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Individual people differ in their ability to reason, solve problems, think

abstractly, plan and learn. A reliable measure of this general ability, also

known as intelligence, can be derived from scores across a diverse set of

cognitive tasks. There is great interest in understanding the neural underpin-

nings of individual differences in intelligence, because it is the single best

predictor of long-term life success. The most replicated neural correlate of

human intelligence to date is total brain volume; however, this coarse mor-

phometric correlate says little about function. Here, we ask whether

measurements of the activity of the resting brain (resting-state fMRI)

might also carry information about intelligence. We used the final release

of the Young Adult Human Connectome Project (N ¼ 884 subjects after

exclusions), providing a full hour of resting-state fMRI per subject; controlled

for gender, age and brain volume; and derived a reliable estimate of general

intelligence from scores on multiple cognitive tasks. Using a cross-validated

predictive framework, we predicted 20% of the variance in general intelli-

gence in the sampled population from their resting-state connectivity

matrices. Interestingly, no single anatomical structure or network was responsible

or necessary for this prediction, which instead relied on redundant information

distributed across the brain.

This article is part of the theme issue ‘Causes and consequences of

individual differences in cognitive abilities’.
1. Introduction
Most psychologists agree that there is, in addition to specific cognitive abilities, a

very general mental capability to reason, think abstractly, solve problems, plan

and learn across domains [1]. This ability, intelligence, does not refer to a person’s

sheeramount of knowledge but rather to theirability to recognize, acquire, organize,

update, select and apply this knowledge [2], to reason and make comparisons [3].

There are large and reliable individual differences in intelligence across species:

some people are smarter than others, and some rats are smarter than others [4].

What is more, these differences matter. Intelligence is one of the most robust predic-

tors of conventional measures of educational achievement [5], job performance [6],

socio-economic success [7], social mobility [8], health [9] and longevity [10,11]; and

as life becomes increasingly complex, intelligence may play an ever-increased role in

life outcome [2]. Despite this overwhelming convergence of evidence for the

construct of ‘intelligence’, there is considerable debate about what it really is, how

best to measure it, and in particular what predictors and mechanisms for its

variability across individuals we could find in the human brain.

(a) Measuring intelligence: the structure of cognitive abilities
Intelligence tests are among the most reliable, and valid, of all psychological

tests and assessments [1]. Psychologists are so confident in the psychometric
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properties of intelligence tests that, almost 100 years ago,

Edwin G. Boring famously wrote: ‘Intelligence is what the

tests test’ [12]. A comprehensive modern intelligence assess-

ment (such as the Wechsler Adult Intelligence Scale, Fourth

Edition or WAIS-IV [13]) comprises tasks that assess several

aspects of intelligence: some assess verbal comprehension

(e.g. word definition, general knowledge and verbal reason-

ing), some assess visuo-spatial reasoning (e.g. puzzle

construction, matrix reasoning and visual perception), some

assess working memory (e.g. digit span, mental arithmetic

and mental manipulation) and some assess mental-processing

speed (e.g. reaction time for detection). The scores on all of

these tasks are tallied and compared to a normative, age-

matched sample to calculate a standardized Full Scale

Intelligence Quotient (FSIQ) score.

One of the most important findings in intelligence

research is that performances on all these seemingly disparate

tasks—and many other cognitive tasks—are positively corre-

lated: individuals who perform above average on, say, visual

perception also tend to perform above average on, say, word

definition. Spearman [14] described this phenomenon as the

‘positive manifold’, and since then it has been described in

a number of non-human animal species [15]. To account for

this empirical observation, he posited the existence of a gen-

eral factor of intelligence, the ‘g-factor’, or simply ‘g’, which

no single task can perfectly measure, but which can be

derived from performance on several cognitive tasks through

factor analysis. The g-factor captures around half of people’s

intellectual differences [16] and shows good reliability across

sets of cognitive tasks [17]. The empirical observation of the

positive manifold is well established [18,19]. The descriptive

value of Spearman’s g is beyond doubt; however, its

interpretation—that psychometric g reflects a general aspect

of brain functioning—was challenged early on [20] and

remains a topic of debate to this day among intelligence

researchers [21–23]. The leading alternative theory posits

that each cognitive test involves several mental processes,

and that the sampled mental processes overlap across tests;

in this situation, performance on all tests appears to be posi-

tively correlated (‘Process Overlap Theory’ [19]). The

common factor, in this framework, is a consequence of the

positive manifold, rather than its cause. There is unfortu-

nately no statistical means of distinguishing between

alternative theories on the basis of the psychometric data

alone [22].
(b) The search for biological substrates of intelligence
Differential psychology—the psychological discipline that

studies individual differences between people and, increas-

ingly, between individuals in non-human animal species (as

illustrated in this journal issue [24])—has three main aims:

to describe the trait of interest accurately, to establish its

impact in real life [25,26] and to understand its ætiology,

including its biological basis [27–30]. Much headway has

been made with respect to the first two aims for intelligence

in humans, as described above. The third aim, despite much

effort, has remained elusive.

Individual differences in intelligence are relatively stable:

one of the best predictors of intelligence in old age

is—perhaps unsurprisingly—intelligence in childhood [31].

Intelligence has a strong genetic component [5,32,33];

Genome-wide association studies (GWAS) suggest that
intelligence is highly polygenic (no single gene accounts for

a large fraction of the variance) [34,35]. While high heritabil-

ity points to genes as a biological substrate of intelligence

differences, individual differences in cognitive ability are

instantiated in brain function. Arguably, studying this

measure—the most proximal substrate of intelligent

behaviour—may yield more direct insight about the actual

mechanisms of intelligence than genetic studies have so far.

Since intelligence is a relatively stable trait, its aetiology

should be found in stable aspects of brain function, and

hence also in aspects of brain structure.

Most of the data on the neural basis of intelligence in

humans come from neuroimaging and from lesion studies.

