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Natural selection can act on between-individual variation in cognitive

abilities, yet evolutionary responses depend on the presence of underlying

genetic variation. It is, therefore, crucial to determine the relative extent of

genetic versus environmental control of these among-individual differences

in cognitive traits to understand their causes and evolutionary potential. We

investigated heritability of associative learning performance and of a cogni-

tive judgement bias (optimism), as well as their covariation, in a captive

pedigree-bred population of red junglefowl (Gallus gallus, n . 300 chicks

over 5 years). We analysed performance in discriminative and reversal learn-

ing (two facets of associative learning), and cognitive judgement bias, by

conducting animal models to disentangle genetic from environmental contri-

butions. We demonstrate moderate heritability for reversal learning, and

weak to no heritability for optimism and discriminative learning, respect-

ively. The two facets of associative learning were weakly negatively

correlated, consistent with hypothesized trade-offs underpinning individual

cognitive styles. Reversal, but not discriminative learning performance, was

associated with judgement bias; less optimistic individuals reversed a

previously learnt association faster. Together these results indicate that

genetic and environmental contributions differ among traits. While modular

models of cognitive abilities predict a lack of common genetic control for

different cognitive traits, further investigation is required to fully ascertain

the degree of covariation between a broader range of cognitive traits and

the extent of any shared genetic control.

This article is part of the theme issue ‘Causes and consequences of

individual differences in cognitive abilities’.
1. Introduction
Cognition (i.e. how individuals perceive, process, store and act on environ-

mental information [1]) is a defining feature of complex animals and has

been the focus of much psychological, neurobiological and ethological research.

Traditionally, cognitive abilities are investigated at a species level (e.g. compara-

tive studies [2,3]), with between-individual variation being mainly disregarded

as statistical noise [4]. More recently, however, individual cognitive abilities

have come under focus [4], paralleling burgeoning interest in animal personal-

ity [5]. Importantly, if among-individual variation in cognitive abilities is

associated with differences in fitness, cognitive traits will be under selection

and may thus evolve given the presence of additive genetic variation and

associated heritability [6,7].

Quantifying the heritability of cognitive traits thus represents a fundamental

step for understanding the causes of individual variation in cognitive abilities,

and for assessing their evolutionary potential [8,9]. Despite this, the number of

studies investigating the genetics of cognitive traits is still limited, partly due to

difficulty in meeting the demands for substantial sampling effort and the

genetic information required (e.g. known relatedness). Moreover, since most

research has used humans or a few laboratory strains of animals (reviewed in
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[6]), current understanding may be limited by a narrow

taxonomic focus and biased towards study populations

potentially suffering from founder effects, inbreeding and

artificial selection. With this in mind, available estimates indi-

cate moderate to high heritabilities within most cognitive

domains (e.g. learning, memory and attention [6,8,10]). The

highest values are typically provided by human studies of

general cognitive ability (’g’), which represents the main

dimension of covariation between cognitive traits ([11,12],

but see [13–15]). However, whether other animals possess a

general cognitive ability remains debated [4,16–19].

Evidence for the alternative view, that different cognitive

domains are governed by distinct developmental processes

and genetic mechanisms, and thereby may evolve indepen-

dently under diverse selection pressures, has been found in

non-human primates and birds (e.g. [16,19]). Thus, given

the uncertainty still surrounding the genetic architecture of

cognitive traits, a statistically robust approach entailing

multivariate genetic analysis [20,21] is conducive to evaluat-

ing these two hypotheses. Notably, multivariate animal

models allow estimation of additive genetic components,

and associated heritabilities, for each cognitive trait, and

also permit partitioning of pairwise phenotypic correlations

into genetic and environmental components [11,22].

Learning has traditionally held a central place in cogni-

tion research due to its widespread taxonomic occurrence

and its involvement in behavioural flexibility under variable

environmental conditions [1]. Particularly, associative learn-

ing may have far-reaching fitness consequences, as it

mediates adaptive individual responses to environmental

contingencies [23]. Nonetheless, research on the heritability

of associative learning has been largely limited to a few

model species (e.g. honeybees [24], fruit flies, [25], reviewed

by [23]). Importantly, associative learning includes distinct

facets such as discriminative learning (i.e. the process by

which animals learn to respond differently to different

stimuli) and reversal learning (i.e. the extinction of a pre-

viously learnt association and the formation of a novel one

[1]). Reversal learning is tightly linked to behavioural flexi-

bility and typically associated with behavioural inhibition

(i.e. impulse control [26]). Because discriminative and rever-

sal learning may depend on different neural processes

involving different brain regions [27–29], individual abilities

in these facets of associative learning may not be positively

correlated. Empirical research has, so far, provided mixed

results. Some studies show a positive association between

discriminative and reversal learning, consistent with a gen-

eral underlying cognitive ability (e.g. [28,30–32]). Other

studies indicate a lack of (e.g. [33]), or negative association

between the two (e.g. [34,35]). The extent to which these dis-

parate findings are due to different evolutionary history of

species, or methodological differences between studies, is

unresolved. While limited statistical power could explain a

lack of association, evidence for a negative association

between discriminative and reversal learning agrees with

theoretical models predicting speed–accuracy trade-offs in

information gathering and decision-making [36,37]. Speed–

accuracy trade-offs may occur within-individuals (e.g. due

to changes in cost of errors [36]) and among-individuals

(e.g. [38]). In the latter case, individuals are predicted to

exhibit different cognitive styles, associated with different

behavioural types [35,37,39]. While empirical evidence

provides some support for the existence of cognitive styles
[40–42], studies investigating the extent of genetics versus

