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Abstract
Estrogen receptor alpha (ERα) is detected in more than 
70% of the cases of breast cancer. Nuclear activity of ERα, 
a transcriptional regulator, is linked to the development 
of mammary tumors, whereas the extranuclear activity 
of ERα is related to endocrine therapy resistance. ERα 
polyubiquitination is induced by the estradiol hormone, 
and also by selective estrogen receptor degraders, 
resulting in ERα degradation via the ubiquitin proteasome 
system. Moreover, polyubiquitination is related to the ERα 
transcription cycle, and some E3-ubiquitin ligases also 
function as coactivators for ERα. Several studies have 
demonstrated that ERα polyubiquitination is inhibited 
by multiple mechanisms that include posttranslational 
modifications, interactions with coregulators, and formation 
of specific protein complexes with ERα. These events 
are responsible for an increase in ERα protein levels and 
deregulation of its signaling in breast cancers. Thus, ERα 
polyubiquitination inhibition may be a key factor in the 
progression of breast cancer and resistance to endocrine 
therapy. 
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Core tip: The inhibition of the estrogen receptor alpha 
polyubiquitination and degradation by several molecular 
mechanisms is related to the progression of breast 
cancer and resistance to endocrine therapy.
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INTRODUCTION 
Estrogen receptor alpha (ERα) protein, also known 
as nuclear receptor subfamily3 group A member 1 
(NR3A1), comprises of 595 amino acids, organized in 
two activation function domains (AF-1 and AF-2), a DNA-
binding domain (DBD), a ligand-binding domain (LBD) 
that recognize the 17beta-estradiol hormone (E2), and 
a hinge region that connects the DBD and the LBD[1-3] 
(Figure 1). Many nuclear functions of ERα are triggered 
by the binding of E2 to the receptor[4,5], inducing ERα 
homodimers to bind to estrogen responsive elements 
(ERE) within the enhancer and promoter regions of E2-
target genes[6,7]. In these events, pioneer factors expose 
chromatin sections, facilitating the association of ERα 
with EREs[8]. Moreover, transcriptional coregulators are 
recruited by the AF-1 and AF-2 domains of the receptor 
for the remodeling of the chromatin structure[9,10] 
and promotion of chromatin loops that modulate E2-
responsive gene expression[11,12]. In addition, there is 
crosstalk between ERα and other signaling pathways: 
ERα acts as a coregulator by interacting with other 
transcription factors, such as activator protein 1 (AP-1), 
specificity protein 1 (Sp1), and nuclear factor-κB (NF-
κB)[3,5,13-17]. Additionally, ERα is phosphorylated and 
transcriptionally activated in response to growth factors 
such as the epidermal growth factor (EGF) and insulin-
like growth factor (IGF)[13,14,18-20]. Recently, progesterone 
receptor (PR) was shown as an ERα interacting protein 
that modulates and re–directs the binding of ERα to the 
chromatin and the expression of specific genes in breast 
cancer cells [21] (Figure 2).

ERα also exhibits extranuclear activity by associating 
with the cell membrane via palmitoylation, and with the 
help of protein complexes, linked to the cell membrane 
or cytoplasm[22] (Figure 2). Thereafter, ERα transduces 
rapid extranuclear signaling that can trigger second 
messengers such as calcium and cAMP, and activate 
kinases such as ERK/MAPK, PI3K/AKT, PKC and Src 
kinase[13,23,24]. Both nuclear and extranuclear signaling 
of ERα are connected and are critical in about 70% 
of breast cancer cases (ERα+ breast cancer)[13,24,25]. 
Consequently, ERα is a target for endocrine therapy 
via the use of selective estrogen receptor modulators 
(SERMs), such as tamoxifen (Tam), which competes with 
E2 by binding to ERα to inhibit its transcriptional activity, 
as well as, via the use of selective estrogen receptor 
degraders (SERDs) such as fulvestrant that decreases 
the ERα stability[8,14,26,27]. The acquisition of resistance 
to these treatments commonly occurs in ERα+ breast 
cancer, and although the mechanisms are unclear, the 
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extranuclear signaling of ERα is strongly activated under 
this condition[19,20,26,28-31].