Kievit et al. [36] recently described the current state of the neuro-

science of intelligence as ‘an embarrassment of riches’—a

plethora of neuroimaging-derived properties of the brain, struc-

tural and functional, have been linked to intelligence over the

years, albeit with largely dubious reliability and reproducibility

(see below). It is worth noting that the naive search for a simple

neurobiological correlate of intelligence faces a major theoretical

hurdle, which is best understood through analogy [36]. Imagine

a researcher trying to find the biological basis of the construct of

‘physical fitness’. If they search for a single physical property,

they would probably fall short of their goal. Indeed, physical fit-

ness is a composite of several physical properties (such as

cardiorespiratory endurance, muscular strength, muscular

endurance, body composition, flexibility), and cannot be equa-

ted with any single one, or even any specific combination of

these factors. It is very likely that intelligence is of a similar com-

posite nature, as suggested by genetic data [34]. Furthermore,

individuals may score identically on an IQ test by using differ-

ent cognitive strategies, or different brain structures [30]. This is

an important picture to hold in mind as one searches for neural

correlates of intelligence.

There are several in-depth reviews of the neurobiological

substrates of intelligence, to which the interested reader is

referred for a complete treatment, including structural studies

[30,37–39]. Extant functional neuroimaging studies (using

EEG, PET, rCBF and fMRI) have been summarized as sup-

porting the notion that intelligence is a network property of

the brain, related to neural efficiency [37,40,41]. Foundational

studies had very low sample sizes; more recent, better-

powered studies have found correlations between intelligence

and the global connectivity of a small region in lateral

prefrontal cortex (N ¼ 78) [42]; the nodal efficiency of hub

regions in the salience network (N ¼ 54) [43]; the modularity

of frontal and parietal networks (N ¼ 309) [44]; and several

other somewhat disparate reports.
(c) The current study
Extant literature on functional MRI-based correlates of intel-

ligence suffers from the same caveats as most fMRI-based

individual-differences research to date [45]: small-sample

sizes, and lack of out-of-sample generalization. A predictive

framework was first used in a recent study [46], which found

that fluid intelligence as estimated from a short Progressive

Matrices test could be predicted from functional connectivity

matrices in an early, relatively small-sample release (N ¼
118) of the Human Connectome Project (HCP) dataset [47],

with a correlation rLOSO ¼ 0.50 between observed and

predicted scores (the subscript ‘LOSO’ denotes the use of

a leave-one-subject-out cross-validation framework). Since
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this early report, the authors revised the effect size down to

rLOSO ¼ 0.22 using later data releases (N ¼ 606) [48]. Recent

work in our group, in which we further control for con-

founding effects of age, gender, brain size and motion, as

well as using a leave-one-family-out cross-validation frame-

work (LOFO) instead of the original LOSO framework (thus

accounting for the family structure of the HCP dataset, see

Methods), further revised the effect size down to about

rLOFO ¼ 0.09 using methods matched as closely as possible

to the original study [46]; yet using improvements including

better inter-subject alignment and multivariate modelling,

we found rLOFO ¼ 0.263 (N ¼ 884) [49]. Note that this

effect size is comparable to recent estimates of the relation-

ship between brain size and intelligence [50]. Though the

explained variance is small, it would, in fact, fall around

the 65th percentile of correlations observed in individual-

differences research [51] (with the caveat that rLOFO

correlation is derived from a cross-validation procedure,

which breaks the assumption of independence between

individual data points).

According to recent guidelines [52], the assessment of gen-

eral intelligence with HCP’s 24-item Progressive Matrices

would be considered of ‘fair’ quality (one test, one cognitive

dimension, testing time less than 19 min), and would be

expected to correlate with general intelligence in the range

0.50–0.71. This rather low measurement quality itself is

likely to attenuate the magnitude of the relationship between

neural data and general intelligence. Fortunately, there are sev-

eral other measures of cognition in the HCP, which we here

decided to leverage to derive a better estimate of general intel-

ligence—one that would meet criteria for an ‘excellent’ quality

measurement (more than nine tests, more than three dimen-

sions, testing time more than 40 min), and thus be expected

to correlate with the general factor of intelligence above 0.95.

Our main aims in this study were to: (i) predict an excel-

lent estimate of general intelligence from resting-state

functional connectivity in a large sample of subjects from

the HCP; (ii) depending on the success of (i), gain some

anatomical insight on which functional connections

matter for these predictions. The current study paves the

way for a reliable neuroimaging-based science of intelli-

gence differences (large sample size; predictive framework;

valid, reliable psychometric construct).
2. Methods
Many of the methods, in particular the preprocessing of fMRI

data and the predictive analyses, were developed and described

in more detail in our recent publication on personality [49].

(a) Dataset
We used data from a public repository, the 1200-subject release of

the Human Connectome Project (HCP) [47]. The HCP provides

MRI data and extensive behavioural assessment from almost

1200 subjects. Acquisition parameters and ‘minimal’ preproces-

sing of the resting-state fMRI data is described in the original

publication [53]. Briefly, each subject underwent two sessions of

resting-state fMRI on separate days, each session with two

separate 14 min 24 s acquisitions generating 1200 volumes

(customized Siemens Skyra 3 Tesla MRI scanner, TR¼ 720 ms,

TE¼ 33 ms, flip angle ¼ 528, voxel size¼ 2 mm isotropic, 72

slices, matrix¼ 104 � 90, FOV ¼ 208 � 180 mm, multiband accel-

eration factor ¼ 8). The two runs acquired on the same day

differed in the phase-encoding direction, left-right and right-left
(which leads to differential signal intensity especially in ventral

temporal and frontal structures). The HCP data were downloaded

in their minimally preprocessed form, i.e. after motion correction,

B0 distortion correction, coregistration to T1-weighted images and

normalization to surface template.