environment in their control are, to our knowledge, lacking.

The interplay between learning and other cognitive

traits may also involve trade-offs, which may be genetically

mediated. Although this would have important evolutionary

consequences, available evidence is limited [10]. Past research

has mainly considered links between learning abilities,

memory formation and problem-solving (e.g. [43,44]), while

relationships with other cognitive domains have remained

largely unexplored. Among these, judgement biases have

received increasing attention over the past decade, particu-

larly within the field of applied ethology and animal welfare

[45,46]. Cognitive judgement biases are consistent deviations

from an accurate judgement of situations [47] typically

implied to reflect individual affective state (i.e. emotions or

mood [45]). Optimism and pessimism are examples of judge-

ment biases; optimistic individuals overestimate the chances

that they will benefit from a situation, pessimistic individuals

overestimate that the situation will have adverse consequences

[46]. Judgement biases may arise from long-lasting effects of

early life conditions [48] and be associated with personality

traits (e.g. [49–51]). Theoretical models predict that judgement

biases may constitute stable individual traits [47,49], with a

heritable component, and therefore may respond to natural

selection [47]. Interestingly, theory predicts that varying selec-

tion pressures associated with spatio-temporal environmental

heterogeneity may lead to genetically based individual differ-

ences in both judgement biases and learning abilities [47,52].

Unpredictable environmental variation may select for either

optimism or pessimism, depending on the extent of ecological

variability and movements between habitat patches [52], and

at the same time favour behavioural flexibility [53]. Thus, we

may expect covariation between these cognitive domains. At

a proximate level, variation in the monoaminergic systems

(e.g. dopamine and serotonin) is associated with both

learning performance [54,55] and judgement bias [56]. For

instance, dopaminergic function is implicated in the establish-

ment of stimulus–reward associations during learning and is

positively associated with optimism in mammals [57,58],

birds [59] and insects [56,60]. Nonetheless, inter-relationships

between learning abilities and judgement biases are still

largely unexplored (but see [61]). In particular, how reversal

learning abilities may map onto among-individual differences

in judgement, and if these traits may be under shared genetic

control, is unclear.

Here we explore the inter-relationships between different

cognitive traits and assess their underlying genetic com-

ponents, using as a captive population of red junglefowl

(Gallus gallus), the wild ancestor of the domestic chicken [62].

Specifically, we investigated: (i) the associations between indi-

vidual performance across a discriminative learning-, a reversal

learning- and judgement bias test and (ii) narrow-sense

heritabilities of these three cognitive traits.
2. Methods
(a) Study population
We tested chicks (n . 300, 2013–2017) from a captive population

of red junglefowl housed at Linköping University, pedigree bred

since 2011 and spanning six generations (see electronic sup-

plementary material, S1). To reduce the expected influence of

maternal effects, all eggs were artificially incubated. To minimize
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environmental contribution to between-individual differences, all

chicks were raised in a laboratory environment (for details, see

[63–65]). Chicks were individually tagged, kept on a 12 L : 12 D

cycle (7–19 local time) and observations were carried out 8–18.

(b) Associative learning
Learning tests followed earlier described work using the same

population [63,64]. In short, all birds were tested alone, in

arenas (46 � 36 � 18 cm, L �W � H). Cues consisted of coloured

bowls (5 � 3 cm, Ø � H) and laminated cards (9 cm2) of the same

colour (2013, blue and green; 2014–2017, black and white

[63,64]). Before testing, chicks were familiarized with being

alone in the arena [63,64]. Initially, chicks were encouraged to

approach the cues by the observer. A chick was regarded to

have made a choice if it moved towards a cue without help

and had its head within 2 cm of it. Correct choices were

rewarded with one-third of a mealworm placed inside the

bowl. In 2013, chicks were allowed to eat the reward even if

the unrewarded cue was chosen, while for 2014–2017 the set-

up was refined and the chick was collected immediately after

choosing the unrewarded cue. We statistically controlled for

effects of these methodological differences (see §2c below). In

addition, sub-analyses specific to each of the two study set-ups

provided similar heritability estimates. A new ‘trial’ started

immediately after a choice had been made. A test ‘session’

lasted for a maximum of 15 min and was terminated earlier if

the chick had lost motivation, with an interval of at least 1 h

between test sessions [64].

