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Abstract
The programmed death protein 1 (PD-1) and its ligand (PD-L1) represent a well-characterized immune checkpoint in cancer,
effectively targeted by monoclonal antibodies that are approved for routine clinical use. The regulation of PD-L1 expression
is complex, varies between different tumor types and occurs at the genetic, transcriptional and post-transcriptional levels.
Copy number alterations of PD-L1 locus have been reported with varying frequency in several tumor types. At the
transcriptional level, a number of transcriptional factors seem to regulate PD-L1 expression including HIF-1, STAT3, NF-
κΒ, and AP-1. Activation of common oncogenic pathways such as JAK/STAT, RAS/ERK, or PI3K/AKT/MTOR, as well as
treatment with cytotoxic agents have also been shown to affect tumoral PD-L1 expression. Correlative studies of clinical
trials with PD-1/PD-L1 inhibitors have so far shown markedly discordant results regarding the value of PD-L1 expression as
a marker of response to treatment. As the indications for immune checkpoint inhibition broaden, understanding the
regulation of PD-L1 in cancer will be of utmost importance for defining its role as predictive marker but also for optimizing
strategies for cancer immunotherapy. Here, we review the current knowledge of PD-L1 regulation, and its use as biomarker
and as therapeutic target in cancer.

Introduction

Cancer development and progression raises a strong anti-
tumor immune response through which the immune system
can eliminate cancer cells. This immunosurveillance theory
describes the complex interactions between immune and
cancer cells, divided in three distinct but often overlapping
stages: elimination, equilibrium, and evasion. Thus, tumors
can suppress immunity and escape eradication; evading
immune destruction has been characterized as a hallmark of
cancer [1, 2].

Programmed death protein 1 (PD-1) and its ligand (PD-
L1) have been recognized as inhibitory molecules that cause
impaired immune response against cancer cells. Therapeutic
antibodies targeting PD-1/PD-L1 have been introduced into
clinical practice, leading to better patient outcomes [3].
Immune checkpoint regulation has been under intense
investigation over the last decades, however, the underlying
mechanisms regulating the PD1 and PD-L1 expression are
not fully understood; several oncogenic signaling pathways,
epigenetic modifications, and genetic variations have been
suggested. The aim of this review is to summarize the
current knowledge on PD-L1 regulation and its emerging
role as a target in cancer immunotherapy.

Immune surveillance: the role of PD-1/PD-L1
axis as immune checkpoint

PD-1 (CD279) is a transmembrane protein, member of the
CD28 family. It is mainly expressed on activated T cells but
it can also be detected in other cells such as B- and natural
killer (NK) cells upon induction [4]. PD-1 has two ligands,
PD-L1 (CD274, B7-H1) and PD-L2 (CD273, B7-DC),
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which belong to the B7-CD28 protein family [5]. PD-L1 is
expressed on tumor cells but it can also be present on the
surface of other cell types including T cells, B cells, den-
dritic cells, macrophages, mesenchymal stem cells, epithe-
lial, endothelial cells, and as recently shown, brown
adipocytes [6]. PD-L2 is typically expressed in antigen-
presenting cells (APCs). PD-L1 is expressed upon stimu-
lation of cytokine interferon-γ (IFNg), secreted by activated
T cells [7, 8].

PD-L1 and PD-L2 are encoded by the CD274 and
PDCD1LG2 genes, respectively, located on chromosome
9p.24.1, whereas PD-1 is encoded by the PDCD1 gene
located on chromosome 2q37.3 [4].

PD-1/PD-L1 axis plays an important role in the regula-
tion of T-cell immunity and has been also implicated in
autoimmunity and infection [9]. The PD-1/PD-L1 interac-
tion has been characterized as an “immune checkpoint” due
to its impact on the orchestration of immune response
against tumor antigens. Along with cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4, CD152), they
represent immunological “brakes” that modulate T-cell
activation leading to an impaired immunosurveillance.

T-cell activation involves a two signal-model; APCs
require a first signal from T-cell receptor (TCR), which
recognizes the antigen along with the major histocompat-
ibility complex (MHC) presented on the surface of APC.
The second signal includes the co-stimulatory interaction
between CD28 on the surface of T cells and CD80 (B7.1) or
CD86 (B7.2) on the surface of APC [10, 11].

The engagement of PD-1 with its ligands leads to the
inhibition of T-cell activation and response, via mechanisms
that include blocking of proliferation, induction of apopto-
sis, and regulatory T-cell differentiation and therefore
immune inhibition [11]. Blocking the PD-1/PD-L1 axis
with potent monoclonal antibodies may reverse the
impaired anticancer immunity and thus represents an
appealing target of cancer immunotherapy [12].

The genetic basis of PD-L1 expression in
cancer

The genetic aberrations of the PD-L1/PD-L2 gene loci
represent a key mechanism of PD-L1 expression both in
solid and hematologic tumors. Studies of copy number
alterations (CNAs) have been reported in several tumor
types (Table 1). The highest frequencies of CNAs have
been seen in squamous cell carcinomas of vulva and cervix
and triple-negative breast cancer (TNBC), as well as in
classical Hodgkin lymphoma (cHL) and primary mediast-
inal B-cell lymphoma (PMBCL). Contrary, low or absent
CNAs have been reported in small and non-small cell lung
cancer (NSCLC) and in diffuse large B-cell lymphomas

(DLBCL). In general, copy number gains and especially
amplifications are well correlated with the protein levels of
PD-L1. Given the challenges in determining the protein
levels of PD-L1 as detailed below, detection of CNAs is an
attractive alternative for identifying patients who could
benefit from treatment with checkpoint inhibitors. Table 1
summarizes the current literature of the genetic regulation of
PD-L1 [13–28]. In addition to these individual studies, a
large in silico analysis of CNAs in PD-L1 has been con-
ducted using the Cancer Genome Atlas datasets (22 cancer
types, 9771 tumors). Interestingly, deletions of 9p24.1 were
more common than gains in this analysis and were found
mostly in melanoma and NSCLC, with gains occurring
frequently in ovarian, head and neck, bladder, and cervical
carcinomas [29].

Furthermore, a novel genetic regulatory mechanism of
PD-L1 gene expression involving the disruption of its 3′
untranslated region (3′-UTR) has been shown in multiple
tumor types including T-cell leukemia/lymphoma, DLBCL,
and gastric adenocarcinoma. Through interruption of PD-L1
3′-UTR by structural variation, a deviant increase in PD-L1
transcripts occurs leading to immune escape in murine EG7-
OVA cancer cells, which in turn can be reversed by PD-L1/
PD-1 inhibition [30].