(b) Cognitive-ability tasks
Previous studies of the neural correlates of intelligence in the

HCP [46,48] have relied on the number of correct responses on

form A of the 24 (þ3 bonus)–item Penn Matrix Reasoning Test

(PMAT), a test of non-verbal reasoning ability that can be admi-

nistered in under 10 min (mean ¼ 4.6, s.d. ¼ 3 min; [54]), and is

included in the University of Pennsylvania Computerized Neu-

rocognitive Battery (Penn CNB, [55–57]). The PMAT [58,59] is

designed to parallel many of the psychometric properties of the

Raven’s Standard Progressive Matrices test (RSPM, originally

published in 1938, which comprises 60 items [60]), while limiting

learning effects and expanding the representation of the abstract

reasoning construct (Ruben Gur 2017, personal communication).

Assessment of cognitive ability in the HCP [61] also includes

several tasks from the Blueprint for Neuroscience Research–

funded NIH Toolbox for Assessment of Neurological and

Behavioral function (http://www.nihtoolbox.org), as well as

other tasks from the Penn computerized neurocognitive battery

[56]. These other tasks can be leveraged to derive a better measure

of the general intelligence factor [52]. We included all cognitive

tasks listed in the HCP Data Dictionary, except for: (i) the delay

discounting task, which is not a measure of ability (i.e. there is

not a correct response), and (ii) the Short Penn Continuous

Performance Test, which is about sustained attention rather than

cognitive ability, and whose distribution departed too much

from normality (data not shown). Our initial selection thus con-

sisted of 10 tasks (NIH Toolbox: dimensional change card sort;

flanker inhibitory control and attention; list sorting working

memory; picture sequence memory; picture vocabulary; pattern

comparison processing speed; oral reading recognition; Penn

CNB: Penn progressive matrices; Penn word memory test; vari-

able short Penn line orientation), which are also listed in the

electronic supplementary material, table S1 along with a brief

description (the descriptions are copied almost word for word

from the HCP Data Dictionary). When several outcome measures

were available for a given task, we selected the one that best

captured ability; when both age-adjusted and unadjusted scores

were available, we included the unadjusted scores. Though

some of the NIH toolbox scores combine accuracy and reaction

time, we only considered accuracies for the Penn CNB tasks

(to avoid confounding ability and processing speed; but see [57]).

(c) Subject selection
The total number of subjects in the 1200-subject release of the

HCP dataset is N ¼ 1206. We applied the following criteria to

include/exclude subjects from our analyses (listing in parentheses

the HCP database field codes). (i) Complete neuropsychological

datasets. Subjects must have completed all relevant neuropsycho-

logical testing (PMAT_Compl¼ True, NEO-FFI_Compl¼ True,

Non-TB_Compl¼ True, VisProc_Compl ¼ True, SCPT_Compl ¼

True, IWRD_Compl ¼ True, VSPLOT_Compl ¼ True) and the

Mini Mental Status Exam (MMSE_Compl ¼ True). Any subjects

with missing values in any of the tests or test items were dis-

carded. This left us with N ¼ 1183 subjects. (ii) Cognitive

compromise. We excluded subjects with a score of 26 or below

on the MMSE, which could indicate marked cognitive impairment

in this highly educated sample of adults under age 40 [62]. This

left us with N ¼ 1181 subjects (638 females, 28.8+3.7 year old,

range 22–37 year old). This is the sample of subjects available

for factor analyses. Furthermore, (iii) subjects must have completed

all resting-state fMRI scans (3T_RS-fMRI_PctCompl ¼ 100), which

http://www.nihtoolbox.org
http://www.nihtoolbox.org
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leaves us with N¼ 988 subjects. Finally, (iv) we further excluded

subjects with a root-mean-squared frame-to-frame head motion

estimate (Movement_Relative_RMS.txt) exceeding 0.15 mm in any

of the four resting-state runs (threshold similar to [46]). This left

us with the final sample of N ¼ 884 subjects (475 females, 28.6+
3.7 year old, range 22–36 year old) for predictive analyses based

on resting-state data.

(d) Deriving the general factor of intelligence, g
There are several methods in the literature to derive a general

factor of intelligence from scores on a set of cognitive tasks.

The simplest consists in using a standardized sum score compo-

site; this is the conventional approach when all scores come from

a well-validated battery. However, because we are here including

scores from two different cognitive batteries (NIH toolbox and

Penn CNB), we sought to characterize the structure of cognitive

abilities in our sample using factor analysis, and then derive

scores for the general factor. We conducted an exploratory

factor analysis (EFA), specifying the bi-factor model of intelli-

gence—a common factor g which loads on all test scores, and

several group factors that each load on subsets of the test

scores; all latent factors are orthogonal to one another—using

the psych (v. 1.7.8) package [63] in R (v. 3.4.2). We specifically

used the omega function, which conducts a factor analysis (with

maximum-likelihood estimation) of the dataset, rotates the fac-

tors obliquely (using ‘oblimin’ rotation), factors the resulting

correlation matrix, then does a Schmid–Leiman transformation

[64] to find general factor loadings. Model fit was assessed

using several commonly used statistics in factor analysis [65]:

the comparative fit index (CFI; should be as close to 1 as possible;

values greater than 0.95 are considered a good fit); the root mean

squared error of approximation (RMSEA; should be as close to 0

as possible; values less than 0.06 are considered a good fit); the

standardized root mean squared residual (SRMR; should be as

close to 0 as possible; values less than 0.08 are considered a

good fit); and the Bayesian information criterion (BIC; better

models have lower values, can be negative). Factor scores can

be derived using different methods [66], for example, the

regression method. This approach mimics the one taken by

Gläscher et al. [67]. It is, however, usually preferable to derive

scores from a confirmatory factor analysis (CFA). The main

difference between EFA and CFA is that in EFA, observed task

scores are allowed to cross-load freely on several group factors,

while in CFA such cross-loadings can be forbidden. For the pur-

pose of deriving the general factor of intelligence, there is little

difference between using CFA and EFA in practice; we con-

ducted a CFA using the lavaan (v. 0.5-23.1097) package [68] in

R to verify this (see electronic supplementary material, figure S1).