(i) Discriminative learning
At 3–6 days old, chicks were trained to discriminate between a

rewarded and an unrewarded cue (2013: half of the birds were

rewarded on blue and half on green; 2014: half of the birds

were rewarded on black and half on white; 2015–2017: all

were rewarded on white). In 2013, the side of the rewarded cue

alternated between subsequent trials, while for 2014–2017 the

test was refined and the side on which the reward was presented

varied according to a predetermined, pseudorandom schedule.

Chicks were categorized as having learnt the discrimination

once they chose the rewarded cue five (for 2013) or six (for

2014–2017) consecutive times. Even with the less stringent

criterion of five correct choices, the chance of putative learners

being false positives is low (electronic supplementary material,

S2). ‘Learning speed’ was measured as the total number of

trials needed to reach learning criterion. Ten birds did not

learn to discriminate between the two cues due to lack of motiv-

ation to engage in the test (e.g. trying to escape the test arena).

These individuals were therefore removed from the sample and

not analysed further.

(ii) Reversal learning
After passing the discriminative learning test, chicks took part in

a reversal learning test at around 5–7 days of age. If more than

7 h had passed since the final discriminative learning session,

the chick was exposed to a ‘refresh’ session in which it had to

again reach the learning criterion, before continuing to the rever-

sal learning test. This was done to ensure that the association

between the previously learned cue and the reward was still sali-

ent before performing reversal learning. In the reversal learning

test, the previously rewarded cue was unrewarded, while the

previously unrewarded cue was rewarded [64]. For this test,

birds were not helped by the observer. Learning criterion and

learning speed were measured as described for discriminative

learning (above). Twenty-five birds did not pass this test due

to lack of motivation to engage in the test, and so were removed

from the sample.
(iii) Cognitive judgement bias
In 2014–2017, at 12–13 days old, chicks were exposed to a judge-

ment bias test (for further details, see [66]). Briefly, individuals

were first given a ‘refresh’ version of the reversal learning test

to confirm that the previously learnt association had not been

extinguished. Immediately following the refresh, chicks were

then presented with five different colour cues, one at the time

and in a predetermined, pseudorandom order. The cues were

the previously learnt white (‘positive’, i.e. rewarded) and black

(‘negative’, i.e. unrewarded) cues, and three novel, unrewarded,

grey cues (’ambiguous’), intermediate in colour between the

black and white cues (25%white/75%black, 50%white/

50%black, 75%white/25%black). Chicks that were more likely

to approach ambiguous cues and had a shorter latency to do

so were considered optimistic. Individuals were exposed to

each type of ambiguous cue three times in 2014 and 2017

(i.e. nine ambiguous cues interspersed between 24 positive and

negative cues) and twice in 2015–2016 (i.e. six ambiguous cues

interspersed between 16 positive and negative cues), due to

time constraints arising from other ongoing experiments.

Whether the chick approached the cue (yes/no) and the latency

to approach (in seconds) were recorded. Maximum time per trial

was set to 30 s.

(c) Statistical analyses
All analyses were conducted in RStudio (v. 1.1.383).

We analysed factors affecting learning speed in discrimina-

tive and reversal learning, two measures of judgement bias

(i.e. probability of, and latency to approach ambiguous cues)

and their associations, using univariate and multivariate mixed

models implemented in the statistical software ASREML-R [67].

Additive genetic variances and corresponding heritabilities

were estimated using a standard animal model approach by

including individual genetic merit as a random effect and

using the inverse of the pedigree-derived additive genetic relat-

edness matrix (see [22]; electronic supplementary material, S3

gives a brief overview of this approach and its advantages over

classical techniques). For measures with repeated individual

observations (i.e. judgement bias), we fitted a random permanent

environment effect (’pe’) as well as the additive genetic merit (G).

Significance of heritability estimates was assessed via likelihood

ratio tests (LRT). Fixed effects for each trait (described below)

were selected based on the results of previous studies on the

same population (e.g. [63–65]). Categorical factors were numeri-

cally coded by n 2 1 (n ¼ number of levels of the factor) dummy

(0/1) variables. To aid model interpretation and numerical con-

vergence, all predictors were centred by subtracting population

mean values, and continuous variables were standardized by

dividing centred values by twice their standard deviation. Corre-

lation between individual learning speed in the discriminative

and reversal tests was evaluated by calculation of Spearman’s

rank order correlation coefficient. Pairwise associations between

each learning speed and individual judgement bias were

estimated from bivariate mixed models (see below).

