an accurate tool
of predictive, preventive, personalized medicine.

There are several advantages of the MPA modeling pro-
cess [18, 19]: the process is able to find and describe small

Table 4 Diagnostic value of the BASEL MPA, optimized BASEL MPA on LURIC data, and compared with the Framingham Risk Score (FRS)

Basel MPA
(Basel CAD study)

Basel MPA applied to
LURIC sample

Optimized Basel MPA results
on LURIC sample

FRS 2 year-risk
[2]

Patient population Test data Basel LURIC training LURIC training LURIC test LURIC test

Number of patients 128 493 493 494 494

CAD+ patients 88 328 328 340 340

H+ patients 40 165 165 154 154

Results

CAD+ identifications 51 137 204 219 159

H+ identifications 5 20 46 43 56

Undetermined records counta 72 336 243 232 279

CAD+ true positivesb 46 123 189 206 140

CAD+ false positivesc 5 14 15 13 19

H+ true positivesd 5 18 45 41 37

H+ false positivese 0 2 1 2 19

CAD+ sensitivityf 52.3% 37.5% 57.6% 60.6% 41.2%

CAD+ FP ratiog 12.5% 8.5% 9.1% 8.4% 12.3%

CAD+ specificity 87.5% 91.5% 90.9% 91.6% 87.7%

H+ sensitivityh 12.5% 10.9% 27.3% 26.6% 24%

H+ FP ratioi 0% 0.6% 0.3% 0.6% 5.6%

H+ specificity 100% 99.3% 99.7% 99.4% 94.4%

PPV CAD+j 90.2% 89.8% 92.7% 94.1% 88.1%

PPV H+k 100% 90% 97.8% 95.4% 66.1%

LR CAD+l 4.2 4.4 6.3 7.2 3.3

LR H+m > 100 17.9 89.5 45.3 4.3

AUC± 95% CI 0.824 ± 0.076 0.8 ± 0.04 0.88 ± 0.03 0.87 ± 0.03 0.69 ± 0.05

Abbreviations: CAD, coronary artery disease; CAD+, patients with CAD; H+, healthy subjects; FP, false positive; PPV, positive predictive value; LR,
likelihood ratio
a Neither CAD+ nor H+ models produce definitive identification—only the risk score is returned for these records. In these patients, Bconventional^
strategies would have to be applied (e.g., cardiac imaging or stress testing)
b For example, CAD+ patients identified as CAD+
c For example, H+ patients identified as CAD+
d For example, H+ patients identified as H+
e For example, CAD+ patients identified as H+
f CAD+ TP ratio
g 1-Specificity
h H+ TP ratio
i 1-Specificity
j Percent of real CAD+ patients among those marked by the model as CAD+
k Percent of real H+ patients among those marked by the model as CAD+
l Characterizes the quality of the binary classification, 1-random model, the higher the better; LR is the TP ratio/FP ratio
mCharacterizes the quality of the binary classification, 1-random model, the higher the better; LR is the TP ratio/FP ratio

EPMA Journal (2018) 9:235–247 243



multivariate patterns in the data and to combine them to-
gether into a high-quality predictive model. The process is
highly automated [30, 31]. A directed search for the best
possible methods and attributes combined is performed
automatically by the system [32]. As a result, a much larger
number of possibilities and approaches are explored by an
automatic system than by what is possible in a manual
modeling process [28] .

The modeling process was designed for working with data
of large dimensionality, based on a multi-level modeling

architecture. Feature selection and dimensionality reduction
tasks are performed automatically on the basis of evolutionary
learning [26]. The process allows optimizing the models spe-
cifically for making low alpha and low beta error classification
decisions. The criteria of optimization were based on the risk
preference and error constraints chosen by a modeler in order
to build models with the lowest possible number of false pos-
itives, when modeling Bdiagnosis of CAD,^ or to build
models with the lowest possible number of false negatives
when generating models for Bexclusion of CAD.^

AI/MPA

patient data

patient history

Laboratory 
variables

Resting ECG

noitaulaverehtrufonksirwolyrev•
(**9 - 48% of your patients)