The activation or inhibition of ERα activity is modulated 
by its transcriptional coregulators, by phosphorylation 
induced by E2 hormones and growth factors, and by other 
posttranslational modifications such as ubiquitination. 
Remarkably, several studies have emerged to demonstrate 
that multiple mechanisms are activated in ERα+ breast 
cancers to inhibit ERα polyubiquitination, increasing 
its signaling pathways (Figure 2), which have crucial 
implications in the progression of this cancer type, as we 
will describe in the following sections.

GENERALITIES OF THE 
POSTTRANSLATIONAL MODIFICATION 
“UBIQUITINATION” FOR ERα IN BREAST 
CANCER CELLS
ERα is a monoubiquitination and polyubiquitination-target. 
However, fewer reports are available to demonstrate 
monoubiquitination of ERα, in comparison to those that 
exhibit polyubiquitination of this receptor. Nevertheless, 
these studies clearly show that ERα monoubiquitination 
is decreased by E2, and that, this modification is 
important, both for stability and for the transcriptional 
activity of this receptor in breast cancer. In contrast, 
polyubiquitination is induced by E2, resulting in a signal 
to direct ERα degradation via the UPS[14,32,33], facilitated 
by the concerted action of the enzymes E1 (ubiquitin 
activating enzyme), E2 (ubiquitin conjugating enzyme), 
and E3 (ubiquitin ligase)[32,33]. The specific covalent 
binding of ubiquitin to ERα lysine residues is mediated by 
several E3 ubiquitin ligases for ERα, that include CHIP[34], 
E6AP[35], BRCA1[36], BARD1[37], SKP2[38], MDM2[39], 
and Hbo1[40]. Importantly, E2 treatment induces ERα 
polyubiquitination, followed by its degradation by the 
UPS[14,17,33,41-43].

Although polyubiquitination leads to ERα downre-
gulation through its degradation by the 26S proteasome, 
it is important to note that, this modification and 
the proteasome activity, have also been reported as 
elements required for the transcriptional cycle of ERα. 
Likewise, it has been evidenced that ERα bound to ERE 
can recruit coactivators, some of which possess E3-
ubiquitin ligase activity, such as SKP2[17], E6AP, and 
RNF8. As coactivators enhance the activity of ERα, 
and the activity of E3-ubiquitin ligases mediate the 
downregulation of this receptor, the recruitment of these 
proteins with dual function may maintain a balance in 
the level and activity of ERα[17,44,45].

ERα residues, K302 and K303, have been suggested 
as the lysine targets for ubiquitination and degradation, 
in response to E2 and fulvestrant, but the same residues 
are also important for ERα stability in untreated breast 
cancer cells[46]. Against this background, it maybe envi-
saged that, several factors delicately modulate the 
stability and degradation of ERα, which may be altered 
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in breast cancer.
Additionally, the ubiquitination of ERα is also rela-

ted to its phosphorylation state. Several kinases, such 
as CDK11p58[47], cyclin E-CDK2[17], Src[35], PKC[42], 
p38MAPK[38], and ERK7[48] have been reported as modifiers 
of ERα in breast cancer. The main residues of ERα that are 
phosphorylated in E2-response, and have been associated 
with its polyubiquitination and degradation, are S118[49], 
S294[38], S341[17], and Y537[35]. A key example is the 
sequential modification of ERα, where, first, the ERα Y537 
residue is phosphorylated by Src kinase in E2-treated 
cells, followed by E6AP, an E3-ubiquitin ligase, which 
induces ERα polyubiquitination and its degradation[35]. 
Thus, phosphorylation and ubiquitination of ERα are 
interconnected in order to control both, the abundance 
and the functions of this receptor.