(e) Assessment and removal of potential confounds
We computed the correlation of the general factor of intelligence

g with Gender (HCP variable: Gender), Handedness and Age

(restricted HCP variables: Handedness, Age_in_Yrs). We also

looked for differences in g in our subject sample with variables

that are likely to affect FC matrices, such as brain size (we

used FS_BrainSeg_Vol), motion (we computed the sum of frame-

wise displacement in each run) and the multiband reconstruction

algorithm, which changed in the third quarter of HCP data

collection ( fMRI_3T_ReconVrs). We then used multiple linear

regression to regress these variables from g scores and remove

their confounding effects.

Note that we did not control for differences in cortical thick-

ness and other morphometric features, which have been reported

to be correlated with intelligence (e.g. [69]). These probably inter-

act with FC measures and should eventually be accounted for

in a full model, yet this was deemed outside the scope of the

present study.
Note also that we did not consider Educational Achievement

(EA) and Socio-Economic Status (SES) as confounds in this

analysis, as they have been described as consequences of intelli-

gence and thus controlling for them would remove meaningful

variance. A full model considering these variables is a future

direction for this work.

( f ) Data preprocessing
We recently explored the effects of several preprocessing pipelines

on the prediction of personality factors and PMAT scores in the

HCP dataset [49]. Here we adopted the preprocessing pipeline

which was found to produce the highest prediction scores in that

study. The pipeline reproduces as closely as possible the strategy

described in [46] and consists of seven consecutive steps: (1) the

signal at each voxel is z-score normalized; (2) using tissue masks,

temporal drifts from cerebrospinal fluid (CSF) and white matter

(WM) are removed with third-degree Legendre polynomial regres-

sors; (3) the mean signals of CSF and WM are computed and

regressed from gray matter voxels; (4) translational and rotational

realignment parameters and their temporal derivatives are used as

explanatory variables in motion regression; (5) signals are low-

pass filtered with a Gaussian kernel with a standard deviation of

1 TR, i.e. 720 ms in the HCP dataset; (6) the temporal drift from

gray matter signal is removed using a third-degree Legendre poly-

nomial regressor; (7) global signal regression is performed. These

operations were performed using an in-house, Python (v. 2.7.14)-

based pipeline (mostly based on open source libraries and

frameworks for scientific computing, including SciPy (v. 0.19.0),

Numpy (v. 1.11.3), NiLearn (v. 0.2.6), NiBabel (v. 2.1.0), Scikit-

learn (v. 0.18.1) [70–74]).

(g) Inter-subject alignment, parcellation and functional
connectivity matrix generation

We used surface-based multi-modally aligned cortical data (MSM-

All [75]), together with a parcellation that was derived from these

data using an objective semi-automated neuroanatomical approach

[76]. The parcellation has 360 nodes, 180 for each hemisphere. These

nodes can be attributed to the major resting-state networks [77]

(figure 3a). Time-series extraction simply consisted in averaging

data from vertices within each parcel, and matrix generation in pair-

wise correlating parcel time series (Pearson correlation coefficient).

We concatenated time series across runs to derive average FC

matrices (REST1: from concatenated REST1_LR and REST1_RL

time series; REST2: from concatenated REST2_LR and REST2_RL

time series; REST12: from concatenated REST1_LR, REST1_RL,

REST2_LR and REST2_RL time series). There are (360� 359)/2¼

64 620 undirected edges in a network of 360 nodes. This is the

dimensionality of the feature space for prediction.

(h) Prediction model
We used a univariate feature filtering approach to reduce the

number of features, discarding edges for which the p-value of

the correlation with the behavioural score is greater than a set

threshold, for example, p , 0.01 (as in [46]). We then used Elastic

Net regression to learn the relationship with behaviour; based on

our previous work [49] and on the fact that it is unlikely that just

a few edges contribute to prediction, we fixed the L1 ratio (which

weights the L1- and L2-regularizations) to 0.01, which amounts

to almost pure ridge regression. We used threefold nested

cross-validation (with balanced ‘classes’, based on a partitioning

of the training data into quartiles) to choose the alpha parameter

(among 50 possible values) that weighs the penalty term.

(i) Cross-validation scheme
In the HCP dataset, several subjects are genetically related (in our

final subject sample there were 410 unique families). To avoid
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biasing the results due to this family structure (e.g. perhaps

having a sibling in the training set would facilitate prediction

for a test subject, if both intelligence and functional connec-

tivity are heritable), we implemented a leave-one-family-out

cross-validation scheme for all predictive analyses.

( j) Statistical assessment of predictions
Several measures can be used to assess the quality of predictions,

which we described in more detail in our previous publication

[49]. Here we report the Pearson correlation coefficient between

observed scores and predicted scores, the coefficient of determi-

nation R2, and the related normalized root mean square

deviation (nRMSD).

In a cross-validation scheme, the folds are not independent of

each other. This means that statistical assessment of the cross-

validated performance using parametric statistical tests is

problematic [49,78,79]. Proper statistical assessment should thus

be done using permutation testing on the actual data. To establish

the empirical distribution of chance, we ran our predictive analy-

sis using 1000 random permutations of the scores (shuffling scores

randomly between subjects, keeping everything else exactly the

same, including the family structure).
4

3. Results
(a) A general factor, g, accounts for 58% of the

covariance structure of cognitive tasks in the HCP
sample

All selected cognitive task scores (electronic supplementary

material, table S1) correlated positively with one another, as

expected from the well-known positive manifold (figure 1a).

A parallel analysis suggested an underlying 4-factor structure

(figure 1b). An exploratory bifactor analysis with a general

factor g and 4 group factors fit the data very well (CFI ¼

0.990; RMSEA ¼ 0.0311; SRMR ¼ 0.0201; BIC ¼ 20.519),

much better than a single factor model (CFI ¼ 0.719;

RMSEA ¼ 0.1398; SRMR ¼ 0.0887; BIC ¼ 591.172). The sol-

ution is depicted in figure 1c. The four factors can naturally

be interpreted as: (1) Crystallized Ability [cry] (PicVocab_

Unadj þ ReadEng_Unadj); (2) Processing Speed [spd]

(CardSort_Unadj þ Flanker_Unadj þ ProcSpeed_Unadj); (3)

Visuospatial Ability [vis] (PMAT24_A_CR þ VSPLOT_TC)

and (4) Memory [mem] (IWRD_TOT þ PicSeq_Unadj þ
ListSort_Unadj).