PD-L1 regulation via oncogenic signaling
pathways

RAS/RAF/MEK/MAPK-ERK pathway

The mitogen-activated protein kinase (MAPK) pathway is
crucial for various functions in normal cells, including
growth and differentiation. Its role is also important in
carcinogenesis because its activation leads to cancer
development [31]. The ERK-MAPK pathway has been
shown to regulate PD-L1 expression in different cancer
types. Both pharmacologic inhibition of mitogen-activated
protein kinase (MEK) and small interfering RNA (siRNA)
knockdown of ERK1/2 resulted in decreased levels of PD-
L1 in melanoma cells resistant to BRAF inhibition [32].
Interestingly, in TNBC cells, MEK inhibition resulted in
upregulation of MHC II and PD-L1 expression both in vitro
and in vivo, whereas combined MEK/PD-1 inhibition
increased the effectiveness of antitumor immunity [33].
MAPK signaling pathway was also responsible for the
ectopic expression of PD-L1 in v-Ki-ras2 Kirsten rat sar-
coma viral oncogene homolog (KRAS)-mutant NSCLC cell
lines, as revealed by the decrease in PD-L1 levels after both
MEK and extracellular signal-regulated MAP kinase (ERK)
abrogation [34]. In another study, Toll-like receptor 4
activation resulted in upregulation of PD-L1 in bladder
cancer cells. The use of both ERK and JNK inhibitors
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abrogated PD-L1 expression, further supporting the con-
tribution of MAPK signaling in PD-L1 regulation [35].
Moreover, the interaction of tyrosine kinase receptor c-Met
with its ligand hepatocyte growth factor (HGF) induced Ras
activation. Ablation of Ras effect led to downregulation of
c-Met-mediated expression of PD-L1 in renal cancer cells
[36].

KRAS activation may also induce PD-L1 expression, as
it resulted in stabilization of PD-L1 mRNA transcript
assessed through Adenylate-uridylate-rich elements identi-
fication in its 3′-UTR in lung cancer cell lines. Additionally,
MEK and Phosphoinositide 3-kinase (PI3K) inhibition led
to decreased PD-L1 levels and enhanced effectiveness of
antitumor immunity in vivo [37].

PI3K/PTEN/Akt/mTOR pathway

The PI3K/Akt/mTOR signaling represents another pathway
that affects immune surveillance through the regulation of
PD-L1. Its activation by either oncogenic PIK3CA muta-
tions (catalytic subunit alpha of PI3K) or by loss-of-
function mutations of its negative regulator, phosphatase
and tensin homolog (PTEN) modulates immune responses
contributing to a survival benefit of cancer cells [38]. In
human gliomas, loss of PTEN and activation of PI3K
pathway enhanced PD-L1 expression [39]. In TNBC,
knockdown of PTEN by short hairpin RNA resulted in
elevated levels of both PD-L1 protein expression and
mRNA transcripts, whereas inhibition of Akt and

mechanistic target of rapamycin (mTOR) decreased PD-L1
expression [40]. In a murine model of lung SCC, concurrent
inactivation of PTEN and Lbk1 resulted in increased levels
of PD-L1 [41]. PI3K inhibition, resulted in PD-L1 down-
regulation in different cancer types including renal cell
carcinoma through HGF/c-Met [36], KRAS- or EGFR-
mutated NSCLC [42] and melanoma [32]. Conversely,
LY294002 did not abrogate PD-L1 expression in bladder
cancer cells [35]. Moreover, mTOR inhibition with rapa-
mycin reduced levels of PD-L1, both in human cell lines
and in murine models of NSCLC and combined treatment
with rapamycin and anti-PD-1 antibody inhibited tumor
growth in mice [42].

Epidermal growth factor receptor (EGFR)

EGFR is commonly mutated in NSCLC and has been
associated with PD-L1 upregulation in these tumors [43].
PD-L1 was overexpressed in EGFR-mutant murine lung
cancer, whereas treatment with an anti-PD-1 antibody
restrained tumor growth. Forced ectopic expression of
mutant EGFR on bronchial epithelial cells resulted in PD-
L1 upregulation, whereas this effect was abolished upon
treatment with EGFR tyrosine kinase inhibitors [44, 45].
The EGFR-mediated regulation of PD-L1 in EGFR mutant
NSCLC was dependent on MAPK pathway activation.
Inhibition of ERK1/2/c-Jun resulted in reduced PD-L1
levels in PD-L1 overexpressing lung cancer cells [46]. In
another more recent study, EGFR was shown to regulate the

Fig. 1 Transcriptional and post-
transcriptional control of PD-L1
in cancer. Regulation of PD-L1
is complex and occurs at
different levels. Several
signaling pathways are involved
including RAS/RAF/MEK/
MAPK-ERK and PI3K/PTEN/
Akt/mTOR. Their activation by
oncogenic and/or loss-of-
function mutations can lead
either to direct action on target
genes or to the activation of
transcription factors. Such
molecules as STAT3, STAT1, c-
Jun, HIFs, or NF-κB can shuttle
into the nucleus, bind to specific
sites on PD-L1 gene promoter
and induce its expression. PD-
L1 is also regulated post-
transcriptionally by microRNAs,
which bind to mRNA and lead
to its translational repression or
enhancement
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expression of PD-L1 through the activation of Interleukin-6
(IL-6)/Janus Kinase (JAK)/signal transducer and activator
of transcription 3 (STAT3) pathway in EGFR-driven
NSCLC [47].

EML4-ALK

PD-L1 upregulation has been observed in patients with
NSCLC harboring the anaplastic lymphoma kinase (ALK)
and echinoderm microtubule-associated protein like-4
(EML4) chromosomal rearrangement. Activation of
EML4-ALK was associated with increased PD-L1 expres-
sion; furthermore, treatment with either the ALK inhibitor
alectinib or ALK gene silencing with siRNA abrogated this
effect. Notably, PD-L1 upregulation was dependent on
MAPK/ERK/MEK and PI3K/Akt signaling pathways [48].
In another study using pulmonary adenocarcinoma cell
lines, EML4-ALK transcriptionally regulated PD-L1 via
STAT3 and HIF-1a [49]. These studies indicate the differ-
ent ways in which this chimeric protein can regulate the
expression of PD-L1 and thus reveal the complexity of
signaling pathways and their downstream targets. The var-
ious crosstalks in the cellular level can influence anticancer
immunity and at the same time offer possible appealing
therapeutic targets.

Transcriptional control of PD-L1

The transcriptional regulation of PD-L1 is summarized in
Fig. 1.

The JAK/STAT pathway

STAT3 plays a key role in promoting cancer cell survival
and proliferation, as well as creating immunosuppressive
and thus pro-carcinogenic conditions in the tumor micro-
environment (TME) [50]. Furthermore, STAT3 is involved
in PD-L1 regulation in various cancer types. In
nucleophosmin-anaplastic large-cell lymphoma kinase
(NPM-ALK) positive anaplastic large-cell lymphoma
(ALCL), STAT3 is activated by NPM-ALK oncoprotein
through JAK3 activation, binds physically to the PD-L1
gene promoter, and induces its expression in vitro and
in vivo [51]. This STAT3-mediated transcriptional regula-
tion of PD-L1 has been recently shown in another T-cell
lymphoma, namely the ALK-negative ALCL. STAT3 gene
silencing led to decreased PD-L1 levels in ALK-ALCL [52]
and also in KRAS-mutant NSCLC cell lines [34]. By con-
trast, chromatin immunoprecipitation analysis did not show
active binding of STAT3 directly on the promoter of PD-L1
in melanoma cells, despite the presence of putative binding
sites of STAT3 on the promoter identified in silico.

Abrogation of STAT3 resulted in enhancement of PD-L1
construct activity mediated by IFNg [53]. PD-L1 was also
induced by latent membrane protein-1 in Epstein–Barr virus
(EBV)-associated nasopharyngeal carcinomas (NPC)
through JAK3/STAT3 activation [54].