(i) Discriminative and reversal learning
Learning speeds in the discriminative and reversal tests were

analysed separately, following log-transformation to achieve

normality, by conducting animal models (Gaussian distribution

and identity link function; see electronic supplementary material,

S3-M1,2 for model syntax) to allow estimation of heritabilities

(h2). ‘Sex’ (male and female) and the colour of the rewarded

cue (’cue type’) were included as fixed effects. Because cue

type was associated with year (i.e. 2013: green/blue, 2014–

2017: black/white), inclusion of cue type (four-level factor) as a

fixed effect allowed us to control for the effect of methodological

differences between the first and subsequent years (electronic
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supplementary material, S4). Excluding data from the first study

year yielded virtually identical heritability estimates.

(ii) Cognitive judgement bias
Since in many trials chicks did not approach within the given

30 s period, approach latencies constituted a censored variable

with a neat bimodal distribution. We therefore analysed two

measures of individuals’ responses in the judgement bias test:

(i) approach probability and (ii) approach latency to cues, if an

approach had occurred.

We first considered responses to all the five cues (i.e. positive,

negative, and each of the three intermediate, ambiguous cues)

and fitted models with cue-specific individual random effects

(i.e. ‘5-cues models’ with a 5 � 5 covariance matrix for individual

identity, to calculate repeatabilities for each cue type, and corre-

lations of individual responses across cue types; see below). For

approach probability, we specified univariate models including

cue type as a fixed effect and its interactions with other predic-

tors (electronic supplementary material, S3-M3). For approach

latencies, we conducted multivariate models (five response

variables, one for each cue; electronic supplementary material,

S3-M4) to allow cue-specific residual variances (i.e. 5 � 5 diag-

onal error matrix to model heteroscedasticity of error terms

across cues). This approach allowed assessment of judgement

bias at the population level (mean level effects; see electronic

supplementary material, S5), calculation of cue-specific repeat-

abilities (‘R’, adjusted for fixed effects, [68]) and evaluation of

individual consistency of responses across the five cue types

(pairwise correlations between individual responses to each

cue type: ‘rbw’).

We analysed the probability of approaching cues using bino-

mial (bernoulli) mixed effects models (employing the Penalized

Quasi-Likelihood algorithm), with a binary response variable

(1/0 for approaching versus not) and a logit link function. ‘Cue

type’ (‘POS’, ‘NEG’, ‘NearNEG’, ‘MID’, ‘NearPOS’) was predic-

tor in all models, allowing the quantification of how approach

probability differed between positive, negative and the three

ambiguous cues. ‘Sex’ was included as a fixed effect term. In

addition, to assess whether approach probability may have

been affected by repeated exposure to ambiguous cues and by

changes in emotional state (i.e. following recent access to a

reward), we considered ‘Trial number’ (1–33), and whether the

previous cue was rewarded or not (i.e. ‘Previous cue rewarded’)

as additional predictors. To further evaluate whether ‘Sex’, ‘Trial

number’ or ‘Previous cue rewarded’ may have affected approach

responses differently according to cue type, all two-way inter-

actions involving cue type were considered. Approach latency

was analysed including only trials in which the focal individual

approached a cue within the trial max duration (30 s) and follow-

ing log-transformation to achieve normality. Fixed effects

included ‘Sex’, ‘Trial number’, ’Previous cue rewarded’ and

two-way pairwise interactions, as for the previous modelling

on approach probability (see electronic supplementary material,

S5 for the results of mean level effects).

Having verified the similarity of repeatabilities of responses

to ambiguous cues, and a strong consistency in individual

response across the three types of ambiguous cues (see §3), we

subsequently re-ran models on ambiguous cue only to estimate

overall random effects on pooled ambiguous cues (‘ambiguous

cues models’, electronic supplementary material, S3). By doing

so, we obtained repeatability estimates (Rambiguous) for responses

to ambiguous cues (one for approach probability and one for

latency; see electronic supplementary material, S3-M5,7 for

detailed model formulation) and corresponding heritability esti-

mates ð’h2
ambiguous’Þ, as well as the proportion of repeatability

explained by permanent environmental effects (’e2
ambiguous ’; elec-

tronic supplementary material, S3-M6,8). Note that significance

values are reported only for approach latencies, because LRT
tests are not applicable to binomial mixed effects models. For

the latter, significance can be approximately inferred from confi-

dence intervals (i.e. whether 0 is included in +2 s.e., [22]). We

then analysed the association between individual approach prob-

ability and approach latency to ambiguous cues, to assess

whether individuals that were more likely to approach a cue

were also on average faster to do so. We specified a bivariate

mixed model, with approach probability and approach latency

as the two dependent variables, ‘Individual identity’ as a

random term and previously fitted predictors as added

fixed effects (i.e. ‘Cue type’, ‘Trial number’ and ‘Previous

cue rewarded’). Correlations between individual approach

probabilities and latencies were estimated based on model

variance–covariance matrixes [22]. This analysis was restricted

to the phenotypic level, because sample size did not yield the

power necessary for calculation of a genetic correlation.