IS ERα IN BREAST CANCER CELLS 
POLYUBIQUITINATED AND DEGRADED?
In recent years, several studies have emerged to de-
monstrate the inhibition of polyubiquitination of ERα 
and consequently, a decrease in its degradation via the 
UPS, increasing its protein stability in breast cancer 
cells, through several mechanisms and ERα-associated 
proteins. Here, we describe these evidences.

ERα  polyubiquitination inhibitor proteins in breast 
cancer cells
ERα polyubiquitination inhibitor proteins (EPIP). There 
has been a progressive increase in the number of ERα 
polyubiquitination inhibitor proteins that have been 

discovered in breast cancer cells, which we have grouped 
and identified as EPIP. So far, it has been reported that 
proteins such as Mucin 1 (MUC1), PIN1, GSK3, LMTK3, 
RNF8, RNF31, RB, ABL, SHARPIN, and SMURF1 have 
the ability to interact with ERα, conferring it protection 
against polyubiquitination and degradation. Interestingly, 
not all of these proteins have related sequences and 
structures, but some of them are functionally similar. 

MUC1 and Protein interacting with Never in mitosis 
A (PIN1), for example, induce the formation of stable 
transcription complexes on the DNA[49,50]. MUC1 interacts 
with ERα to inhibit its polyubiquitination and degradation, 
and recruits coactivators such as SRC1 and GRIP on 
E2-regulated promoters to enhance gene transcription 
linked to cellular proliferation, migration, tumorigenicity, 
and endocrine resistance[50-54]. Likewise, PIN1 interacts 
with ERα phosphorylated at S118, inducing its cis/trans 
isomerization. Moreover, PIN1 blocks the polyubiquitina-
tion and degradation of ERα by preventing its interaction 
with the E6AP E3 ligase, hence enhancing its stability, 
binding to EREs, and the subsequent transcriptional 
activity of ERα[10,49,55-57]. High levels of PIN1 and ERα, and 
low levels of E6AP are observed in endocrine resistance[49].

Other examples are GSK3, LMTK3, and ABL1 kinases 
that phosphorylate ERα to inhibit its polyubiquitination[58,59]. 
First, the glycogen synthase kinase-3 (GSK3) isoforms 
interact with and phosphorylate ERα at S102, S104, 
S106, and S118. GSK3 depletion decreases phos-
phorylation and E2-induced transcriptional activity by 
increasing polyubiquitination and degradation of this re-
ceptor[59-61]. Thereafter, LMTK3 (lemur tyrosine kinase 3) 
interacts with and phosphorylates ERα to protect it from 
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Figure 1  Estrogen receptor α in breast cancer cells. ERα is organized in functional domains. The transactivation domains AF-1 and AF-2 recruit both coactivators 
and corepressors. The DNA-binding domain (DBD) recognizes and binds to estrogen response elements in enhancers or promoters. The ligand-binding domain (LBD) 
is recognized and activated by the 17 beta estradiol hormone. The hinge domain links LBD and DBD allowing the conformational changes of this receptor. Some 
residues are modified by phosphorylation, acetylation, ubiquitination and palmitoylation , which are related with ERα polyubiquitination. Sites of phosphorylation or 
mutations in ERα that have been identified in breast–cancer biopsy samples are indicated. 
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polyubiquitination and degradation via the UPS in breast 
cancer cells[58]. Similarly, ABL (ABL proto-oncogene 
1, non-receptor tyrosine kinase) interacts with and 
phosphorylates ERα at Y52 and Y219, increasing the 
ERα stability and resistance to Tam; both proteins are 
increased in breast tumor tissue samples[62,63].

On the other hand, RB induces the assembly of ERα 
with chaperone proteins[64]. Hence, retinoblastoma (RB) 
interacts with ERα, HSP90, and p23 in the cytoplasm 
to protect ERα from polyubiquitination and degradation 
by the UPS. ERα is highly ubiquitinated and degraded 
in RB-knockdown cells; however, its levels are restored 
with MG132 (a proteasome inhibitor) treatment in breast 
cancer[64].