• low risk
noitaulaveevisavni-nonksirmuidem•

)stneitapruoyfo%84-73**(ksirhgih•

noitaulaveevisavniksir-hgihyrev•
(**15 - 43% of your patients) 

0.2-3.4% CAD prev*

2.8 – 79.7% CAD prev*

93.4 % CAD prev*

Fig. 2 A patient-tailored approach as an element of PPPM: example on
how the MPA can be used in daily practice for patient care and decision
making. The patient needs CAD evaluation. The doctor takes the patient
history and summarizes patient baseline data, laboratory variables, and
resting ECG findings. These findings are evaluated by the artificial intel-
ligence approach (memetic profile-based algorithm). The doctor will get
the results within one working day and can discuss the results with his
patients. If the patient is Bvery low risk,^ no further evaluation would be
needed; in patients with intermediate risk (low, medium, and high risk),
patients may undergo conventional non-invasive testing, and Bvery high-
risk^ patients should be referred for invasive coronary angiography

(based on risk thresholds in the guidelines [33]). In summary, this ap-
proach could be used as a very useful tool to evaluate pretest probability
of CAD and to decide how to further proceed in the diagnostic and
therapeutic process. At this point in time, (**) depending on the patient’s
baseline risk, 9–48, 37–48, and 15–43% of the evaluated patients would
be in the very low-, intermediate-, and high-risk groups, respectively. Up
to 52–63% (9 + 43%/48 + 15) of patients would not need any further
evaluation or could be directly referred to coronary angiography after
using the MPA approach. AI, artificial intelligence; MPA, memetic
profile-based algorithm; CAD prev, CAD prevalence in the particular risk
group

Table 5 Comparison of the MPA
model results, the Framingham
risk score, and widely used non-
invasive diagnostic procedures
(adapted from [33]), which indi-
cates that the MPA model pro-
vides better prediction than the
FRS and may be compared as for
sensitivity and specificity, to the
coronary CT angiography

Method Sensitivity (%) Specificity (%)

MPA model applied to low-risk population for screening purposes 98 83

MPA model applied to high-risk population 75 83

Framingham risk score 71 63

Stress ECG 45–50 85–90

Stress-echocardiography 80–85 80–88

Myocardial perfusion scintigraphy (MPS) 73–92 63–86

Stress magnetic resonance (CMR) 67–94 61–91

PET 81–97 74–91

Coronary CT angiography 95–99 74–83
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Of note, other risk scores as the Framingham risk score
focus on risk prediction; whereas, our MPA focuses on the
diagnosis of CAD. Since, the individual patient is not only
interested to know the probability of suffering from a cardio-
vascular event in the future but also to know whether there is
evidence that he or she suffers of relevant CAD or not. In a
patient with chest pain, it is crucial to confirm or exclude the
presence of hemodynamically relevant coronary disease (and
possibly treat it) and not only to evaluate the risk for the
occurrence of a cardiovascular event, sometime in the future.

The current study has confirmed that the BASEL CAD
algorithm provides the expected level of diagnostic accuracy
in varying patient populations (in the current study the LURIC
population).

The algorithm could also be optimized by including pa-
tients with other baseline characteristics (lower-risk patients
and patients with known CAD).

Therefore, it seems reasonable to apply the algorithm to
high- and low-risk patient populations.

The current study provides a robust estimate what the user
can expect by using the expanded and optimized BASEL
MPA in Bdaily practice^—in a screening process and in a
patient with expected CAD:

Patient populations classified as Bvery low risk^ of having
CAD would have a prevalence of CAD up to only 3.4%.

Based on these risk classifications, a decision-making pro-
cess might be defined (Fig. 2). The evaluation process using
the MPA, as depicted in Fig. 2, could lead to a completely
new, and very accurate assessment of the pretest probability of
CAD.

Importantly, the thresholds of accepted false-positive and
false-negative rates can be chosen in the MPA models,
resulting in changes with respect to the expected accuracy.

There are several possibilities to compare the accuracy of a
diagnostic test as done in the present study, either based on a
Bpopulation^ or an Bindividual^ level. It is important to take
into account that since Bdiagnosis^ and Bexclusion^ of CAD
are two different questions of binary classification, the calcu-
lation and the comparison of statistical quality indicators of
the binary classification should be performed separately for
both classifications.