(iii) Relationship between learning speeds and judgement bias
To investigate associations between individual learning speed

(in discriminative and reversal tests) and degree of optimism

towards ambiguous cues, we fitted a series of bivariate Gaussian

mixed models, with one dependent variable being either discri-

minative or reversal learning speed (log-transformed values)

and the other either approach probability (binomial variable:

0/1) or approach latency (log-transformed). Fixed effects were

specified as in previous models for learning speed and judge-

ment bias. In all models, individual identity was included as

a random term in a 2 � 2 covariance matrix, allowing us to

calculate correlations (+s.e.) from estimated variances and

covariances. As models with approach probability assumed

an underlying Gaussian error distribution, corresponding un-

certainty estimates (s.e.) of correlations are approximate.

Likewise, because likelihood ratio test assumptions are not met

with binomial variables, corresponding p-values should be trea-

ted with caution and considered as indicative only. By doing so,

we evaluated associations between task-specific individual

learning performances and individual optimism. Hence, covar-

iation was evaluated on the four combinations between

measures of learning speed (discriminative and reversal tests)

and cognitive judgement bias (approach probability and

latency).
3. Results
(a) Associative learning
(i) Individual consistency across learning tests
Individuals were not consistent in their learning speed across

tests; to the contrary, learning speed in the discriminative

learning test was weakly, but significantly, negatively corre-

lated with learning speed in the reversal test (rs ¼ 20.22,

p , 0.001, N ¼ 317; figure 1).

(ii) Discriminative learning
The number of trials that individuals needed to reach the set

learning criterion for discrimination between two colour cues

(learning speed) averaged 23.4+ 11.1 (s.d.) (range ¼ 8–70).

Learning speed did not differ between the sexes (males ¼

23.1+ 0.8 (s.e.); females ¼ 23.5+0.9; electronic supplemen-

tary material, table S4a) but varied according to the colour

cue associated with the reward (2013 colour cues: blue ¼

26.5+ 1.9, green ¼ 34.9+ 2.6; 2014–2017 colour cues:

black ¼ 21.2+0.6, white ¼ 28.1+ 2.2; electronic supplemen-

tary material, table S4a). There was no evidence for

heritability of learning speed in the discriminative test



0

0

50

100

150 rs = – 0.22*

4020
learning speed discriminative learning

le
ar

ni
ng

 s
pe

ed
 r

ev
er

sa
l l

ea
rn

in
g

60

Figure 1. Relationship between learning speed in discriminative and reversal
learning tests in red junglefowl chicks. Learning speed is measured as trials
until criterion reached (hence higher values indicate slower learning; see main
text for further details). Each point represents an individual bird. Grey line
marks equal speed in the two tasks. Asterisk (*) symbolizes significant value.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170285

5

(h2 ¼ 0.00+ 0.06, p ¼ 0.49; figure 2a). Given the absence of

detectable additive genetic variance for discriminative learn-

ing we did not attempt to estimate a genetic correlation

between this and reversal learning (see below).

(iii) Reversal learning
Learning speed in the reversal learning test averaged 46.2+
21.7 (s.d.) (range ¼ 9–158), did not differ between male and

female chicks (males ¼ 47.2+1.8 (s.e.); females ¼ 45.1+1.7;

electronic supplementary material, table S4b) and varied

according to colour cue/year (blue ¼ 28.9+ 1.8; green ¼

33.9+ 2.4; black ¼ 45.7+ 4.9; white ¼ 49.9+ 1.4; electronic

supplementary material, table S4b). Contrary to the discrimi-

native test, there was significant heritable variation in

reversal learning speed (h2 ¼ 0.26+0.11, p , 0.01; figure 2b).

Restricting the analysis to the years 2014–2017, to match the

sample available for the judgement bias (see below) and

remove methodological differences between years, yielded

virtually the same heritability estimate (h2 ¼ 0.25+0.12).

(b) Cognitive judgement bias
Individuals differed in their probability of approaching cues

across the entire range of cue types (i.e. repeatabilities:

median ¼ 0.44, range ¼ 0.36–0.58; table 1, diagonal). Further,

there was a high individual consistency in approach prob-

ability across cue types (i.e. between-individual correlations:

rbw; all greater than 0.77; table 1). We therefore pooled ambig-

uous cues to increase power and accuracy of estimates.

Overall, repeatability of probability of approach to ambiguous

cues was moderate (Rambiguous ¼ 0.34+ 0.03). Between-

individual variation in probability of approaching ambiguous

cues was driven by environmental effects (e2 ¼ 0.26+0.07)

(figure 2c), while the heritable component was low (h2 ¼

0.09+ 0.07) (figure 2c).

Individual repeatabilities in approach latency were simi-

lar across all cue types, apart from the negative cue for

which repeatability was lowest (table 1, diagonal). Across

cue types, there was an overall high individual consistency

in approach latency, particularly between contiguous cues

(POS–NearPOS, NearPOS–MID, MID–NearNEG, Near-

NEG–NEG: all rbw . 0.70; table 1). Overall, repeatability of
approach latency to ambiguous cues was moderate

(Rambiguous ¼ 0.25+0.03). Similar to approach probability,

the repeatability was mainly driven by environmental effects

(e2 ¼ 0.16+0.05, p , 0.01; figure 2d), while the heritable

component was again low (h2 ¼ 0.10+0.06, p ¼ 0.04).