Interestingly, E3 ubiquitin ligases such as RNF8, 
RNF31, SHARPIN, and SMURF1 interact with ERα to block 
its polyubiquitination and to promote the proliferation of 
breast cancer cells. RNF8, RNF31, and SHARPIN inhibit 
ERα polyubiquitination by catalyzing monoubiquitination 
of this receptor, and as a result, ERα protein levels and 
E2-dependent transcriptional activity are enhanced in 

breast cancer cells[65]. SHARPIN could monoubiquitinate 
the ERα K302/303, but whether these residues are also 
modified by RNF8 and/or RNF31 is unclear. Moreover, 
RNF8 also acts as a coactivator for ERα in breast cancer 
cells. Instead, SMURF1 apparently inhibits polyubi-
quitination of ERα, but the implicated mechanisms need 
to be studied[65-68]. 

Other proteins and modifications that inhibit ERα  
polyubiquitination 
ERα polyubiquitination indirect inhibitors (EPII), intriguingly, 
the inhibition of ERα polyubiquitination also occurs with 
the help of other proteins that lack the ability to directly 
interact with ERα. For instance, it has been suggested 
that Src-dependent phosphorylation of ERα allows E6AP 
to polyubiquitinate and induce the degradation of this 
receptor. However, PEBP4 (phosphatidyl ethanolamine-
binding protein 4) protein[69,70] interacts with Src, blocking 
the phosphorylation and degradation of ERα induced by 
Src[69].

Furthermore, although the mechanisms are unclear, 
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Figure 2  Nuclear and extranuclear signaling of estrogen receptor α. E2 binds to ERα in the cytoplasm and/or nucleus. Then ERα forms homodimers that 
recognize the ERE sequence (AGGTCAnnnTGACCT) in target enhancers and promoters, recruiting coregulator (CoR) complexes such as coactivators to induce 
gene expression. ERα phosphorylation can be induced by E2 to modulate its activity as a transcription regulator. A and B: Growth factors (epidermal growth factor 
and insulin-like growth factor) also induce ERα phosphorylation in an E2-independent manner to promote ERα activity as a transcription factor or CoR for some 
transcription factors (i.e., AP-1, Sp1, and NF-κB); C: Cell membrane-associated ERα (via palmitoylation) associated with transmembranal receptors (i.e., HER2) 
or with cytoplasmatic proteins as (i.e., MEMO, MTA1 and MNAR). These extranuclear interactions can induce kinase–dependent signaling that could finalize in the 
activation of some transcription factors; D: PR can associate with ERα to coordinate the binding of ERα to the chromatin modulating the expression of specific genes.
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it has been reported that ERα protein levels decrease in 
cells with low levels of REGγ (PA28γ, a nuclear proteasome 
coactivator), but when the proteasome is inhibited by 
MG132 treatment, ERα protein levels are recovered, 
suggesting that downregulation of REGγ promotes ERα 
polyubiquitination and degradation. High levels of REGγ 
and ERα in breast tumors correlated with poor prognosis 
in patients with breast cancer[69].

Additionally, some posttranslational modifications are 
also associated with ERα polyubiquitination inhibition. 
Hence, ERα acetylation induced by trichostatin (a de-
acetylase inhibitor) increases the p300 levels and the 
stability of the receptor in breast cancer cells, but 
the mechanisms implicated need to be investigated 
(Figure 1)[71]. Palmitoylation has also been linked to 
ERα polyubiquitination since it has been shown that 
the ERα mutants that cannot be palmitoylated are 
polyubiquitinated and degraded via UPS[72].