Across all cognitive task scores, this general intelligence

factor accounted for 58.5% of the variance (coefficient ome-

ga_hierarchical vh [80–82]), while group factors accounted

for 18.2% of the variance (with 15.5% of the variance unac-

counted for). Another important metric is coefficient omega

subscale vs [83] which quantifies the reliable variance

across the tasks accounted for by each subscale, beyond

that accounted for by the general factor; we found

v
cry
s ¼ 38:7 %, v

spd
s ¼ 57:4%, vvis

s ¼ 9:9% and vmem
s ¼ 27:8%.

While some of these subscale factors account for a substantial

proportion of the variance across their respective tasks, their

measurement quality is at most fair [52] due to the limited

number of constituent tasks; thus we chose to focus on the

general factor g only in the present study.

Factor scores are indeterminate, and several alternate

methods exist to derive them from a structural model [66].

To avoid this issue, most researchers prefer to remain in

latent space for further analyses [36]. However, for subsequent
analyses we required factor scores for g, which we derived

using regression-based weights (‘Thurstone’ method). We

compared the general factor scores derived from this explora-

tory factor analysis (EFA) with a simple composite score

consisting of the sum of standardized observed test scores.

As expected, we found that the simple composite score

correlates highly with the EFA-derived g (r ¼ 0.91).
(b) Brain size, gender and motion are correlated with g
There are known effects of gender [84,85], age [86,87], in-

scanner motion [88–90] and brain size [91] on the functional

connectivity patterns measured in the resting-state with

fMRI. It is thus necessary to control for these variables [92]:

indeed, if intelligence is correlated with gender, one would

be able to predict some of the variance in intelligence solely

from functional connections that are related to gender. The

easiest way to control for these confounds is to remove any

relationship between the confounding variables and the

score of interest in our sample of subjects, which can be

done using multiple regression. Note that this approach

may be too conservative, and that more work remains to be

done on dealing with such confounds (see Discussion).

We characterized the relationship between intelligence

and each of the confounding variables listed above in our

subject sample (electronic supplementary material, figure

S3). Intelligence was correlated with gender (men scored

higher in our sample), age (younger scored higher in our

sample—note the limited age range 22–36 year old), and

brain size (larger brains scored higher) [50,52]. There was

no relationship between handedness and intelligence in our

sample (r ¼ 2 � 1026). Motion, quantified as the sum of

frame-to-frame displacement over the course of a run (and

averaged separately for REST1 and REST2) was correlated

with intelligence: subjects scoring lower on intelligence

moved more during the resting-state. Note that motion in

REST1 was highly correlated (r ¼ 0.72) with motion in

REST2, indicating that motion itself may be a stable trait,

and correlated with other traits. While the interpretation of

these complex relationships would require further work out-

side the scope of this study (using partial correlations, and

mediation models, to disentangle effects), it is critical to

remove shared variance between intelligence and the primary

confounding variables before proceeding further. This

ensures that our model is trained specifically to predict intelli-

gence, rather than confounds that covary with it in our subject

sample [92]. However, there are several other variables that we

do not explicitly account for here, for example, the Openness

personality trait which we previously found to be correlated

with intelligence [49].

Another possible confound, specific to the HCP dataset, is

a difference in the image reconstruction algorithm between

subjects collected prior to and after April 2013. The recon-

struction version leaves a notable signature on the data that

can make a large difference in the final analyses produced

[93]. We found a small, but significant correlation with intel-

ligence in our sample (indicating that subjects imaged with

the old reconstruction version were, on average, less intelli-

gent than the ones imaged with the newer reconstruction

version). This confound is, of course, a simple sampling

bias artefact with no meaning. Yet, this significant artifactual

correlation must be removed, by including the reconstruction

factor as a confound variable.
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Figure 1. Exploratory factor analysis of select cognitive tasks (electronic supplementary material, table S1) in the HCP dataset, using N ¼ 1181 subjects. (a) All
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Importantly, the multiple linear regression used for

removing the variance shared with confounds was fitted

on the training data (in each cross-validation fold during

the prediction analysis), and then the fitted weights were

applied to remove the effects of confounds in both the train-

ing and test data. This is critical to avoid any leakage of

information, however negligible, from the test data into

the training data.

(c) Resting-state FC predicts 20% of the variance
in g across subjects

We computed a resting-state functional connectivity matrix

for each subject from close to 1 h of resting-state data

(REST12), yielding a very reliable estimate of the stable func-

tional network of each individual—with 1 h of scan time, a

recent study found the test–retest reliability of an individual’s

FC matrix to be above r ¼ 0.96 (see fig. 4c in [94]).
We used a leave-one-family-out cross-validation scheme

to train a regularized linear model and predict general

intelligence from functional connectivity matrices (fea-

tures are the 64 620 undirected edges), in our sample of

884 subjects. We found a significant correlation between

observed and predicted g scores (r ¼ 0.457, P1000 , 0.001,

based on 1000 permutations), a coefficient of determi-

nation that differs significantly from chance (R2 ¼ 0.206;

P1000 , 0.001), and an nRMSD that is significantly lower

than its null distribution (nRMSD ¼ 0.892; P1000 , 0.001;

figure 2).