Finally, individuals that were more likely to approach ambig-

uous cues were also faster in doing so (rbw ¼ 20.59+�0.09,

p , 0.01).

(c) Association between learning speed and individual
judgement bias

Learning speed in the discriminative learning test was neither

associated with individual approach probability, nor individual

latency to approach ambiguous cues in the judgement bias test

(approach probability: r ¼ 20.02+�0.08, p � 0.80; latency to

approach: r ¼ 20.07+0.08, p ¼ 0.39; figure 3a,b). However,

there was an association between learning speed in the reversal

test and both approach probability and latency to approach

ambiguous cues (approach probability: r ¼ 0.28+�0.07, p ,

0.01; latency to approach: r ¼ 20.24+0.08, p , 0.01;

figure 3c,d). Individuals that were less likely, and slower, to

approach ambiguous cues (i.e. less optimistic) tended to learn

the reversal test faster than more optimistic chicks.
4. Discussion
We examined associations between performance across cogni-

tive tests, and their heritabilities, in the red junglefowl. Our

analysis revealed weak covariation between measured cogni-

tive traits. Heritability estimates of performance across tests

ranged from virtually null to moderate. Reversal learning

yielded the highest heritability, while discriminative learning

performance was not heritable. Individual optimism, inferred

from responses to ambiguous cues, showed low heritability

and was predominantly governed by environmental effects.

Less optimistic chicks learnt the reversal, but not the discrimi-

native test, faster. Finally, performance did not differ between

the sexes in any cognitive test, matching the absence of sexual

dimorphism in young junglefowl.

(a) Discriminative versus reversal learning
Individual performance was not consistent across the two

learning contexts we assayed (discriminative and reversal

associative learning). To the contrary, we demonstrated a

weak negative association between learning speed in the

discriminative—and in the reversal test, suggestive of

speed–accuracy trade-offs and resulting individual cognitive

styles [37]. The proximate control of these putative cognitive

styles is presently unclear. A possible mechanism could

entail among-individual differences in strength of instantia-

tion of initial associations between cues and rewards. Strong

instantiation may lead to fast learning of novel associations,

which would, presumably, be mostly adaptive under stable

environments. Strong instantiation could also be expected to

increase the threshold for extinguishing previously learnt

responses, should environmental conditions change (as

required by reversal learning). Such a trade-off between

rapid learning and behavioural flexibility has been

demonstrated in invertebrates [29] and may also underlie

speed–accuracy trade-offs found across vertebrate species.



R = NA
h2 = 0.00 ± 0.06
e2 = NA 

R = 0.34 ± 0.03
h2 = 0.09 ± 0.07
e2 = 0.26 ± 0.07* 

R = 0.25 ± 0.03
h2 = 0.10 ± 0.06*
e2 = 0.16 ± 0.05*

R = NA
h2 = 0.26 ± 0.11*
e2 = NA 

0

0

3

2

1

0

5

4

0.05

0.10

0.15

0.20

0.25

0.05

0.10

va
ri

an
ce

va
ri

an
ce

va
ri

an
ce

va
ri

an
ce

0.15

0.20

0

discriminative learning

approach probability approach latency

reversal learning

0.05

0.10

0.15

(a) (b)

(c) (d)

Figure 2. Variance components and heritability for performance of red junglefowl chicks in cognitive tasks. (a) Learning speed in a discriminative learning test,
(b) learning speed in a reversal test, (c) approach probability to ambiguous cues, (d ) approach latency to ambiguous cues. Stacked bars show, from bottom to top:
residual variance, permanent environmental effects variance (limited to judgement bias), additive genetic variance (h2, grey bars). Estimates for approach probability
are on the latent scale (logit). Asterisk (*) symbolizes significant values.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170285

6

Irrespective of mechanism, the lack of heritable variation

underpinning individual differences in discriminative learning

performance does not seem to support a genetically encoded

trade-off. Notably, despite the absence of heritable variation

in discriminative learning, we have previously found, in the

same population, a high degree of temporal consistency in

individual performance (from chick-stage to sexual maturity,

repeatability: R . 0.4 [69]). Thus, long-lasting between-

individual differences in discriminative learning performance

may arise through environmental effects acting during develop-

ment, and/or parental effects mediated by the gametes.