Mutations and modifications that affect ERα  
polyubiquitination detected in mammary tumors from 
patients
ERα polyubiquitination has a clinical relevance, since 
mutations and/or posttranslational modifications such as 
phosphorylation in residues of ERα have been identified 
in tumor tissues from samples of patients with breast 
cancer, and these residues have been linked to the 
polyubiquitination and downregulation by degradation of 
this receptor. Thus, the Y537 residue is required for the 
ERα phosphorylation, and this modification subsequently 
promotes polyubiquitination and degradation of the 
receptor[35]. However, mutations in the residues Y537N, 
Y537C, and Y537S are detected in mammary tumors 
of patients with metastasis and endocrine resistance. 
Accordingly, ERα polyubiquitination and degradation is 
prevented by experimentally induced mutations at the 
Y537 residue, and similarly, these mutations have been 
associated with the development of endocrine therapy 
resistance in breast cancer[15,73,74]. In the same way, the 
K303 residue is needed for ERα polyubiquitination and 
degradation, but this residue has been identified to be 
mutated as K303R in tumors of patients who have poor 
survival outcome and prognosis[46,74]. Other residues, such 
as S104, S106, S118, and S294, that seem to be related 
with ERα stability, have been found to be phosphorylated 
in breast tumor samples[15,73].

ERα POLYUBIQUITINATION INHIBITION 
IN BREAST CANCER AS A KEY FACTOR 
FOR THERAPEUTIC STRATEGY 
ERα polyubiquitination for its downregulation via the UPS, 
is a central mechanism of some endocrine therapies with 
SERDs, such as fulvestrant[46,75]. Clearly, the induction of 
ERα polyubiquitination for its degradation decreases the 
abundance and pro-tumor activity of ERα, consequently 

novel drugs including AZD9496[76], GDC-0810[77], ba-
zedoxifene[78], and RAD1901[79] have been synthetized 
as SERDs, but more studies are required. Despite the 
importance of SERDs in the therapy of breast cancer, 
EPIP are promising targets for the management of this 
disease. Remarkably, the proteins that inhibit the ERα 
polyubiquitination are enhanced in ERα+ breast cancers, 
contributing to disease progression. For this reason, 
EPIP may be useful as a biomarker for breast cancer and 
as a therapeutic target.

PIN1 is overexpressed in breast cancer and is related 
to mammary tumor growth, and epithelial-mesenchymal 
transition, and natural and synthetic inhibitors are being 
probed to control its activity[55,57,80-87]. Similarly, LMTK3 
overexpression stimulates cellular proliferation and tumor 
formation, and correlates with shorter survival times in 
ERα+ breast cancer, and resistance to Tam treatment, 
but these events are reduced when LMTK3 expression is 
decreased[58,88-90]. Moreover, CG0009, is a GSK3 inhibitor 
that decreases proliferation of breast cancer cells[61,73,91-94]. 

Another molecule is RNF31, whose overexpression 
increases ERα protein levels, expression of ERα target 
genes and the growth of breast cancer cells, and these 
events are decreased when RNF31 is abated[65]. Lastly, 
the loss of RB expression seems to be related to the 
loss of ERα stability in ERα negative (ERα–) breast 
cancers and with poor responses to hormonal therapies 
in patients[64,95-98]. Thus, these proteins can be potential 
biomarkers and target for the treatment of ERα+ breast 
cancer.

Among EPIIs, PEBP4 inhibits ERα polyubiquitination 
and enhances its transcriptional activity in breast 
cancer cells. Because PEBP4 is overexpressed in breast 
cancer and competes with ERα for components of 
the UPS, this protein may be an important target for 
breast cancer. Additionally, specific posttranslational 
modifications, such as palmitoylation, acetylation and 
phosphorylation, as well as, mutations of sites linked 
to ERα polyubiquitination and degradation, demands 
more research to find new strategies for detection and 
treatment of breast cancer.