For comparison, we previously found that the prediction

of intelligence as estimated by PMAT24_A_CR scores [49]

captured less variance (r ¼ 0.263, P1000 , 0.001; R2 ¼ 0.047,

P1000 , 0.001; nRMSD ¼ 0.977, P1000 , 0.001). It is likely

that the moderating effect of inferior measurement quality

with the PMAT24_A_CR as compared to our factor-derived

g limited prediction performance [52].
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Similarly, using only 30 min of resting-state data (one

session, two runs) to derive functional connectivity matrices

had a moderating effect on prediction performance. With

30 min of scan time, test–retest reliability of FC matrices

falls to about r ¼ 0.92 (according to fig. 4c in [94]). Predicting

g using REST1, we found r ¼ 0.419, R2 ¼ 0.170, nRMSD ¼

0.912; using REST2, we found r ¼ 0.312, R2 ¼ 0.067,

nRMSD ¼ 0.966.
(d) Predictive edges are distributed in FPN, CON, DMN,
and VIS networks

We have demonstrated that a substantial and statistically

highly significant amount of variance (about 20%) in general

intelligence g across our sample of subjects can be predicted

from resting-state functional connectivity. Is there a specific

set of edges (connectivity between specific anatomical par-

cels) in the brain that carries most of the information? The
Parieto-Frontal Integration Theory (P-FIT) of intelligence

[37] postulates roles for cortical regions in the prefrontal

(Brodmann areas (BA) 6, 9–10, 45–47), parietal (BA 7,

39–40), occipital (BA 18–19), and temporal association

cortex (BA 21, 37).

To address this question, we used a descriptive network

selection/elimination approach. We focused on the 7 major

resting-state networks [96]; Ito and colleagues recently

assigned each region of the parcellation used here [76] to

these functional networks using the Generalized Louvain

method for community detection with resting-state fMRI

data [77] (figure 3a). We verified that this published network

assignment indeed clustered regions that have similar con-

nectivity patterns at the level of single subjects (figure 3b).

We then asked how well we could predict g keeping edges

within only one network ((7
1) ¼ 7 combinations, figure 3c),

or within/between two networks ((7
2) ¼ 21combinations,

figure 3d ). For all these analyses we carried out exactly the

same methods as described above (including the univariate
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feature selection step), but training and testing on a reduced

feature space (selecting edges according to networks). Predic-

tion performance within a single network, or with two

networks, was much lower compared to performance with

the full set of edges (one network, maximum performance

r ¼ 0.327; two networks, maximum performance r ¼ 0.373);
however, some networks were found to carry more infor-

mation than others: the most informative networks were

CON, DMN, FPN and VIS, while DAN, AUD and SMN

carried very little information. These results are in good

agreement with the P-FIT [37]; in particular, in addition to

the eponymous frontal and parietal regions which have
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been reported in other studies already [46,67], we evidenced

information in the VIS network as postulated by P-FIT. We next

explored how the removal of networks affected prediction: we

‘lesioned’ a single network ((7
6) ¼ 7, figure 3f) or two networks

((7
5) ¼ 21, figure 3e). We found that lesioning one or two net-

works had a very small effect on the prediction of g (lesion

one network, minimum performance r¼ 0.409; lesion two net-

works, minimum performance r ¼ 0.373), indicating there is

distributed and redundant information about g in functional

connectivity patterns across several brain networks.

4. Discussion
Deary et al. recently wrote [97]: ‘the effort to understand the

psychobiology of intelligence has a resemblance with digging

the tunnel between England and France: We hope, with

workers on both sides having a good sense of direction,

that we can meet and marry brain biology and cognitive

differences’. The present study is a step in this direction,

offering the to-date most robust investigation specifically

focused on predicting intelligence from resting-state fMRI

data. Here we used factor analysis of the scores on 10 cogni-

tive tasks to derive a bi-factor model of intelligence, including

a common g-factor and broad ability factors, which is the

standard in the field of intelligence research [52,98]. We

used reliable estimates of functional connectivity in a large

sample of subjects, from close to one hour of high-quality

resting-state fMRI data per subject. We used the best available

inter-subject alignment algorithm (MSM-All), a stringent con-

trol for confounding variables, and out-of-sample prediction.

With these state-of-the-art methods on both ends of the

tunnel, we demonstrated a strong relationship between gen-

eral intelligence g and resting-state functional connectivity

(at least as strong as the well-established relationship of

intelligence with brain size [50,52]).

We further established that predictive network edges were

fairly distributed throughout the brain, though they mostly fell

within four of the seven major resting-state networks: the

fronto-parietal network, the default mode network, the control

network, and the visual network. These findings are in general

agreement with the parieto-frontal integration theory (P-FIT)

of intelligence. This neuroanatomical description of informa-

tive edges should be considered preliminary, as we have yet

to explore how it is affected by analytical choices, such as

the brain parcellation scheme and the predictive model.

Removing the nodes from one or two networks had little

effect on prediction scores (figure 3e,f), supporting the con-

clusion that information is quite distributed. This latter

finding might seem at odds with prior reports that focal

lesions in frontal or parietal lobe are correlated with reduced

intelligence [67]. However, there is a fundamental difference

here: actual neurological lesions [99] would remove the func-

tion of the lesioned regions, and would thus remove

information not only for edges directly linked to the lesioned

parcels, but remove additional information in complex ways

all across the brain. Our virtual ‘lesions’ do not do this and

instead retain information from the ‘lesioned’ regions that is

broadcast across other brain regions.

Our findings considerably extend a previous report [46]

which had hinted at a relationship between resting-state func-

tional connectivity and intelligence using a much smaller

subject sample (N ¼ 117), no account of potential confounding

variables, a cross-validation scheme that did not respect family
structure, a less functionally accurate inter-subject alignment,

and a lower quality measure of intelligence (the short modified

version of Raven’s Progressive Matrices). We indeed found

evidence that measurement quality, both on the behavioural

and on the neural side, moderated the effect size of the

relationship between brain and behaviour [52]. We achieved

better prediction performance using g rather than the

number of correct responses on the PMAT24_A test; and we

achieved better performance using REST12 matrices (approx.

1 h of data per subject) rather than REST1 or REST2 matrices

(approx. 30 min of data per subject). Though this is of course

expected statistically – the noise ceiling gets lower as noise

increases for the two variables that are correlated – this is an

important observation for future explorations in other datasets.

