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Research into proximate and ultimate mechanisms of individual cognitive

variation in animal populations is a rapidly growing field that incorporates

physiological, behavioural and evolutionary investigations. Recent studies

in humans and laboratory animals have shown that the enteric microbial

community plays a central role in brain function and development. The

‘gut–brain axis’ represents a multi-directional signalling system that encom-

passes neurological, immunological and hormonal pathways. In particular it

is tightly linked with the hypothalamic–pituitary–adrenal axis (HPA), a

system that regulates stress hormone release and influences brain develop-

ment and function. Experimental examination of the microbiome through

manipulation of diet, infection, stress and exercise, suggests direct effects

on cognition, including learning and memory. However, our understanding

of these processes in natural populations is extremely limited. Here, we

outline how recent advances in predominantly laboratory-based microbiome

research can be applied to understanding individual differences in cognition.

Experimental manipulation of the microbiome across natal and adult

environments will help to unravel the interplay between cognitive variation

and the gut microbial community. Focus on individual variation in the gut

microbiome and cognition in natural populations will reveal new insight

into the environmental and evolutionary constraints that drive individual

cognitive variation.

This article is part of the theme issue ‘Causes and consequences of

individual differences in cognitive abilities’.
1. Background
The field of comparative cognition has long focused on describing cognitive

mechanisms underlying behaviour across species, and has revealed insight into

the convergent evolution of cognitive abilities among different taxa, such as cor-

vids and apes [1]. Among other factors, comparative cognition has improved our

understanding of the selection pressures that favour specific cognitive mechan-

isms, such as spatial memory in food-hoarding birds [2]. After many decades

of intense study on differences between species, many researchers are increas-

ingly exploring the causes and consequences of variation among individuals

(e.g. [3]). Proximate causes associated with cognition, such as brain morphology

(e.g. [2]) and hormonal responses (reviewed in [4]), have previously been

identified, and along with behavioural measures, provide additional dimensions

for quantifying cognition. Moreover, proximate mechanisms that are intrinsically

linked with cognition provide insight into properties of cognition, such as pheno-

typic plasticity and the relative contribution of genetic, environmental and

developmental effects. We argue that the microbiome is an important trait that

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2017.0286&domain=pdf&date_stamp=2018-08-13
http://dx.doi.org/10.1098/rstb/373/1756
http://dx.doi.org/10.1098/rstb/373/1756
mailto:gabrielle.davidson@ucc.ie
http://orcid.org/
http://orcid.org/0000-0001-5663-2662


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170286

2
should be explored as a mechanism explaining individual

differences in cognition that have not been explored at all in

natural populations outside of human studies.

The microbiome refers to microbial communities and their

collective genetic material found in and on the body, and is

most commonly studied within the gut. Studies have de-

monstrated a major role for the gastrointestinal system’s

microbiome in the development and maintenance of brain

function [5], mediated by direct links with immune and endo-

crine systems (reviewed in [6]). What makes the relationship

between the microbiome and brain especially significant

from an evolutionary and ecological perspective is that

research on humans and other animals including insects,

birds and mammals suggests that the microbiome differs

among individuals as a result of environmental factors, such

as diet [7–9], infection [10], stress (reviewed in [11]), sociality

[12,13] and host genotype [14,15], and that the microbiome

can have direct effects on cognition, as demonstrated in labora-

tory mice (Mus musculus) and human infants (table 1 and

references therein). In wild animal populations the roles of

food and infectious diseases are important factors that

have the potential to alter the microbiome of individuals.

Furthermore, social interactions both influence stress and can

facilitate the transmission of commensal and pathogenic

bacteria across individuals [25,26], leading to differences in

gut microbiota composition among social groups [13,27].

Here we describe how the study of microbial communities

among individuals has almost entirely unexplored potential

to explain individual differences in cognition and associated

functional behaviours.
2. Communication between the microbiome
and the brain

The gut–brain axis (GBA) describes bidirectional communi-

cation between the gastrointestinal tract and the brain

through neural, endocrine and immune pathways. The phys-

iological mechanisms through which this communication

occurs are complex, not yet fully understood and have been

reviewed elsewhere [6,28–31]. In brief, communication net-

works include the central nervous system (CNS), the enteric

nervous system (ENS), autonomic nervous system (ANS)

and the hypothalamic–pituitary–adrenal (HPA) axis. The

microbiome can modulate the ENS through the excitability

of the nervous system [6,32], the production of neurotransmit-

ters such as gamma-aminobutyric acid (GABA) and serotonin

[33], and metabolites such as short chain fatty acids that enable

signals to reach the CNS through the vagus nerve [34], the

longest cranial nerve linking the brainstem to the intestine.