Another STAT family member, STAT1, is considered to
be a tumor suppressor that reduces proliferation, induces
apoptosis, and enhances cancer immunosurveillance [55].
Accumulating evidence indicates the emerging role of
STAT1 in tumor growth, immune suppression, and ther-
apeutic resistance [56]. Upon stimulation with IFNg,
STAT1 activation resulted in PD-L1 upregulation and in
reduction of NK-cell activity against tumor cells in multiple
myeloma, acute myeloid leukemia (AML), and acute lym-
phoblastic leukemia (ALL) [57]. Similarly, STAT1 inhibi-
tion led to decreased PD-L1 levels in myeloma cells and
thus suppressed the antitumor function of cytotoxic T cells
[58]. PD-L1 upregulation was JAK2/STAT1-dependent in
head and neck cancer with wild-type EGFR, whereas JAK2
inhibition resulted in both basal and EGF-mediated down-
regulation of PD-L1. Moreover, knockdown of STAT1
gene abolished both IFNg- and EGF-mediated upregulation
of PD-L1. Of note, EGFR activation promotes phosphor-
ylation of STAT1, which in turn binds to the promoter of
PD-L1 and controls its expression [59]. Although putative
binding sites for STAT1 on PD-L1 promoter have been
postulated, active binding of STAT1 on PD-L1 gene pro-
moter could not be demonstrated in melanoma cells [53].

Interferon regulatory factor 1 (IRF1) is a downstream
effector of STAT1 upon IFNg stimulation. Its role is crucial
in both constitutive and IFNg-mediated upregulation of PD-
L1. Inhibition of IRF1 activity or expression resulted in
decreased PD-L1 levels in human lung cancer cells [60].
The key role of IRF1 and interferon receptor pathway in the
regulation of PD-L1 has also been implied in melanoma,
where putative binding sites for IRF1 have been identified
in the PD-L1 promoter and abrogation of IRF1 site resulted
in reduced PD-L1 levels [53, 61]. Recently, another novel
mechanism of PD-L1 regulation by DNA double-strand
breaks (DSBs) was unveiled. This DSB-dependent PD-L1
upregulation was mediated by the activation of STAT1/
STAT3 phosphorylation and IRF1 [62].

Hypoxia-inducible factors (HIFs)

Hypoxia signaling represents an important pathway in
oncogenesis. HIF-1a and HIF-2a are the major components
of a transcriptional complex, through which tumor cells
adapt to hypoxic conditions. HIF stabilization leads to its
binding to specific regions called hypoxia response ele-
ments (HRE) on certain gene promoters [63]. High levels of
HIF-1 have been correlated with both worse outcomes and
resistance to cytotoxic therapy [64]. Intriguingly, HIF-1
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expression by different cellular sub-populations of the
innate and adaptive immunity can modify antitumor activity
by repressing the effective T-cell response and alter TME to
promote tumor cell survival [63]. A recent study revealed
that HIF-1α guided CD8+ T-cell migration and function,
whereas its depletion on T cells resulted in increased tumor
growth and impaired antitumor control [65]. One of the
mechanisms by which hypoxia signaling impairs T-cell
functionality is the induction of PD-L1 on myeloid-derived
suppressor cells under hypoxic conditions. Indeed, HIF-1a
transcriptionally regulates PD-L1 expression by binding on
HRE of its promoter [66]. Furthermore, PD-L1 may be a
target of HIF2a in clear cell renal cell carcinoma (ccRCC)
cells in which the tumor-suppressor pVHL was abrogated.
Upon deficiency of pVHL increased PD-L1 levels, asso-
ciated with HIF-2a activation, were observed in vitro [67].
Similar results were obtained from ccRCC patient samples
with VHL loss-of-function mutations, where a positive
correlation was seen between PD-L1 expression, HIF-2a
expression and VHL mutations. Of note, HIF-2a tran-
scriptionally regulates PD-L1 by binding to the active HRE
of its promoter [68]. Moreover, STAT3 can cooperate with
HIF-1, but not HIF-2, in the regulation of HIF target genes
in response to hypoxia. Inhibition of STAT3 expression or
activity in breast and RCC cell lines reduced the expression
of genes targeted by HIF-1 [69]. These findings support the
idea of combining HIF-targeting therapies and
immunotherapy.

The role of nuclear factor kappa B (NF-κB)

NF-κB is a master transcription factor activated in several
cancer types, promoting inflammation, inhibiting apoptosis,
and impairing effective antitumor immunity [70]. The NF-
κB family contains seven members, with the most repre-
sentative being the p65 RelA/p50. This cytoplasmic het-
erodimer translocates to the nucleus and acts as a
transcription factor of κB upon degradation of the IκΒ-α
inhibitor [71, 72]. In melanoma cells, NF-κB mediated PD-
L1 overexpression induced by IFN-γ. PD-L1 upregulation
by NF-κΒ was independent of STAT3 and c-Jun, whereas
targeting of MAPK and PI3K signaling pathways had a
minor impact on PD-L1 expression [72]. Notably, STAT3
regulates and cooperates with NF-κΒ in additional cancer
types [73]. For example, PD-L1 regulation may be depen-
dent on p65/NF-κB and mediated by LMP1 in EBV-
positive NPC, as inhibition of NF-κB activity resulted in
decreased PD-L1 levels [54].

The Myc oncogene

Myc plays a pivotal role in carcinogenesis by controlling
cell proliferation and survival in various cell systems.

Tumor regression after Myc inactivation is associated with a
not fully understood immune response, as reflected by the
accumulation of CD4+ T cells [74–76]. Furthermore, a
novel role of Myc was recently revealed in the context of
avoiding effective cancer immunosurveillance. Using a Tet-
off MYC-dependent mouse model of T-ALL (MYC T-
ALL), Casey et al. showed that Myc transcriptionally reg-
ulates PD-L1 and CD47, an inhibitory regulator of the
innate immune system [77]. Moreover, forced expression of
PD-L1 and CD47 upon Myc inactivation was correlated
with worse antitumor immune response as indicated by the
reduction of macrophages and CD4+ T cells in TME,
tumor progression, and maintenance of angiogenesis and
senescence [78]. Elucidating the role of Myc in the reg-
ulation of immune-mediated antitumor response, the
potential crosstalks with other oncogenic pathways and the
immune infiltrate in TME may pave the way for the use of
immune checkpoint inhibitors in patients with Myc-
overexpressing tumors [79]. A recent work on ALK-
negative ALCL also supports a Myc-mediated regulation
of PD-L1, as forced expression of Myc led to PD-L1
upregulation in cell lines showing low baseline levels of
PD-L1. Similarly, both inhibition and silencing of Myc
resulted in PD-L1 downregulation in lymphoma cells [52].