Disentangling the pathways leading to these individual

differences will require experimental manipulations of the

environment experienced by young individuals and their

parents. Regardless, the lack of heritable variation implies that
selection on individual discriminative learning performance

would not lead to an evolutionary change. Further, the lack of

additive genetic variation does not seem to support that discri-

minative learning ability is part of a general intelligence (’g’),

because the latter is typically explained by a common genetic

underpinning (i.e. high heritability of ‘g’ [11]). Yet, the presence

of ‘g’ cannot be presently ruled out in the junglefowl and its

assessment will require further testing using a battery of cogni-

tive assays encompassing a wide range of cognitive abilities and

domains (e.g. mice studies [70,71]).

Conversely, we demonstrated a moderate heritability for

performance in the reversal learning test, of similar strength

to estimates available from other species (e.g. bees [24,72]

and mice [73]). While the lack of test repeats precludes

direct calculation of between-individual variation, heritability



Table 1. Cue-specific repeatabilities and individual behavioural consistency across cue types for red junglefowl chicks in a judgement bias test. Repeatabilities (‘R’ by
cue type, grey cells) and pairwise individual-level correlations (‘rbw’ between cue types, white cells) for: (i) ‘approach probability’ (i.e. probability of approaching a
cue) above the diagonal line; (ii) ‘approach latency’ (i.e. latency to approach a cue) below the diagonal line. Repeatabilities and individual-level correlations were
calculated from model variance – covariance estimates. POS, positive, i.e. familiar rewarded cue; NearPOS, ambiguous unfamiliar and unrewarded cue, most similar to
the positive cue; MID, ambiguous unfamiliar and unrewarded cue, intermediate between positive and negative cues; NearNEG, ambiguous, unfamiliar and
unrewarded cue, most similar to the negative cue; NEG, negative, i.e. familiar unrewarded cue. Estimate standard errors are provided in parenthesis.
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POS

0.58 (0.04)

0.99 (0.08) 0.88 (0.08) 0.81 (0.10) 0.77 (0.07)

0.41 (0.03)

NearPOS 0.97 (0.08)

0.55 (0.07)

0.93 (0.13) 0.87 (0.15) 0.81 (0.11)

0.37 (0.05)

MID 0.87 (0.05) 0.80 (0.08)

0.44 (0.05)

0.96 (0.11) 0.86 (0.08)

0.41 (0.05)

NearNEG 0.65 (0.09) 0.48 (0.12) 0.80 (0.11)

0.35 (0.04)

0.96 (0.07)

0.37 (0.07)

NEG 0.54 (0.08) 0.48 (0.10) 0.71 (0.09) 0.74 (0.10)

0.36 (0.03)

0.24 (0.03)
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sets a lower bound for repeatability [74]. Accordingly, we can

infer moderate to high between-individual differences in

reversal learning abilities, with a substantial genetic com-

ponent. Therefore, contrary to discriminative learning,

between-individual differences in reversal learning abilities

show the potential for microevolutionary responses to chan-

ging selection forces. Why performance in reversal, but not

discriminative learning was heritable, is unclear. A possible

explanation is that reversal learning performance is affected

by individual differences in inhibitory control [26], a trait

under genetic control in humans [75,76] and other animals

(e.g. mice [77–79]). Then if, for example, spatially or tem-

porally varying selection maintains genetic variation in

inhibitory control, among-individual differences in reversal

learning performance may be indirectly selected for (or vice

versa if reversal learning is under selection).

Generally, the degree to which different cognitive abilities

are heritable and genetically correlated to other cognitive and

non-cognitive traits has important implications for their evol-

vability [80]. For example, strong positive genetic covariation

between cognitive traits, as in the case of general intelligence,

implies that selection on a single cognitive trait may cause

evolutionary changes in other cognitive traits, even if these

are not strongly associated with fitness. On the other

hand, negative genetic correlations may place constraints on
evolvability of certain cognitive traits, for example, if these

are traded-off with other cognitive abilities under strong

positive selection [81]. Finally, if different cognitive traits

are underpinned by largely independent genetic control,

evolutionary trajectories are most likely to differ, leading to

individual and population differences in the association

between cognitive abilities (such as modular cognitive

structure and mosaic evolution [82]).
(b) Cognitive judgement bias
Overall, red junglefowl chicks appeared to behave optimisti-

cally and inspected ambiguous cues in more than 60% of

test trials. This high approach probability was most likely a

consequence of no cost (i.e. no punishment) of sampling

non-positive/unrewarded cues, aside from the negligible

energetic expenditure of approaching the cue [50,83]. Chicks

differed in their probability of approaching ambiguous

cues, and across individuals, approach probabilities to differ-

ent cue types were strongly correlated. Similar results were

obtained using latencies. Together these findings suggest

that approach probability and latency similarly captured

individual differences in judgement.