Muc1 is an EPIP in breast cancer
Mucin 1 (MUC1) is a heterodimeric glycoprotein confor-
med by MUC1 N-terminal (MUC1-N) and MUC1 C-terminal 
(MUC1-C) subunits[52]. MUC1-N is an extracellular 
glycosylated subunit and MUC1-C is a transmembrane 
subunit with a cytoplasmic domain that interacts with 
diverse proteins[54]. MUC1 is localized on the apical borders 
in normal mammary epithelium, but under breast cancer 
conditions, it also localizes to the nucleus. An aberrant 
expression of MUC1-C is detected in breast cancer cells 
through a regulation loop that implicates Rab31 protein 
inhibits the lysosomal degradation of MUC1-C, and 
Rab31 gene expression is induced by MUC1-C[52-54,99]. 
Furthermore, MUC1 is upregulated in 90% of breast 
cancers, where the expression of Rab31 gene and other 
genes associated with endocrine resistance are modu-
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lated by the MUC1-C/ERα complex. For these reasons, 
MUC1 has been suggested as a potential biomarker 
of breast cancer and predictor of resistance to Tam 
treatment[51,100,101] (Figure 3).

Interestingly, MUC1-C subunit interacts with DBD 
of ERα promoting (1) Inhibition of ERα polyubiquitination 
maintaining high levels of this receptor; (2) a stable 
complex between MUC1-C and ERα; and (3) an en-
hancement in the pro-tumor transcriptional activity of 
ERα since SRC1 and GRIP coactivators with histone ace-
tyltransferase activity are recruited by MUC1[50]. Thus, 
MUC1-C increases the growth and survival induced by 
E2 in breast cancer cells, but also transformation, loss 
of cellular polarity, cellular proliferation and migration, 
anchorage-independent growth , and tumorigenicity in 
transgenic mouse models[51,99,102-104].

Remarkably, MUC1 is an EPIP involved in prolifera-
tion and endocrine resistance[50,53,54,100,105], inhibited by 
miR-125b[106], miR-145[104], miR-1226[103], and by specific 
siRNAs, inducing apoptosis, reducing cell proliferation, and 
increasing sensitivity to Tam[100]. Similarly, apigenin[107], 
and the synthetic peptides GO-201[54] and GO-203[100], 
affect localization and dimerization of MUC1, and as a 
result, tumor development is decreased, and sensitivity 
to Tam is increased[54,100,107]. Moreover, MUC1-based 
rBCG (Bacillus Calmette-Guerin) vaccines induce anti-
MUC immune responses inhibiting the growth of tumors 
in mice[108,109]. Interestingly, high levels of Rab31 antigen 
have been associated with a proliferative status, a high 
tumor grade, and with poor 5-year disease-free survival 

in patients with ERα+ breast cancer. Consequently, the 
Rab31 antigen levels in mammary tumors have been 
suggested as a biomarker for ERα+ breast cancers that 
may also to be useful in the selection of patients for 
MUC1-targeted therapeutic strategies[110].

CONCLUSION
Several mechanisms seem to cooperate to inhibit ERα 
polyubiquitination, decreasing its degradation in ERα+ 
breast cancer cells. These cells become resistant to 
ERα polyubiquitination due to the evident upregulation 
of proteins, modifications, and mutations that protect 
it from ubiquitination. There is no pattern of the cha-
racteristics of the inhibitor or protector proteins for 
ERα polyubiquitination. Some of the reported EPIPs are 
MUC1, GSK3, LMTK3, RNF8, RNF31, SHARPIN, SMURF1, 
RB, and PIN1. All of them inhibit ERα polyubiquitination 
and its degradation in a dissimilar manner, via subce-
llular compartments or mechanisms. Some of them can 
be grouped as coactivators for ERα (MUC1, PIN1, and 
RNF8), kinases for ERα (GSK3, LMTK3, and ABL1), E3 
ubiquitin ligase (RNF8, RNF31, SHARPIN, and SMURF1), 
and scaffold protein (RB). Amongst these different 
mechanisms, the participation of E3-ubiquitin ligases, 
such as RNF8, RNF31, and SHARPIN, are interesting, 
since they catalyze ERα monoubiquitination, suggesting 
a possible competition between monoubiquitination and 
polyubiquitination of this receptor.