The bromodomain and extraterminal (BET) protein
BRD4

BET proteins modulate gene expression through enzymes
that regulate chromatin and histone modification [80].
Specifically, the BET protein BRD4 acts through RNA
polymerase II by binding to the acetyl-lysine region of
histones [81]. Inhibition of BRD4 by the JQ1 inhibitor
decreased PD-L1 expression and tumor growth. BRD4 gene
silencing also resulted in decreased PD-L1 levels in mouse
models and in ovarian cancer cell lines. Notably, BRD4
transcriptionally regulated PD-L1 by binding on its pro-
moter [82]. Similarly, in a recent study on B-cell lym-
phoma, BET inhibitors enhanced effective antitumor
immunity through regulation of PD-L1, whereas inhibition
and genetic ablation of BRD4 resulted in suppression of
PD-L1 expression in a transcriptional, Myc-independent,
manner. Moreover, BRD4 synergized with IRF1 to regulate
PD-L1 expression induced by IFN-γ [83]. Also, another
BET inhibitor (I-BET151) was shown to abrogate NF-Κβ
activity in melanoma, both in vitro and in vivo, thus
indirectly affecting PD-L1 expression [84].

Histone deacetylases (HDACs)

The role of the epigenetic modifiers HDACs in the mod-
ification of non-histone targets, including those participat-
ing in tumor-host interactions, has recently been
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investigated [85, 86]. In a study in melanoma, both inhi-
bition and depletion of HDAC6 resulted in reduced PD-L1
levels in vitro and in vivo. PD-L1 regulation by HDAC6
was mediated by STAT3 and both HDAC6 and STAT3
were recruited to the PD-L1 gene promoter [87]. It should
be noted that HDAC have pleiotropic effects within both the
innate and adaptive immune response, and may thus affect
PD-L1 levels via interferons [88].

The role of cell cycle

Cyclin-dependent kinases (CDKs) have a key role in cell
cycle [89]. Cyclin-dependent kinase 5 (Cdk5) is a serine-
threonine kinase important in central nervous system
function [90] and other cellular functions [91, 92]. In a
study of medulloblastoma, depletion of Cdk5 led to the
upregulation of interferon regulatory factor 2 and interferon
regulatory factor binding protein 2, which in turn, sup-
pressed the expression of PD-L1. Cdk5 was thus necessary
for PD-L1 upregulation after IFN-γ stimulation through
STA1/IRF1 axis and its disruption led to tumor rejection in
a CD4+ T-cell-dependent manner in medulloblastoma
mouse models [93]. These data highlight Cdk5 as a novel
target for interventions in combination with immune
checkpoint blockade. Additionally, CDK4/6 inhibition has
been recently shown to enhance antitumor immunity
through increased T-cell cytotoxicity and Treg suppression
[94]. This is discussed in detail in the post-translational
regulation of PD-L1 hereunder.

The AP-1 transcription factors

c-Jun, the best known member of the AP-1 family, repre-
sents another transcription factor that is implicated in PD-
L1 gene regulation. Knockdown of c-Jun resulted in
decreased levels of PD-L1 in melanoma cells resistant to
BRAF inhibitors [32], and co-activation of STAT3 and the
subsequent formation of a transcriptional complex further
enhanced these effects [95]. Similarly, combined knock-
down of c-Jun and STAT3 genes in the same melanoma
model showed a synergistic effect on PD-L1 down-
regulation [32]. Additionally, c-Jun and JUNB have been
shown to bind AP-1 sites in the PD-L1 promoter in HL cells
[96] and in KRAS-mutant NSCLC. In lung adenocarcinoma
cell lines, the transcriptional activity was subjected to
MAPK signaling pathway [34]. MAPK/AP-1 was also
shown to contribute to LMP1-mediated upregulation of PD-
L1 in EBV-associated NPC [54].

The ambivalent role of p53

The tumor-suppressor gene p53 has been implicated in
antitumor immunity by regulating several genes involved in

the immune system. Indeed, immune checkpoint regulation
has been shown to represent a major target of p53 [97].
Paradoxically, activation of wild-type p53 using the small
molecule Nutlin-3a resulted in increased expression of PD-
L1 in human breast cancer [98] and in ALK-negative ALCL
cells [52]. In p53-mutated NSCLC, downregulation of miR-
34 resulted in increased PD-L1 levels [99], whereas an
inverse correlation between miR-34a and PD-L1 was also
confirmed in AML [100].

MicroRNAs

MicroRNAs can bind to 3′-UTR of mRNAs and lead to
their degradation or translational repression [101]. MiR-513
was shown to increase PD-L1 expression in cholangiocytes
[102], whereas mutation in the 3′-UTR of PD-L1 mRNA
led to overexpression of the protein by preventing miR-570
binding in gastric cancer [103, 104]. On the contrary, miR-
197 downregulated PD-L1 by affecting STAT3 in platinum-
resistant NSCLC [105], whereas miR-138-5p was asso-
ciated with decreased levels of PD-L1 in colorectal cancer
(CRC) [106]. Also in CRC, miR-20b, miR-21, and miR-
130b caused PD-L1 upregulation through attenuation of
PTEN [107].

Post-translational regulation of PD-L1

The role of ubiquitination

In a recent study by Lim et al., a novel regulatory
mechanism involving the fifth protein element of
COP9 signalosome complex (CSN5), also known as Jab1,
was revealed in breast cancer. CSN5 has been associated
with increased proliferation, decreased apoptotic rates, and
survival of cancer cells [108]. Under chronic inflammatory
conditions, tumor necrosis factor alpha (TNF-α), secreted
mostly by macrophages, led to PD-L1 stabilization and
therefore to an immunosuppressive profile of the tumor
environment [61]. The stabilization of PD-L1 by TNF-a was
shown to be mediated by NF-κΒ subunit RelA/p65, which
binds on the promoter of CSN5 gene and has a direct effect
on its regulation. CSN5 in turn, prevents the ubiquitination
of PD-L1, hinders its degradation and as a result enhances
tumor escape from immunosurveillance. Indeed, CSN5
inhibition or gene silencing abolished PD-L1 expression
and tumor proliferation in vivo. Curcumin, a CSN5 inhi-
bitor, induced better responses to anti-CTLA-4 treatment
in vitro, indicating the potential of combinational adminis-
tration of immune checkpoint with CSN5 inhibitors [61,
109, 110]. In another in vitro study, induction of both PD-
L1 ubiquitination and PD-L1 protein levels was noted upon
treatment with epidermal growth factor. An increase of
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mono- and multiubiquitination of PD-L1 was seen, an effect
that was abrogated upon inhibition of the EGFR pathway
and/or ubiquitin E1 activating enzyme [111]. Furthermore, a
recent study demonstrated a novel role of cyclin D-CDK4
and cullin 3-speckle-type POZ protein (SPOP) E3 ligase in
regulating the expression of PD-L1. Cyclin D1-CDK4 was
shown to phosphorylate SPOP and lead to ubiquitination-
mediated PD-L1 destabilization. Thus, either inhibition of
CDK4/6 or loss-of-function mutations of SPOP led to
increased levels of PD-L1 and reduced tumor-infiltrating
lymphocytes. Additionally, treatment with a CDK4/6 inhi-
bitor and an anti-PD-1 antibody resulted in tumor regression
and improved survival in vivo [112].

Lysosomal-mediated degradation

CKLF-like MARVEL transmembrane domain containing
protein 6 (CMTM6) was recently identified as a novel
regulator of PD-L1 [113, 114]. CMTM6—a tetraspanin
protein—interacted with PD-L1 through its transmembrane
domain and regulated PD-L1 expression in cancer and
myeloid cells, both in vitro and in vivo [115]. Depletion of
CMTM6 did not influence the CD274 transcript, but led to
reduction of PD-L1 protein expression and augmentation of
antitumor immunity. The mechanism of action of CMTM6
involves the avoidance of PD-L1 lysosome-mediated
degradation, probably through prevention of its ubiquiti-
nation, as these two proteins are co-localized in the plasma
membrane [116].