In many aspects the neural and behavioural data in the HCP are

of higher quality than most other large-scale neuroimaging pro-

jects; conducting similar analyses in other datasets may yield

smaller effect sizes solely because of lower data quality and,

just as importantly, quantity. Despite this caveat, and despite

the care that we took to use cross-validated predictions to

assess out-of-sample generalizability, it will be important to

replicate our finding in an independent dataset, if only to estab-

lish the bounds of the generalizability of our findings. Though

beyond the scope of this study, we are already exploring three

candidate publicly available datasets with suitable imaging

and behavioural assessment in large cohorts of subjects: the

Cambridge Centre for Ageing and Neuroscience (Cam-CAN,

[100]); the Nathan Kline Institute Rockland sample [101]; and

the UK Biobank [102].

The general factor of intelligence g that we derived from

10 cognitive task scores is as reliable as it can be in this data-

set, and would be unlikely to improve substantially even if

additional measures were available. An interesting question

for future studies will be to look at the predictability of the

subscales: crystallized ability, processing speed, visuospatial

reasoning, and memory. Addition of tasks in each of these

subdomains would increase the reliability of these specific

ability factors, and allow for a more precise exploration of

their neural bases. This would require a much longer assess-

ment and many more ability tests. Rather than build an

entirely new dataset from scratch, the possibility of testing

all HCP subjects again on a lengthier, diverse cognitive

ability battery should be considered [103].

Another factor that can moderate the relationship

between variables is range restriction of variables [104].

Here, there is some concern that the range of intelligence

scores in the HCP subject sample may be restricted to the

higher end of the distribution. While published normative

data is currently unavailable for the Penn matrix reasoning

test and other Penn CNB tests in the age range of our sub-

jects, the NIH toolbox tests provide age-normed scores.

Inspection of these scores indicates that the HCP subject

sample is indeed biased towards higher scores (in particular

for crystallized abilities; see electronic supplementary

material, figure S4). This sampling bias is a well-known, sys-

temic issue in experimental psychology [105], and one that is

difficult to avoid despite efforts to recruit from the entire

population. A natural question to ask is whether the neural

bases of mental retardation, and of genius at the other end

of the spectrum, lie in the same continuum as what we

describe in this study. For instance, it is well known that

macrocephaly (unusually large brains) can also be associated

with mental retardation, so that the association of intelligence
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with larger brain size only holds within the normal range.

Future studies in samples with a larger range of intelligence

should explore this important question.

Though we qualified our approach as state of the art on

the behavioural side, intelligence researchers would probably

object that deriving factor scores is a thing of the past, and

that analyses should be conducted in latent space (in part

because of factor indeterminacy). This objection can mostly

be ignored in our situation, where we only looked at the gen-

eral factor g, given that it can be so precisely estimated in our

dataset. However, to study specific factors we should consider

casting the brain–behaviour relationship problem within the

framework of structural equation modelling (e.g. [36]).

We were very careful to regress out several potential con-

founds [92], such as brain size, gender and age, before

performing predictions. While this gives us some comfort that

the results reported here are indeed specific to general intelli-

gence, the confound regression approach could certainly be

improved further. There are two main concerns: one the one

hand, we may be throwing out relevant variance and injecting

noise into the g scores by bluntly regressing out confounding

variables—a more careful cleanup should be attempted, for

example, using a well-specified structural equation model

[106]. However, the approach we took is superior to ignoring

the issue of potential confounds altogether (as prior studies

have done), which is likely to inflate predictability and compro-

mise interpretation. On the other hand, the list of confounding

variables that we considered was not exhaustive: for example,

we did not regress out variance in the Openness factor of per-

sonality, which we have previously found to be correlated

with intelligence [49]; we also did not consider effects of edu-

cational achievement or socio-economic status; and there are

certain to be other confounds that were not measured at all.

Furthermore, it is very likely that regressing out the mean

framewise displacement does not properly account for non-

linear effects of motion. Cleaning resting-state fMRI data of

the effects of motion remains a very intense topic of research

for studies of brain–behaviour relationships [107–109].

While we are confident that our current results are not

solely explained by motion in the scanner, a full quantification

of this issue remains warranted.

It is worth mentioning a related, entirely data-driven

study that was recently conducted by Smith and colleagues

on an earlier release of the same HCP dataset (N ¼ 461)

[110]. Using canonical correlation analysis (CCA), the authors

demonstrated that a network of brain regions that closely

resembled the default mode network was highly related to

a linear combination of behavioural scores that they label a

‘positive-negative mode of population covariation’. In

essence, this combination is a neurally derived general

factor, encompassing cognitive and other behavioural tasks.

Our study is in general agreement with these results, as we
found high predictability of general intelligence g from

connections within the default mode network.

Where do we go from here? As we know that task func-

tional MRI [37,40] and structural MRI data (brain size [50],

as well as morphometric features [69]) also hold information

that is predictive of cognitive ability, a natural question is

whether combining functional and structural data will

allow us to account for more variance in the general intelli-

gence factor g. The more variance we can account for, the

more trustworthy and thus interpretable our models

become, and we can hope to further refine our understanding

of the neural bases of general intelligence.

Of course, mere prediction does not yet illuminate mech-

anisms, and we would ultimately wish to have a much more

detailed causal model that explains how genetic factors, brain

structure, brain function and individual differences in vari-

ables such as g and personality relate to real-life outcomes.

Given that g is already known to predict outcomes such as

lifespan and salary, a structural model incorporating all of

these variables should provide us with the most comprehen-

sive understanding of the mechanisms, and the most effective

information for targeted interventions.