Messages from the brain to bacteria in the gut are received

by receptors with binding specificity for brain-controlled

signalling molecules (reviewed in [28]). Gut–brain communi-

cation is also tightly linked to the HPA axis, an endocrine

system that coordinates the production and release of stress

hormones, including corticosterone, and is known to influence

cognition (reviewed in [4]). The development and regulation

of the HPA axis is, at least in part, controlled by the micro-

biome [5,35,36], while the microbiome also responds to

signals sent by the HPA axis. Signalling from the brain and

the release of stress hormones can influence the permeability

of the intestinal barrier maintained by the composition of

the microbiome community. Disruption to gut permeability
has knock-on effects on the uptake of nutrients and the

blocking of pathogens and toxins, thus stimulating immune

responses (reviewed in [28,31]). Experimental studies have

shown that alterations within the GBA have a direct impact

on behaviour, cognitive abilities and neuronal and protein

expression in the brain, which we describe throughout

this review.

The relationship between the brain and the microbiome is

apparent from several studies that have demonstrated

marked changes in host cognitive performance between

normal, germ free (i.e. mice born without any microorgan-

isms housed in sterile isolators) and experimentally altered

microbial communities (i.e. restricted diets, antibiotics, micro-

biota transplantation and infectious vectors) (table 1 and

references therein). Cognitive tasks include tests of learning,

behavioural flexibility, fear recall, working and spatial

memory and social learning (table 1), with significant differ-

ences in cognitive performance found even with small

sample sizes (typically ranging from 9 to 15 individuals).

These studies are frequently complemented with histology

and gene expression assays that look at markers for brain

cell activity and neuronal number in, for example, the hippo-

campus and amygdala (e.g. [10,19,23]). Neurotransmission in

the hippocampal serotonergic system is disrupted in a sex-

dependent manner in GF mice [35], a system associated

with inhibitory control [37,38]. GF mice also have impaired

fear-conditioned memory recall associated with differential

gene expression in the amygdala compared to control mice,

suggesting that an altered microbiome disrupts cellular

signalling and causes neuronal hyperactivity [19]. These

studies provide causal and functional explanations for links

between cognitive and biological phenotypes that can be

investigated further by looking at a range of variation in

microbial communities across individuals to better under-

stand the biological relevance of microbiome variation and

its impact on cognition in natural populations.
3. Individual differences in the microbiome
Much of what we know about individual differences in the

microbiome stems from human studies that categorize the bac-

terial composition into enterotypes, that is, distinct profiles

defined by the relative abundance of microbes from different

taxonomic groups (e.g. [39]). Humans host an incredibly vari-

able microbiome comprising between 1000 and 1150 different

bacterial species [40–43] and a plethora of studies have

addressed gastrointestinal diversity in an effort to define the

core microbial communities associated with internal (e.g.

age, heredity) and external (e.g. pharmaceutical, dietary) fac-

tors (e.g. [44]). Given the complexity of individual

microbiome variation, comprehensive, metagenomic investi-

gations have defined a core functional microbiome

comprised of 100-fold more unique genes than in the human

genome [45]. Studies are now documenting the microbiome

within and between species in a range of animal taxa, includ-

ing insects (e.g. [46]), birds (e.g. [47]) and other mammals (e.g.

[48]). Species diversity within the gut microbiota can be quan-

tified by sequencing the organisms found in faecal material,

and in some cases through cloacal swabs (e.g. [49]) and directly

from enteric tissue (e.g. [50]). Sequencing typically targets the

small subunit ribosomal RNA gene (16S rRNA), a highly con-

served gene that can be used as an evolutionary marker to
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Figure 1. Causes and consequences of individual variation in the microbiome in relation to environmental and developmental effects, and the subsequent impact on
neurological, cognitive and behavioural traits. Arrows indicate potential causal directions of relationships and are not exhaustive (for example, development may
directly affect cognition independent of microbiome). Italics refer to selected phenotypes that have yet to be investigated empirically (i.e. animal personality) and
where null results have been found (i.e. social information transfer [18]).
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identify taxa and their relative abundance. Alternatively, a

shotgun sequencing approach captures all genes present and

enables identification of the functional properties of genes

within bacterial taxa. Clusters of gene sequences from the

microbiota that have more than 97% shared sequence

similarity in the 16S rRNA gene are known as operational taxo-

nomic units (OTUs), and the proportion of OTUs that belong to

distinct phyla varies across host taxa. Bacteroidetes and Firmi-

cutes are the most common phyla in humans and other

mammals, while Proteobacteria and Firmicutes are typically

the most common in passerine birds (e.g. [47]). Variation in

the microbiome may be determined by host genes [14,15],

developmental conditions (e.g. [51]), natal environment (e.g.