The role of glycosylation

N-glycosylation represents a crucial post-translational mod-
ification determining protein formation, functionality, and
interaction with other proteins [117]. A novel association
between procedure-glycosylation and ubiquitination in the
regulation of PD-L1 has recently been unveiled. In basal-like
breast cancer cells, N-glycosylation of PD-L1 (highly at sites
N35, N192, N200, and N219) led to protein stabilization and
avoidance of its degradation by 26S proteasome. In contrast,
non-glycosylated forms interrelated with Glycogen synthase
kinase 3 beta (GSK3β), which in turn phosphorylated PD-L1
resulting in its degradation. Inhibition of GSK3β activity
augmented immune suppression by tumor cells both in vitro
and in vivo. Furthermore, EGFR promoted inactivation of
GSK3β, and EGFR signaling blockade reversed stabilization
of PD-L1 and led to enhanced antitumor responses [118]. In
another study, N-linked glycosylation of PD-L1 (gPD-L1)
was shown to increase PD-L1/PD-1 interaction, and conse-
quently immunosuppression in TNBC. Its targeting with
monoclonal antibodies or drug-conjugated gPD-L1 was thus
proposed as a promising target of post-translational mod-
ifications of immune checkpoints [119].

Effect of chemotherapy in PD-L1 expression

Chemotherapeutic agents, apart from their direct cytotoxic
effects on cancer cells, can also modulate immune respon-
ses against tumors [120, 121]. Treatment with paclitaxel,
etoposide and 5-fluorouracil induced PD-L1 expression in
breast cancer cell lines in a dose-dependent manner [122].
Paclitaxel was also associated with elevated levels of PD-L1
in human CRC and hepatocellular carcinoma cell lines. This
regulation was dependent on MAPK activation [123].
Likewise, cisplatin induced PD-L1 expression in hepatoma
cells in ERK1/2 phosphorylation-dependent manner [124].
In another study, doxorubicin led to PD-L1 downregulation
on cell surface and a simultaneous PD-L1 upregulation in
the nucleus of breast cancer cells. Nuclear PD-L1 expres-
sion was accompanied by nuclear AKT phosphorylation
and proved to be dependent on PI3K/AKT pathway,
whereas knockdown of PD-L1 was associated with
enhanced doxorubicin-mediated apoptosis [125].

Targeting immune checkpoint regulators:
the era of immunotherapy in cancer

The introduction of systemic cancer immunotherapy in
clinical practice significantly predates the first randomized
trials of immune checkpoint inhibitors. Despite the occur-
rence of rare, prolonged complete remissions in patients
with metastatic melanoma and ccRCC [126, 127], the use of
high-dose IL-2 was restricted by the significant, often fatal
adverse events and the need for intensive monitoring and
experience in its administration, whereas the use of IFNg in
ccRCC was characterized by its perceived low efficacy
[128]. The clinical application of cancer immunotherapy
had remained stagnant until the first checkpoint inhibitor
received regulatory approval for use in metastatic mela-
noma, the CTLA-4 inhibitor ipilimumab. Ipilimumab
exhibits several recurring characteristics of immunotherapy:
slow induction of response, a striking disassociation
between imaging-assessed objective responses and survival,
which led to the introduction of immune-related response
criteria [129], unique patterns of toxicity termed “immune-
related adverse events” [130] and robust, durable
improvements in terms of patient survival [131].

Shortly after the approval of ipilimumab the first trials of
PD-1 and later PD-L1 inhibitors were published. Their
results have vastly changed the treatment landscape in
multiple human malignancies, adding a new category of
effective and, compared with cytotoxic chemotherapy, less
toxic agents to the therapeutic armamentarium. The results
of the published phase 3 trials are presented in Table 2
[132–148], whereas a selection of ongoing randomized
trials in an ever-expanding list of indications, both at
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Table 3 Selected ongoing phase 3 trials of PD-1 and PD-L1 inhibitors

Disease Trial Clinical setting Clinicaltrials.gov
Identifier

Pembrolizumab

Breast cancer

TNBC KEYNOTE-119 Prior anthracycline/taxane, vs monochemotherapy NCT02555657

TNBC KEYNOTE-522 First line, chemotherapy ± pembrolizumab NCT03036488

TNBC Adjuvant in residual disease after neoadjuvant chemotherapy NCT02954874

HER2+ breast cancer First line, Paclitaxel/Trastuzumab/Pertuzumab ± pembrolizumab NCT03199885

Gastrointestinal cancer

Hepatocellular cancer KEYNOTE-394 Pretreated (sorafenib or oxaliplatin), vs placebo NCT03062358

Hepatocellular cancer KEYNOTE-240 Prior sorafenib, vs placebo NCT02702401

Gastric cancer KEYNOTE-063 Second line, vs paclitaxel NCT03019588

Esophageal cancer KEYNOTE-590 First line, cisplatin/5FU ± pembrolizumab NCT03189719

Esophageal cancer KEYNOTE-181 Second line, vs taxane or irinotecan NCT02564263

Colorectal cancer KEYNOTE-177 First line, microsatellite instability-high or mismatch repair
deficient, chemotherapy vs pembrolizumab

NCT02563002

Genitourinary cancer

Renal cell carcinoma KEYNOTE-564 Adjuvant, vs placebo NCT03142334

Renal cell carcinoma KEYNOTE-426 First line, pembrolizumab/axitinib vs sunitinib NCT02853331

Bladder cancer KEYNOTE-361 First line, chemotherapy vs pembrolizumab vs combination NCT02853305

Lung and head and neck cancer

NSCLC KEYNOTE-091 Adjuvant, vs placebo NCT02504372

NSCLC KEYNOTE-407 First line, squamous cell, chemotherapy ± pembrolizumab NCT02775435

NSCLC KEYNOTE-189 First line, non-squamous cell, chemotherapy ± pembrolizumab NCT02578680

SCLC KEYNOTE-604 First line, chemotherapy ± pembrolizumab NCT03066778

Mesothelioma PROMISE-Meso Second line, vs gemcitabine or vinorelbine NCT02991482

Head and neck cancer KEYNOTE-412 After chemoradiation, vs placebo NCT03040999

Head and neck cancer KEYNOTE-048 Chemotherapy vs pembrolizumab vs combination NCT02358031

Melanoma

Melanoma KEYNOTE-252 First line, pembrolizumab ± epacadostat NCT02752074

Melanoma Adjuvant, pembrolizumab vs ipilimumab vs interferon alfa-2B NCT02506153

Hematologic malignancies

Hodgkin’s lymphoma KEYNOTE-204 Relapsed/refractory disease, vs brentuximab vedotin NCT02684292

Multiple myeloma KEYNOTE-183 Relapsed/refractory disease, pomalidomide/dexamethasone ±
pembrolizumab

NCT02576977

Multiple myeloma KEYNOTE-185 First line, lenalidomide/dexamethasone ± pembrolizumab NCT02579863

Nivolumab

Gastrointestinal cancer

Hepatocellular cancer First line, vs sorafenib NCT02576509

Gastric cancer CheckMate 649 First line, nivolumab/ipiliumab vs nivolumab/chemotherapy vs
chemotherapy