Finally, we would like to situate this paper in the broader

context of this special issue. Intelligence can be quantified

across species and is highly heritable. Are similar brain

networks the most predictive of variability in intelligence

across mammals? Are there measures of heritability or brain

structure, as compared to brain function, that might be

better predictors in some species than others? It would be intri-

guing to find that humans share with other species a core set of

genetically specified constraints on intelligence, but that

humans are unique in the extent to which education and

learning can modify intelligence through the incorporation

of additional variability in brain function.
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67. Gläscher J, Rudrauf D, Colom R, Paul LK, Tranel D,
Damasio H, Adolphs R. 2010 Distributed neural
system for general intelligence revealed by lesion
mapping. Proc. Natl Acad. Sci. USA 107,
4705 – 4709. (doi:10.1073/pnas.0910397107)

68. Rosseel Y. 2012 lavaan: An R package for structural
equation modeling. J. Stat. Softw. 48, 1 – 36.
(doi:10.18637/jss.v048.i02)

69. Seidlitz J et al. 2018 Morphometric similarity
networks detect microscale cortical organization and
predict inter-individual cognitive variation. Neuron
97, 231 – 247.e7. (doi:10.1016/j.neuron.2017.
11.039)

70. van der Walt S, Colbert SC, Varoquaux G. 2011 The
NumPy Array: a structure for efficient numerical
computation. Comput. Sci. Eng. 13, 22 – 30. (doi:10.
1109/MCSE.2011.37)

71. Pedregosa F et al. 2011 Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12,
2825 – 2830.

72. Gorgolewski K, Burns CD, Madison C, Clark D,
Halchenko YO, Waskom ML, Ghosh SS. 2011
Nipype: a flexible, lightweight and extensible
neuroimaging data processing framework in python.
Front. Neuroinform. 5, 13. (doi:10.3389/fninf.2011.
00013)

73. Abraham A, Pedregosa F, Eickenberg M, Gervais P,
Mueller A, Kossaifi J, Gramfort A, Thirion B,
Varoquaux G. 2014 Machine learning for
neuroimaging with scikit-learn. Front. Neuroinform.
8, 14. (https://github.com/nipy/nipype/blob/
master/doc/about.rst)

74. Gorgolewski KJ et al. 2017 nipy/nipype: Release
0.13.1. (https://github.com/nipy/nipype/blob/
master/doc/about.rst)

75. Robinson EC et al. 2018 Multimodal surface
matching with higher-order smoothness constraints.
NeuroImage 167, 453 – 465. (doi:10.1016/
j.neuroimage.2017.10.037)

76. Glasser MF et al. 2016 A multi-modal parcellation of
human cerebral cortex. Nature 536, 171 – 178.
(doi:10.1038/nature18933)

77. Ito T, Kulkarni KR, Schultz DH, Mill RD, Chen RH,
Solomyak LI, Cole MW. 2017 Cognitive task
information is transferred between brain regions via
resting-state network topology. Nat. Commun. 8,
1027. (doi:10.1038/s41467-017-01000-w)

78. Noirhomme Q, Lesenfants D, Gomez F, Soddu A,
Schrouff J, Garraux G, Luxen A, Phillips C, Laureys S.
2014 Biased binomial assessment of cross-validated
estimation of classification accuracies illustrated in
diagnosis predictions. Neuroimage Clin. 4, 687 – 694.
(doi:10.1016/j.nicl.2014.04.004)

79. Combrisson E, Jerbi K. 2015 Exceeding chance level
by chance: the caveat of theoretical chance levels in
brain signal classification and statistical assessment
of decoding accuracy. J. Neurosci. Methods 250,
126 – 136. (doi:10.1016/j.jneumeth.2015.01.010)

80. McDonald RP. 1970 The theoretical foundations of
principal factor analysis, canonical factor analysis,
and alpha factor analysis. Br. J. Math. Stat. Psychol.
23, 1 – 21. (doi:10.1111/j.2044-8317.1970.
tb00432.x)
81. Zinbarg RE, Revelle W, Yovel I, Li W. 2005
Cronbach’s a, Revelle’s b, and Mcdonald’s vH:
their relations with each other and two alternative
conceptualizations of reliability. Psychometrika 70,
123 – 133. (doi:10.1007/s11336-003-0974-7)

82. Zinbarg RE, Yovel I, Revelle W, McDonald RP. 2006
Estimating generalizability to a latent variable
common to all of a scale’s indicators: a comparison
of estimators for vh. Appl. Psychol. Meas. 30,
121 – 144. (doi:10.1177/0146621605278814)

83. Reise SP. 2012 Invited paper: the rediscovery of
bifactor measurement models. Multivariate Behav.
Res. 47, 667 – 696. (doi:10.1080/00273171.2012.
715555)

84. Ruigrok ANV, Salimi-Khorshidi G, Lai M-C, Baron-
Cohen S, Lombardo MV, Tait RJ, Suckling J. 2014
A meta-analysis of sex differences in human brain
structure. Neurosci. Biobehav. Rev. 39, 34 – 50.
(doi:10.1016/j.neubiorev.2013.12.004)

85. Trabzuni D, Ramasamy A, Imran S, Walker R, Smith
C, Weale ME, Hardy J, Ryten M, North American
Brain Expression Consortium. 2013 Widespread sex
differences in gene expression and splicing in the
adult human brain. Nat. Commun. 4, 2771. (doi:10.
1038/ncomms3771)

86. Dosenbach NUF et al. 2010 Prediction of individual
brain maturity using fMRI. Science 329, 1358 –
1361. (doi:10.1126/science.1194144)

87. Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist
MM. 2015 A brain-wide study of age-related
changes in functional connectivity. Cereb. Cortex 25,
1987 – 1999. (doi:10.1093/cercor/bhu012)

88. Power JD, Barnes KA, Snyder AZ, Schlaggar BL,
Petersen SE. 2012 Spurious but systematic
correlations in functional connectivity MRI
networks arise from subject motion. Neuroimage
59, 2142 – 2154. (doi:10.1016/j.neuroimage.2011.
10.018)

89. Satterthwaite TD et al. 2013 An improved
framework for confound regression and filtering for
control of motion artifact in the preprocessing of
resting-state functional connectivity data.
Neuroimage 64, 240 – 256. (doi:10.1016/j.
neuroimage.2012.08.052)

90. Tyszka JM, Kennedy DP, Paul LK, Adolphs R. 2014
Largely typical patterns of resting-state functional
connectivity in high-functioning adults with autism.
Cereb. Cortex 24, 1894 – 1905. (doi:10.1093/cercor/
bht040)
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