Heritability estimates for approach probability and latency

were similarly low, with estimates of additive genetic
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variation two to three times lower than environmental

variance. Therefore, between-individual differences in

judgement of ambiguous cues seemed to be driven by

environmental effects. Importantly, because individual con-

sistency in judgement was assessed over a single testing

session (duration up to 15 min), these environmental effects

could have been the result of transient between-individual

differences in affective state (e.g. mood [66]). Alternatively,

between-individual differences in judgement may have resulted

from long-lasting effects of developmental conditions or

maternal effects, and thus underpin stable between-individual

differences in judgement, possibly associated with personality

[49,51]. The low heritability of judgement bias we observe

here is compatible with both scenarios, provided that any

long-term stability of individual optimism is driven by

permanent environmental effects. However, the relatively

limited number of individuals tested to date resulted in sub-

stantial uncertainty for our heritability estimates, with 95%

confidence intervals ranging 0–0.2. Thus, at one extreme

there may have been minor heritable variation underlying

between-individual differences in judgement, while at the

other extreme individual differences in optimism may have

been associated with low-to-moderate heritability. Since heri-

table variation is a prerequisite for the occurrence of

evolutionary responses to selection [6,9,22], distinguishing

between these two alternatives should represent a priority

for future research.
(c) Covariation between learning performance and
judgement bias

Individual judgement bias was weakly associated with

learning performance in the reversal test: less optimistic indi-

viduals were faster in reversing the association between

colour cue and reward. There was no association between

judgement biases and discriminative learning performance.

Why individual optimism may correlate with one facet of

associative learning but not another is an unanswered ques-

tion. To date, only a few studies have examined covariation

between performance in discriminative learning and judge-

ment biases [61,84] and have mostly reported no association

between these two cognitive traits, similar to our results.

However, to the best of our knowledge, links between judge-

ment biases and reversal learning have not previously been

empirically investigated.

To understand interplays between learning and judge-

ment biases, it is useful to evaluate different causal

pathways that may give rise to associations between learning

performance and judgement. First, common traits may be

causally linked to both performance in reversal learning

and individual optimism. For example, speed–accuracy

trade-offs underlying different cognitive styles, and typically

associated with personality types (e.g. coping styles,

[37]) may also underpin associations between learning per-

formance and responses to ambiguous cues. Optimism
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may, thus, represent an individual cognitive trait, likely with

genetic underpinnings. Yet, the lack of association between

discriminative learning speed and optimism in the junglefowl

is not easily reconciled with a speed–accuracy trade-off fra-

mework, which predicts that fast/proactive individuals

should learn discriminative tests faster [37] and be at the

same time more prone to impulsively approach ambiguous

cues. Nevertheless, the negative association between opti-

mism and performance in the reversal learning tests is

compatible with individual differences in cognitive and

coping styles. This is because reactive/slow types are con-

sidered to be both more competent in reversal learning

and more susceptible to stress [26,85]. In turn, both acute

and chronic stress have been linked to negative affective

states, and, thereby, pessimistic-like behaviour [56,86–88].

Another possible explanation for our findings may entail

between-individual differences in persistence underlying

both reversal learning [89] and optimistic response to ambig-

uous cues [90]. Under this hypothesis, more persistent

individuals are expected to continue responding during

extinction (i.e. when presented with unrewarded cues) for

longer and are therefore predicted to be both slower in rever-

sing previously learnt associations and more persistent in

approaching when exposed to ambiguous or negative cues.

Individual differences in extinction, associated with personal-

ity and emotional traits, have been demonstrated in human

infants and mice [91].

Finally, an alternative mechanism may involve a direct

causal relationship, with individual affective state modulating

learning performance. The affect-as-information hypothesis

[92,93] posits that negative mood suppresses impulsive

behaviour conducive to negative fitness consequences under

challenging conditions, and favours instead inhibitory control

[92]. Since inhibition is also implicated in reversal learning, it

follows that individuals in a negative affective state (i.e. less

optimistic) may show enhanced performance in a reversal

learning test.

Fully distinguishing between these hypotheses will require

an appraisal of temporal consistency of individual optimism,

interplays with personality traits and experimental manipu-

lations of mood to evaluate resulting changes in cognitive

performance. Primarily, more data are required to ascertain

the extent to which the phenotypic correlation between
individual optimism and reversal learning may arise from

shared genetic control (i.e. pleiotropy or genetic linkage).
5. General conclusion
To summarize, we have demonstrated genetic variation

underlying individual differences in reversal learning per-

formance, and a lack of genetic effects for discriminative

learning. Between-individual variation in judgement of

ambiguous cues was mainly driven by environmental effects

and showed low heritability. Thus, the examined cognitive

traits do not seem to have a shared genetic control. Impor-

tantly, our findings suggest that in the junglefowl, reversal

but not discriminative learning abilities may evolve in

response to selection. The proximate mechanisms behind

differences in the genetic control of these two facets of asso-

ciative learning are unclear. Additive genetic variation in

individual inhibitory control provides a possible explanation

to this conundrum. Understanding what maintains heritable

individual differences in reversal learning will require linking

performance in reversal learning with fitness [94]. Further

work should also aim at elucidating the extent to which opti-

mism may be heritable, and what mechanisms are driving

covariation between learning abilities and judgement biases.
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