NCT02872116

Esophageal and junction
cancer

CheckMate 577 Adjuvant, vs placebo NCT02743494

Esophageal cancer CheckMate 648 First line, nivolumab/ipilimumab vs nivolumab/chemotherapy vs
chemotherapy

NCT03143153

Esophageal cancer Second line, vs taxane NCT02569242

Genitourinary cancer

Bladder cancer CheckMate 274 Adjuvant, vs placebo NCT02632409

Bladder cancer CheckMate 901 First line, nivolumab/ipilimumab vs chemotherapy NCT03036098
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Table 3 (continued)

Disease Trial Clinical setting Clinicaltrials.gov
Identifier

Renal cell carcinoma CheckMate 9ER First line, nivolumab/ipilimumab vs nivolumab/cabozantinib vs
sunitinib

NCT03141177

Lung and head and neck cancer

NSCLC ANVIL Adjuvant, vs placebo NCT02595944

NSCLC CheckMate 816 Neoadjuvant, nivolumab/ipilimumab vs chemotherapy NCT02998528

NSCLC Stage III, after chemoradiation vs placebo NCT02768558

NSCLC CheckMate 227 First line, nivolumab/ipilimumab vs nivolumab vs nivolumab/
chemotherapy vs chemotherapy

NCT02477826

SCLC CheckMate 451 Maintenance after first line, nivolumab/ipilimumab vs
nivolumab vs placebo

NCT02538666

Mesothelioma CheckMate 743 First line, nivolumab/ipilimumab vs chemotherapy NCT02899299

Mesothelioma CONFIRM Pretreated, vs placebo NCT03063450

Head and neck cancer CheckMate 651 First line, nivolumab/ipilimumab vs chemotherapy NCT02741570

Melanoma

Melanoma CheckMate 915 Adjuvant, nivolumab/ipilimumab vs nivolumab vs ipilimumab NCT03068455

Melanoma First line BRAF V600E, dabrafenib/trametinib→ nivolumab/
ipilimumab vs nivolumab/ipilimumab→ dabrafenib/trametinib

NCT02224781

Hematologic malignancies

Hodgkin’s lymphoma CheckMate 812 Relapsed/refractory disease, nivolumab/brentuximab vedotin vs
brentuximab vedotin

NCT03138499

Multiple myeloma CheckMate 602 Relapsed/refractory disease, pomalidomide/dexamethasone ±
nivolumab vs nivolumab/pomalidomide/elotuzumab/
dexamethasone

NCT02726581

Other tumors

Glioblastoma CheckMate 143 Second line, nivolumab/ipilimumab vs nivolumab vs
bevacizumab

NCT02017717

Glioblastoma CheckMate 498 First line, radiation and temozolomide or nivolumab NCT02617589

Atezolizumab

Breast cancer

TNBC IMpassion 031 Neoadjuvant, chemotherapy ± atezolizumab NCT03197935

TNBC IMpassion 130 First line, nab-paclitaxel ± atezolizumab NCT02425891

TNBC IMpassion 131 First line, paclitaxel ± atezolizumab NCT03125902

Gastrointestinal cancer

Colorectal cancer Pretreated, atezolizumab/cobimetinib vs atezolizumab vs
regorafenib

NCT02788279

Colorectal cancer Adjuvant, microsatellite instability-high or mismatch repair
deficient, chemotherapy ± atezolizumab

NCT02912559

Colorectal cancer First line, microsatellite instability-high or mismatch repair
deficient, chemotherapy/bevacizumab ± atezolizumab

NCT02997228

Genitourinary cancer

Bladder cancer IMvigor 010 Adjuvant, vs placebo NCT02450331

Renal cell carcinoma IMmotion 010 Adjuvant, vs placebo NCT03024996

Renal cell carcinoma IMmotion 151 First line, atezolizumab/bevacizumab vs sunitinib NCT02420821

Prostate cancer IMbassador 250 Castration-resistant, after anti-androgen and taxane,
enzalutamide ± atezolizumab

NCT03016312

Ovarian cancer ATALANTE Relapsed, chemotherapy/bevacizumab vs atezolizumab/
bevacizumab

NCT02891824

Ovarian cancer IMagyn 050 First line, Paclitaxel/Carboplatin/Bevacizumab ± atezolizumab NCT03038100
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refractory disease, as well as in earlier lines of therapy or at
the adjuvant setting is presented in Table 3. The results of
these trials are eagerly awaited, because there are high
unmet needs in many of the indications that these agents are
being tested. Of interest are also hematologic malignancies;
preliminary trials report impressive response rates in

otherwise refractory disease [149], believed to be driven by
both the inherent role of the PD-1/PD-L1 axis in the evasion
of immunosurveillance in lymphoid tumors, particularly in
those with a viral etiology [150], and by the presumed
significance of PDL1 and PDL2 amplification in the biology
of certain neoplasms such as Hodgkin lymphoma [22]. In

Table 3 (continued)

Disease Trial Clinical setting Clinicaltrials.gov
Identifier

Lung and head and neck cancer

NSCLC IMpower 130 First line, non-squamous, chemotherapy ± atezolizumab NCT02367781

NSCLC IMpower 131 First line, squamous, chemotherapy ± atezolizumab NCT02409355

NSCLC First line, platinum ineligible, vs monochemotherapy NCT03191786

SCLC IMpower 133 First line, chemotherapy ± atezolizumab NCT02763579

Melanoma

Melanoma First line BRAF V600E, vemurafenib/cobimetinib ±
atezolizumab

NCT02908672

Durvalumab

Genitourinary cancer

Bladder cancer First line, durvalumab/tremelimumab vs durvalumab vs
chemotherapy

NCT02516241

Lung and head and neck cancer

NSCLC MYSTIC First line, durvalumab/tremelimumab vs durvalumab vs
chemotherapy

NCT02453282

NSCLC NEPTUNE First line, durvalumab/tremelimumab vs chemotherapy NCT02542293

NSCLC CAURAL Second line, EGFR T790M+ , osimertinib ± durvalumab NCT02454933

NSCLC Adjuvant, vs placebo NCT02273375

SCLC Caspian First line, durvalumab/tremelimumab/chemotherapy vs
durvalumab/chemotherapy vs chemotherapy

NCT03043872

Head and neck cancer KESTREL First line, durvalumab/tremelimumab vs durvalumab vs
chemotherapy

NCT02551159

Avelumab

Breast cancer

TNBC A-Brave Adjuvant, vs placebo NCT02926196

Gastrointestinal cancer

Gastric cancer JAVELIN Gastric 100 Maintenance after first line, vs continuation chemotherapy NCT02625610

Gastric cancer JAVELIN Gastric 300 Third line, vs irinotecan or paclitaxel NCT02625623

Genitourinary cancer

Bladder cancer JAVELIN Bladder 100 Maintenance after first line, vs placebo NCT02603432

Renal cell carcinoma JAVELIN Renal 101 First line, avelumab/axitinib vs sunitinib NCT02684006

Ovarian cancer JAVELIN Ovarian 100 First line, chemotherapy vs chemotherapy/avelumab vs
chemotherapy with avelumab maintenance only

NCT02718417

Ovarian cancer JAVELIN Ovarian 200 Platinum-resistant relapse, liposomal doxorubicin ± avelumab NCT02580058

Lung and head and neck cancer

NSCLC JAVELIN Lung 100 First line, vs chemotherapy NCT02576574

NSCLC JAVELIN Lung 200 Second line, vs docetaxel NCT02395172

Head and neck cancer JAVELIN Head and
neck 100

Chemoradiotherapy ± avelumab NCT02952586

Head and neck cancer REACH Chemoradiotherapy vs radiotherapy/cetuximab/avelumab NCT02999087

NSCLC non-small cell lung cancer, SCLC small cell lung cancer, TNBC triple-negative breast cancer, HER2 human epidermal growth factor
receptor 2
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contrast, the recent discontinuation of the ongoing phase 3
trials in multiple myeloma due to an increased risk of death
underscores the fact that better understanding of the
underlying immune mechanisms is still needed.