Considering the findings described above, inhibition 

Figure 3  Mucin 1 is an estrogen receptor α polyubiquitination inhibitor protein in breast cancer cells.

MUC1 breast cancer ERα +

Inhibition of ERα polyubiquitination and degradation

E2

ERα MUC1

Stable 
transcription

complex
(ERα-MUC1)

Expression of genes 
associated with 

proliferaction, survival, 
and endocrine resistance 

as Rab31

Recruitment of coactivator 
to enhance ERα-dependent 

transcription

MUC1 inhibitors 
miRNAs (125b, 145, 1226)
Apigenin
Synthetic peptides (GO-201, GO-203)
MUC1-based rBCG vaccines

Tecalco-Cruz AC et al . Polyubiquitination inhibition of estrogen receptor in breast cancer

August 13, 2018|Volume 9|Issue 4|



66WJCO|www.wjgnet.com

of ERα polyubiquitination, increases its abundance, 
and the expression of E2-dependent genes linked 
to proliferation and tumor development. In addition, 
inhibition of ERα polyubiquitination may have other ser-
ious implications, since it has been reported that this 
modification and proteasome activity are coupled to the 
transcriptional cycle of this receptor[45]. Moreover, it has 
been proposed that high ERα protein levels are related 
to ERα binding to other DNA regulatory regions of genes 
that are atypically activated under this condition[111]. 
Thus, inhibition of ERα polyubiquitination and its de-
gradation increases the stability of this receptor, but also 
affects ERα/E2 signaling and its transcriptional activity, 
involved with the development of tumor and endocrine 
resistance[111,112] (Figure 4).

Importantly, there is an interplay between inhibition 
of ERα polyubiquitination and endocrine therapy re-
sistance in ERα+ breast cancer, promoted by EPIP 
and EPII [49,50,58,65]. In contrast, in luminal B breast can-
cers or ERα– breast cancers, RB is commonly lost or 
dysfunctional, leading to high levels of polyubiquitina-
tion and degradation of ERα, with a poor prognosis 

for patients. Therefore, EPIP, EPII, and mutations 
and modifications that inhibit ERα polyubiquitination 
and degradation may act in a cooperative manner to 
enhance the stability of the receptor in the progression 
of breast cancer. Consequently, the mechanisms invol-
ved in the inhibition of ERα polyubiquitination represent 
useful biomarkers, therapeutic targets, and prognostic 
indicators of endocrine therapy in breast cancer.

In conclusion, EPIP, EPII, and mutations and modifi-
cations associated to ERα polyubiquitination inhibition, 
enhance the signaling pathways of this receptor. These 
findings represent a new field in breast cancer, for the 
establishment of potential biomarkers, as well as, in 
the design of effective therapeutic targets to control the 
progression of this disease. Integration between the 
molecular basis of ERα inhibition and its correlation with 
the progression of breast tumors remains to be elicited.
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Figure 4  Mechanisms implicated in the estrogen receptor α polyubiquitination inhibition. Half-life of estrogen receptor α protein oscillates between 3-5 h under 
basal condition. E2 treatment induces ERα polyubiquitination, and as result: (1) Degradation of this receptor is promoted, decreasing its protein levels starting from 1h 
after treatment; (2) the ERα transcriptional cycle is activated. ERα polyubiquitination inhibitor proteins (EPIP) and ERα polyubiquitination indirect inhibitors (EPII) and 
other modifications increased in breast cancer cells can inhibit the basal and E2-induced polyubiquitination of ERα; resulting in (3) the inhibition of its degradation and 
an enhancement in the ERα protein levels; (4) alterations in the transcription cycle of this receptor and the expression of its targets genes; and (5) these events seem 
to be associated with endocrine resistance and progression of breast cancer.
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