The results of the current study demonstrate that evaluation
by the MPA provides better results when compared with the
FRSwith respect to AUC values (AUC = 0.87 vs 0.69, p value
< 0.001). The most striking point is the high diagnostic cer-
tainty of ruling out CAD by MPA. If a patient is evaluated by
the MPA and found to have Bno CAD,^ then this result is
accurate in 95% of the cases even in a high-risk (e.g., hospital)
population with CAD prevalence > 60%, and in a low-risk
population, this figure is estimated to be > 99%.

The comparison of the MPA results in the present study to
the reported results of performances of logistic regression,
classification and regression tree, and neural networks for

predicting CAD by Kurt et al. showed that AUC values of
the MPA described here, are just above the highest of all
statistical modeling methods considered in that article [34].
The main advantage of the MPA is that the approach and the
applied methods seem to be better suited for diagnostic clas-
sifications by providing a way of optimizing the model, spe-
cifically for diagnostic decisions with a low rate of false pos-
itives (optimizing on the left and right ends of the ROC curve).
The latter is consistent with higher rates of patients who can be
safely diagnosed as either healthy or as suffering from CAD.

The strength of the current study is that the MPA was de-
veloped, expanded, optimized, and validated in two separate
independent patient populations (BASEL and LURIC) and
that risk score evaluations were confirmed by invasive coro-
nary angiography in all patients. In addition, sensitivity anal-
yses showed that the stability of the MPA is given (results not
shown), particularly also for patients in whom CAD could be
excluded, indicating that similarly reliable results can be an-
ticipated also for larger populations of the same risk category.

Since studied patients were referred to coronary angiogra-
phy in the BASEL MPA, and LURIC study, they had a rela-
tively high pretest probability of CAD. In fact, 68% of them
had angiographic evidence of CAD. However, the simulation
performed as a part of this study allowed to estimate model
accuracy also in a low-risk patient population and thus im-
proving the results of various diagnostic tests, especially in
low-risk patient populations.

It is a limitation of this study that the results of the low-risk
patient population are based in part on statistical simulation
and not on a sole study in a low-risk population. A clearly
defined endpoint is just achievable with coronary angiography
or another validated diagnostic test as the gold standard.

But due to ethical reasons, coronary angiography is not
applicable for a sole low-risk patient population. Therefore,
the statistical simulation approach is the best practical ap-
proach to estimate the model accuracy in a low-risk
population.

The predictive power of MPA might even be increased by
incorporating further data into the models (e.g., stress testing,
non-invasive cardiac imaging). However, for the time being,
we decided to only use readily available clinical variables,
which makes this approach broadly available and applicable
also in primary care and daily clinical practice.

Conclusions

The diagnostic accuracy of the clinical diagnosis of CADmay
be improved with the use of an artificial intelligence approach
(MPA). The MPA provided an overall higher diagnostic accu-
racy than the FRS tested with respect to angiographically rel-
evant CAD and is comparable in its predictive value with non-
invasive diagnostic tests. This also holds true on an individual
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patient level. In contrast with other methods and scores, the
MPA allows for diagnosing or excluding coronary artery ste-
nosis instead of just predicting the probability for future CAD
events.

The current study allows expanding the MPA approach to a
broad-risk-spectrum of patients, as an element of decision
making and of a patient-tailored approach in the setting of
predictive, preventive, personalized medicine. Using the
MPA approach may help to prevent further unnecessary diag-
nostic procedures, including non-invasive CAD testing.

Patients undergoing CAD evaluation may benefit from this
AI-facilitated approach, since the diagnostic yield of readily
available patient variables used in the MPA may be as high as
by non-invasive testing.

In summary, AI-based decision-making algorithms may
help doctors and health-care professionals in the decision-
making process of suspected coronary artery disease patients.
Using artificial intelligence might improve diagnosis of coro-
nary artery disease and decision making and reduce the costs
in this field.

Thus, AI may represent an essential tool for complex anal-
ysis of the health-related data sooner than expected just a few
years ago. Therefore, any practical application, such as the use
of MPA presented in this paper, may substantially catalyze
further development of PPPM.
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