Importantly, a new generation of clinical trials has been
initiated and initial results are already available regarding a
multi-faceted attempt to improve upon the efficacy of PD-1/
PD-L1 inhibitors as monotherapy: their combination with
CTLA-4 inhibitors, already shown to improve outcomes in
metastatic melanoma [141] and pursued in other malig-
nancies including NSCLC and SCLC; their combination
with cytotoxic chemotherapy, based upon the premise of the
prevention of early disease progression due to the simulta-
neous administration of chemotherapy and the release of
neoantigens due to the cytotoxic effects of the combinatory
treatment, which may potentiate the activity of PD-1 inhi-
bitors, an approach that has shown promising results in
advanced NSCLC and at the neoadjuvant setting of TNBC
[151, 152]; the combination of targeted agents and PD-1
axis blockade [153], with preliminary results showing that
combining immunotherapy with inhibitors of known
effectors of the axis, such as CDK4/6, results in promising
activity [154]; and finally, the combination with inhibitors
or stimulators of modulatory molecules such as indoleamine
2,3-dioxygenase (IDO) inhibitors, because IDO is a major
negative feedback pathway regulated by IFNg. Preliminary
results of the IDO inhibitor epacadostat with nivolumab in a
variety of tumors and with pembrolizumab in melanoma are
promising and phase 3 results are eagerly awaited [155,
156].

In short, the current era of cancer immunotherapy could
be characterized as the “end of the beginning”. A variety of
agents is available for use in multiple indications and
clinical experience is accumulating. The next phase, namely
the optimization of the use of the available agents and the
exploration for novel combinations, has already begun.

Immune checkpoint regulators as novel
biomarkers: prognostic and predictive value

Taking into account the significant clinical efficacy of PD-1/
PD-L1 blockade in a small subset of patients, the con-
siderable costs and potential for devastating immune-related
adverse events associated with the use of these inhibitors
and the robust theoretical background explaining the biol-
ogy of their mechanism of action, considerable efforts have
been undertaken in order to identify putative predictive
biomarkers. The best characterized biomarker is the
immunohistochemistry (IHC)-assessed PD-L1 expression.
The conflicting results of individual trials have been sum-
marized in meta-analyses, which indicate that increased
levels of PD-L1 expression are associated with an improved

probability for objective response [157, 158]. Supporting
these results are two recently published clinical trials in the
first line of advanced NSCLC, KEYNOTE-024, and
CheckMate 026. In the former, overall survival (OS) in
patients selected for PD-L1 positivity ≥50% was improved
with pembrolizumab compared with platinum-based che-
motherapy [132]. Contrary, in the latter trial there were no
OS gains in PD-L1 ≥5% patients treated with nivolumab
versus chemotherapy [133]. As there are no perceived dif-
ferences in the potency of these antibodies, the obvious
discrepancy in the patient population could account for the
different outcome. However, several observations hinder
the routine selection of appropriate candidates according to
PD-L1 expression. First, in addition to the modest con-
cordance rates between the various antibodies used to assess
PD-L1 expression reported in the literature, questions still
remain regarding the uncontrolled pre-analytical conditions
and the assay and inter-pathologist discrepancies [159],
which can lead to PD-L1 status misclassifications despite
the similar analytical performance of the available assays
[160]. Second, PD-L1 expression exhibits significant
intratumoral, intertumoral and temporal heterogeneity [161,
162], putting into question the widespread practice of
assessing PD-L1 IHC expression on archival tissue. Third,
as clearly shown in individual randomized trials such as the
CheckMate 017 trial at the second line of lung SCC [135],
characterizing patients as appropriate for anti-PD-1 therapy
according to PD-L1 expression both includes patients who
do not respond to treatment and also excludes potential
responders. Fourth, in the aforementioned CheckMate 026
trial, nivolumab was not more effective than chemotherapy
even in the subgroup of 50% or higher PD-L1 expression.
As this was not a stratification factor, imbalances such as
the sex of the patients could have confounded the results,
implying that PD-L1 positivity by itself is not a strong
predictive biomarker [133]. Finally, the association of
objective response rates and PD-L1 expression in the trial-
level meta-analyses is of unsure clinical importance, since
checkpoint inhibitors can confer prolonged, clinically
meaningful periods of disease stabilization and because
their use beyond progression in patients deemed to derive
clinical benefit has been found to improve outcomes in a
diverse selection of solid malignancies [163–165].

Keeping in mind the shortcomings of PD-L1 expression,
other biomarkers have been explored. Following the
observation that smokers with NSCLC seem to derive
improved benefit from anti-PD-1 agents [166], it was pos-
tulated that this effect may be a surrogate marker for an
increased mutational load and subsequent increased
neoantigen production and exposure and more effective
immune response in patients chronically exposed to a strong
mutagenic factor such as smoking. Indeed, mutational load
has been found to be a predictive factor in NSCLC [167].
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Table 4 Examples of studies reporting a correlation of PD-1/L1 status and prognosis

Tumor type PD-1/L1 status Correlation with outcome Reference

Breast cancer

All ↑ PD-L1 expression Unfavorable [174, 178, 219]

All ↑ PD-L1 expression Favorable [175]

HER2+ ↑ PD-L1 expression Unfavorable [179]

TNBC ↑ PD-L1 expression Favorable [176]

TNBC PD-L1 amplification Unfavorable [16]

Residual after neoadjuvant ↑ PD-L1 expression Unfavorable [177]

Gastrointestinal cancer

All digestive tumors ↑ PD-L1 expression Unfavorable [183]

Hepatocellular cancer ↑ PD-L1/2 expression Unfavorable [180, 181]

Colorectal cancer ↑ PD-L1 expression Favorable [186, 209]

Colorectal cancer ↑ PD-L2 expression Unfavorable [187]

Gastric cancer ↑ PD-L1 expression Unfavorable [184, 185]

Cholangiocarcinoma ↑ PD-L1 expression Unfavorable [217]

Esophageal cancer ↑ PD-L1 expression Favorable [214]

Pancreatic cancer ↑ PD-1 expression Favorable [182]

Genitourinary cancer

Clear cell renal ↑ PD-L1/2 expression Unfavorable [195–197]

Non-clear cell renal ↑ PD-L1 expression Unfavorable [194]

Papillary renal ↑ PD-L1 expression Unfavorable [193]

Chromophobe renal ↑ PD-L2 expression Unfavorable [192]