birth canal [52], nest environment [53]) and current environ-

mental effects (e.g. diet, infection, acute stress (e.g. [9,10])),

all of which can determine how resilient the microbiome is

to perturbations that may alter its community composition.

What causes this variation is at the heart of understanding

the ecological and evolutionary significance of links between

the microbiome and cognition (figure 1).
4. Early life effects on the microbiome
and cognition

Early life is a critical period for gut colonization [51], the estab-

lishment of the HPA axis, as well as neurodevelopment ([4]

and references therein), and growing evidence suggests these

systems are interrelated. Disruption to the HPA axis following

developmental stressors can impair brain development and

function (reviewed in [4,54]). This includes, among other

effects, a reduction in neurogenesis following maternal separ-

ation [55] and social isolation [56] in rodents, and disrupted

song learning through elevated stress hormones and nutri-

tional restriction in birds (reviewed in [54]). Developmental

stressors also reduce bacterial communities in primates [57]

and rats [58], and GF mice develop exaggerated corticosterone
responses [59] and disrupted neurogenesis [60]. Recolonization

in mice can normalize adrenal responses, but only within an

early developmental window [59,60]. Moreover, variation in

microbiome diversity in one-year-old human infants can pre-

dict their cognitive abilities at two years of age [16]. Clearly,

there are interactive effects of the microbiome and the HPA

axis on the brain, yet studies that consider both systems as

mechanisms influencing adult phenotypes are limited to

rodents and primates, despite the well categorized work on

developmental stress in other taxa such as birds [54]. Under-

standing the causal relationships between these pathways

across taxa would provide a broader understanding of how

early life experiences, such as dietary changes and maternal

hormones, cause individual differences in brain function.

Moreover, further work is needed to identify in what stages

developmental effects on cognition can or cannot be reversed

by, for example, newly colonized microbiota through natural

transmission from the environment, or by targeted experimen-

tal approaches such as faecal transplantation. Indeed many

animals engage in coprophagy by eating their own or conspe-

cifics’ faeces (reviewed in [61]). This behaviour is typically

observed during periods when microbiome enhancement

may be most critical, such as during early development (by

eating mother or sibling excretions (e.g. [62]) and in response

to environmental stressors (e.g. [63]).

Independent studies that have manipulated developmen-

tal history by either altering the microbiome in mice or

altering corticosterone levels in birds have shown comparable

effects on social behaviour. Unlike control mice, GF mice had

no preference for novel as opposed to familiar mice, and

had reduced attention times towards a demonstrator mouse

during a social learning food-preference test. However, food

choices following the social food-preference tasks were similar

to CC mice, suggesting that disruption to social behaviour did

not impair information use [18]. In separate studies, increased

levels of corticosterone administered postnatally in food also

caused changes in social learning strategies and information
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use in birds [64,65]. Moreover, corticosterone-exposed birds

avoided associating with their parents and yet, like GF mice,

performed as well as control individuals on a foraging task

[65]. These studies demonstrate that although performance

appears equivalent in foraging tasks, individuals may be

achieving these outcomes using different strategies mediated

by at least two systems that modulate one another, namely

the microbiome and the adrenal response. Developmental

stress caused either by a disrupted microbiome or by

administering glucocorticoids alters with whom individuals

associate and from whom they learn (see also [66], this

issue). Although recent studies have shown that social net-

works predict microbial composition in wild primates

[12,26], we predict that positions in social networks may also

be mediated through microbiome, which in turn influences

social transmission of microbes, both commensal and infec-

tious, that may have beneficial [13,67] or detrimental effects

[68–70] on health and cognition.
 3:20170286
5. Adult variability in the microbiome
and cognition

Cognitive plasticity enables individuals to acquire, retain and

update information over time [71]. For example, seasonal

changes in neuron proliferation can increase hippocampal

volume and improve memory performance in food-caching

animals (e.g. [2,72]). The microbiome is also an intrinsic

trait that mediates plasticity of cognitive traits by altering

phenotypes such as protein expression in the brain [10],

adult hippocampal neurogenesis [22] and performance on

cognitive tasks (table 1). Changes in the microbiome can

occur through pathogen infection [10], dietary changes (e.g.

[21]) and exercise [24], all of which are expected to vary

across individual lifetimes, particularly in animals that are

prone to contracting infections, for example, through social

interactions, in animals that experience temporal and geo-

graphical changes in food availability and in animals that

vary their energy expenditure during migration or breeding

seasons. The captive environment can also alter microbiome

profiles and therefore has implications for testing cognition

in laboratory settings (e.g. [73,74]).
(a) Stress and infection
It is well established that stress can either enhance or block

learning and memory, depending on the strength of the stres-

sor and the individual’s adrenal response (reviewed in [4]).

Moreover, the effect of stress on cognition may be dependent

on the individual’s microbiome, and individual differences

in cognition may not be observed or properly quantified

unless tested under different environmental gradients. Infec-

tion with the enteric pathogen, Citrobacter rodentium, caused

shifts in microbial communities in CC mice, impaired

memory and resulted in an associated reduction in hippocam-

pal expression of brain-derived neurotrophic factor (BDNF),

but only if mice were exposed to acute stress prior to cognitive

testing. By contrast, GF mice without infection showed

impaired memory regardless of stress exposure [10]. There-

fore, very different conclusions could be drawn regarding

individual differences in cognition depending on gut micro-

biome and environmental conditions during cognitive
testing. Individual differences in memory might only be

observed if infected individuals were tested under stress.

The role of the microbiome as a proximate mechanism

mediating differences in cognition due to stress and infection

has yet to be investigated in wild populations, though

correlated changes between faecal glucocorticoid metabolites

and the microbiome of wild red squirrels (Tamiasciurus
hudsonicus) were shown to be associated with an increase in

Pasteurellaceae, a group of potential pathogens [75]. The

causal direction of these relationships, whether individuals

vary in their sensitivity to perturbation within a system and

the degree of knock-on effects across systems are all

unknown. Manipulative studies are required both in the

natal environment and in adulthood, whereby one of these

systems is altered (e.g. the microbiome) and the other system

is measured (e.g. corticosterone concentrations) to identify

the causal effects, individual differences in response to these

alterations and the circumstances under which disruption

affects individual cognition.

(b) Behavioural activity
A direct parallel can be drawn between exercise in humans

and ‘behavioural activity’ in animals. Exercise in humans and

rodents can increase adult neurogenesis (e.g. [24,76]) and alter

microbiome profiles (e.g. [77]), and recent evidence points to

the microbiome’s role in mediating the effects of exercise

on the generation of neural stem cells [22]. Exercise is important

in reversing negative effects on neurogenesis as well as spatial

and object recognition memory associated with microbial

imbalance caused by antibacterial treatment in adult mice

[22]. These processes may be relevant to animals during natal

dispersal, or migrating animals such as birds that experience

shifts in their microbiota as a result of long periods without

feeding, or due to dietary changes across breeding grounds,

stopover locations during migration and nutrient availability

on non-breeding grounds [78]. Migratory staging could include

increased use of farmlands [79] that can be contaminated with

antibiotics present in animal feed [80]. Whether the effect of

bacterial community modulation and activity levels on neuro-

genesis in mammals are also observed in birds has yet to be

explored. Given that the hippocampus and spatial memory

may be important in some species for effective migration [81],

fluctuations in neurogenesis and memory associated with

alterations in the gut microbiota could have the potential to

influence the efficiency of individual migratory events. How-

ever, activity associated with long-distance flights may buffer

effects on neurogenesis due to negative shifts in avian microbial

populations. Differences in behavioural activity levels among

individuals may also be associated with animal personalities,

defined as consistent individual differences in behaviour over

time [82]. Indeed, one notable behavioural measure that is

frequently associated with the microbiome is anxiety, some-

times measured in terms of activity or exploratory behaviour

(reviewed in [11]). Although not yet tested explicitly in the

context of animal personality, we predict that variation in

traits such as activity, anxiety or boldness may be associated

with individual differences in microbiome profiles.