Bladder cancer ↑ PD-L1 expression Unfavorable [191, 218]

Prostate cancer ↑ PD-1 expression Unfavorable [190]

Prostate cancer ↑ PD-L1 expression Unfavorable [189]

Ovarian cancer ↑ PD-L1 expression Favorable [188, 210]

Lung and head and neck cancer

NSCLC ↑ PD-L1 expression Favorable [211, 213]

NSCLC ↑ PD-L1 expression Unfavorable [202–206]

NSCLC ↑ PD-L1 expression Not predictive [202]

NSCLC PD-L1 amplification Unfavorable [200]

SCLC ↑ PD-L1 expression Unfavorable [201]

Pulmonary neuroendocrine ↑ PD-L1 expression Unfavorable [220]

Head and neck cancer ↑ PD-L1 expression Favorable [199, 215]

Head and neck cancer ↑ PD-L1 expression Unfavorable [198]

Melanoma and sarcoma

Melanoma ↑ PD-L1 expression Favorable [212]

Melanoma ↑ PD-L1 expression Unfavorable [208]

Soft tissue sarcoma ↑ PD-L1 expression Unfavorable [207]

Hematologic malignancies

Hodgkin’s lymphoma ↑ PD-1 expression Unfavorable [222]

Hodgkin’s lymphoma PD-1/L-1 co-expression Unfavorable [225]

Hodgkin’s lymphoma PD-L1 amplification Unfavorable [121]

DLBCL ↑ PD-L1 expression Unfavorable [216, 227]

NK/T-cell lymphoma ↑ PD-L1 expression Unfavorable [226]

Multiple myeloma ↑ Soluble PD-L1 Unfavorable [223, 224]

All tumor types

Meta-analyses ↑ PD-L1 expression Unfavorable [221, 228, 229]

HER2 human epidermal growth factor receptor, TNBC triple-negative breast cancer, NSCLC non-small cell lung cancer, SCLC small cell lung
cancer, DLBCL diffuse large B-cell lymphoma, NK natural killer cells
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Supporting this association is the observation that mismatch
repair defective, and thus hypermutated tumors, are exqui-
sitely sensitive to PD-1 blockade [168, 169]. In addition,
NSCLC harboring driver molecular aberrations such as
EGFR mutations, which exhibit lesser mutational loads
have been shown to be relatively resistant to immune
checkpoint inhibition [170], a finding supported by a
recently published meta-analysis on the prediction of
response in NSCLC patients. EGFR mutant and KRAS wild-
type status were associated with a lack of sensitivity to PD-
1/PD-L1 inhibition, whereas clinical factors such as smok-
ing status, histology, sex, performance status, and age did
not affect the magnitude of benefit [171].

The quantitative and qualitative assessment of the host
immune response has also been explored as a predictor in
checkpoint inhibition. Factors such as the abundance of pre-
existing CD8 (+) T cells, a restricted (clonal) TCR reper-
toire, a TH1-type response, increased levels of IFN-γ and
IL-18 and decreased levels of IL-6, among others, have
been correlated with improved responses [166, 172], but
these results need to be evaluated prospectively in rando-
mized trials. The implementation of multiparametric, high-
throughput flow cytometry, and multiplex immunohisto-
chemical staining techniques that vastly improve the T-cell
population analysis [173] and of whole-exome sequencing
for the evaluation of the mutational load and the presence of
specific, predictive molecular alterations will aid in this
respect.

On the other hand, PD-1 and PD-L1 expression both at
the tissue level and on circulating tumor cells have been
evaluated in a wide variety of malignancies for their prog-
nostic impact (Table 4) [17, 21, 174–229]. The results have
been thus far inconsistent among tumor types and somewhat
confusing, with reports supporting both an improved and a
decreased OS conferred by high expression, a phenomenon
that resonates the previously mentioned shortcomings of the
assessment of PD-L1. The biologic background of these
observations is as of yet uncertain. Moreover, as the
expansion of the indications of PD-1/PD-L1 blockade
continues with the conduct and report of clinical trials, these
associations could be affected due to the increasing use of
these agents, making their clinical utility questionable at the
moment.

Open questions for future research

Despite the progress in genetic and epigenetic regulation of
PD-L1 expression, several gaps in the literature should be
covered by intensive laboratory-based research. For
instance, the signaling transduction pathways involved in
PD-L1 regulation are only partially understood. Better
understanding of the signaling mechanisms could provide

the biologic rationale for combined targeted therapy with
immunotherapy strategies in cancer. Furthermore, little is
known about the post-translational modifications of PD-L1
protein including tyrosine or serine/threonine phosphoryla-
tion, acetylation, ubiquitination, and SUMOylation. It is
also largely unknown how possible post-translational
modifications not only regulate PD-L1 levels in the tumor
cells, but also how they might affect its physiologic function
or its interaction with the PD-1 receptor. In addition to PD-
L1, the non-genetic mechanisms underlying PD-L2
expression and function in solid tumors and hematologic
malignancies should be investigated, as both ligands com-
pete for the same receptor, PD1, and therefore the relative
levels of both proteins may impact certain immunotherapy
approaches.

Regarding clinical practice, regulatory authorities both in
Europe (European Medicine Agency), and the United States
(Food and Drug Administration) have approved the use of
PD-1/PD-L1 inhibitors for a variety of malignancies
regardless of the presence or absence of predictive bio-
markers. Exceptions include the use of pembrolizumab at
the first and second line of NSCLC, which requires PD-L1
expression levels of ≥50% and ≥1% respectively, as well as
the site agnostic indication for mismatch repair deficient
tumors. In addition, the financial burden of the generalized
use of these agents is considerable even in high-resource
settings [230]. Overcoming this obstacle and achieving the
personalized use of these agents requires a stepwise
approach: first, taking into account the previously men-
tioned shortcomings of PD-L1 as a potential biomarker, it is
important to retrospectively identify, in the large amount of
collected tumor material from prospective studies, novel
predictive biomarkers. These would ideally be pro-
spectively validated, although the logistics of repeating
single agent trials might be prohibitive. Instead, these bio-
markers could form the basis of the next-generation com-
binatorial trials, of trials addressing the as yet unanswered
question of the optimal duration of treatment or of trials in
earlier disease settings where the overtreatment of already
cured individuals in a massive scale could pose a significant
public health burden.

Summary

Despite the clinical success of immune checkpoint inhibi-
tion in many tumors through PD-L1/PD-1 blockade, rela-
tively little is known regarding the biology of these
regulators of cancer immune surveillance. Many mechan-
isms have been demonstrated to regulate the expression of
PD-L1 including signaling pathways, transcriptional fac-
tors, and post-transcriptional modulators. The oncogenic
signaling pathways such as JAK/STAT, RAS/ERK, or
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PI3K/AKT/MTOR are activated by gene mutations and
growth factors. At the transcriptional level, a number of
transcriptional factors seem to regulate PD-L1 expression
including HIF-1, STAT3, NF-κΒ, and AP-1. PD-L1 is
subject to post-transcriptional regulation by several miR-
NAs, CSN5, CMTM6, CDK4 and possibly other, still
unknown mechanisms. Better understanding of PD-L1
regulation may pave the way for combinational treatments
with both immune checkpoint inhibitors and targeted
therapies against kinases or transcription factors many of
which are already available for clinical use.
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