(c) Diet and foraging behaviour
Diet as a consequence of foraging behaviour is a fundamental

aspect of animal ecology and evolution, and access to food

types can be influenced by a range of factors including
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cognition, competitive ability and innovativeness. Diet has

been reported to alter microbiome composition, sometimes

within 24 h [83]. Dietary manipulation has also led to

impaired or enhanced cognition in mice models [7,9,21],

and in one case has been shown to be independent of

nutritional value [7]. Diet varies between and within species

along spatial and temporal scales, which can cause shifts in

gut microbiota as demonstrated in animals that engage in

coprophagy [61], migratory birds during stopovers [84],

wild mice across seasons [85] and animals brought into

captivity [73], and therefore could impact cognition as a

result. Microbiome shifts may also arise in the opposite

causal direction when cognition directly affects an individ-

ual’s dietary preferences or capacity to gain access to food,

resulting in feedback loops between cognition and the micro-

biome via diet (figure 2). For instance, individual differences

in learning specificity versus generalization of aposematic

warning signals will affect the types of food individuals

ingest when encountering novel prey [86]. If aversion to

known aposematic signals is generalized to novel prey

species that share similar cues, individuals may reduce the

chances of ingesting toxic substances that could have adverse

effects on gut microbiota, but generalized aversion may also

restrict their dietary breadth of palatable prey, resulting in a

less varied microbiome than individuals that sample prey

that do not share the specific features of learned warning

signals. These learning strategies and associated effects on

the microbiome would be reliant on the range of variable

prey types present in the environment (e.g. [86]).

Individual microbiome profiles mediated by food access

may be further determined by behaviours such as competitive

ability, which has been shown to be negatively correlated with

novel foraging behaviour [87] and learning [88] through the

‘necessity drives innovativeness’ hypothesis. Consequently,

competitive individuals may have greater access to easily

accessible foods (e.g. bird feeders), while less competitive indi-

viduals are more likely to use alternative, more diverse food

sources through innovative foraging behaviours. Multiple

related phenotypic traits including innovation, cognitive traits
such as learning and generalization and animal personality

traits such as competitive ability, all have the potential to influ-

ence the microbiome composition mediated through diet,

which in turn may feedback on cognition (figure 2).
(d) Nutrition
The effects of food nutritional value and foraging success on

individual cognition are almost entirely unknown in natural

populations (but see [89]), and studies on how these effects

are mediated by the microbiome are restricted to the lab-

oratory. High sugar and high fat diets in mice caused

alterations in microbiota down to the genus level and impaired

spatial memory and reversal learning, with effects most pro-

minent in high-sugar groups [21]. The consequences of diet

may be particularly relevant for species that consume a high

proportion of sugar-rich foods such as nectar (e.g. humming-

birds) and fat-filled foods such as seeds and nuts (e.g. Clark’s

nutcracker, Nucifraga columbiana, and squirrels), while

depending on spatial memory to remember which flowers

have been depleted (e.g. [90]) and where food caches have

been stored [2,72]. Alternatively, it may be found that, for

example, species with sugar-rich diets have uniquely adapted

physiological systems that benefit from having high pro-

portions of sucrose-utilising bacteria. Other food types, such

as protein, can increase microbial diversity and improve

performance on tests of working and spatial memory [9].

Individuals within and across populations that vary in their

propensity to forage on meat through innovative and opportu-

nistic hunting behaviours [91,92] would facilitate individual

variation in their microbiome. Positive feedback loops

between cognition and foraging may be present whereby,

for example, individuals with low microbial diversity have

impaired behavioural flexibility and/or memory, and as a

result are restricted to a more limited dietary niche, which in

turn maintains low microbiome diversity (figure 2).

Food preferences can influence learning acquisition and

memory retention depending on the nutritional content of

the food types given (e.g. [93–95]), whether they can be
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metabolized [96] and if reward receptors for the metabolites are

present in the brain [97], independent of taste perception [96].

The microbiome can alter reward signal pathways, release

toxins that influence host mood, alter taste receptors and

produce exact mammalian neurochemical analogues that

are transmitted to the brain via the vagus nerve, all of which

may contribute to changes in eating behaviour (reviewed in

[98]). The absence of distinct commensal gut bacteria can

modulate food preferences when Drosophila melanogaster
(the common house-fly) is deficient in essential amino acids

(eAA) [99]. By preferentially choosing foods containing Aceto-
bacter pomorum and Lactobacilli species, individuals reversed the

negative effects associated with eAA deficiency. This behav-

iour suggests that Drosophila can directly modulate their own

microbiome, and this change in food preference could act as

a mechanism to break free of positive feedback loops between

poor foraging success and low microbial diversity (figure 2).

Moreover, the metabolic profiles of the microbiome commu-

nity could influence the strength of reward perception of

different food types, thereby increasing reinforcement. As

predicted by conditioning theory [100], we would expect

faster learning and more robust memory associated with

foods that contain specific microbes or nutrients. Given the

bi-directional communication of the GBA (see §2, reviewed in

[6,28–31]) and evidence indicating that the vagus nerve can

stimulate gut inflammation and intestinal permeability,

perhaps resulting in microbiome modulation (reviewed in

[101]), it is tempting to speculate that neurotransmitters

released by the brain as a result of obtaining these food types

could be communicated to the microbiome via the vagus

nerve. This proposition that the process of memory formation

is signalled to the microbiome is an area of research that has

yet to be explored.

When assessing links between the gut microbiota and

cognition, it may be appropriate to disentangle the effects

of nutrition versus microbiome on plasticity of cognitive

performance. The transplantation of gut microbiota from

experimental mice into control mice showed that cognitive

changes associated with high fat diets were due to alterations

in the microbiota, independent of food/nutrient ingestion [7].

By contrast, beef-fed mice with higher working memory than

chow-fed mice ingested higher concentrations of taurine [9],

an amino acid that can directly improve cognitive function

[102], potentially independently of the microbiome. In a

passerine bird, parents preferentially fed their nestlings

taurine-rich spiders when chicks were four days old, and

chicks supplemented with extra taurine had improved spatial

memory [89]. Taurine has been shown to influence microbiome

composition in mice [104], and since the microbiome also plays

a role in the absorption and synthesis of micronutrients, the

metabolism of compounds such as polyphenols [7,104] and

taurine [103] may provide yet another pathway by which the

microbiome influences cognition.
(e) Captivity
Individual differences in cognition are often quantified in

environments where subjects are either reared in captivity

or brought temporarily into captivity from the wild. Several

aspects of the captive environment may influence individual

cognitive performance, including neophobia, habituation and

stress, but rarely is the effect of captivity on the microbiome

considered. Captive-bred animals exhibit lower gut microbial
diversity than their wild counterparts across a wide range of

host taxa including seals [105], primates [74], birds [106],

rodents [73] and fish [107], with some bacterial families

being completely absent in captive animals [105]. In primates,

the degree of impact reflects the intensity of captivity. Wild

populations have the most natural microbiome, semi-captive

sanctuary environments have an intermediate microbiome,

and isolated captive populations have the least diverse micro-

biome [74]. Humans also follow this trend, whereby elderly

populations confined to long-stay communities demonstrated

decreased microbial diversity, lost taxa associated with

positive health parameters and became frailer than those in

short-stay communities or those who did not attend assisted

living facilities at all [108]. The effects of reduced microbial

diversity due to captivity on cognition are unknown,

though we expect them to differ depending on the level of

captivity. Subjects brought in from the wild are exposed to

a restricted environment with an altered diet, and individuals

held for longer durations may experience a greater decline in

bacterial community diversity than those held for shorter

durations, therefore the timing of cognitive tests may be

crucial if associated changes in the microbiome do indeed

influence performance on cognitive tasks. By comparison,

studies on hand-reared captive populations with reduced

microbial diversity may generate conservative estimates of

species variation in cognition compared to wild populations.

Moreover, we may expect repeatability in cognitive tasks to

be more stable in captive populations as opposed to wild-

caught populations if environmental and diet conditions in

captivity are relatively stable compared to natural habitats.

Administration of probiotics could be considered as a sup-

plement for animals in captivity as they improved memory

and emotional wellbeing in humans [109], normalized cogni-

tive profiles, stress responses and gene expression in mice

[10,20,22] and reduced gut leakiness and HPA response to

acute stressors in rats [110].
6. Evolutionary consequences of the microbiome
on cognition

So far we have focused largely on environmental effects that

determine and alter individuals’ microbiomes, and conse-

quently cognition through developmental and phenotypic

plasticity. There is also potential for selection to act on the

microbiome and host genes that determine cognitive abilities.

The role of the microbiome as a driver of the evolution of cog-

nition has been explored theoretically within the context of

the social brain hypothesis [111], suggesting that selection

favours social complexity as a means to increase transmission

of beneficial microbes causing host–symbiont coevolution on

RNA regulation in the brain [112]. Furthermore, there is

growing realization that the microbiome plays an important

role in epigenetic control of gene expression associated with

cognition and anxiety [112]. It is difficult to identify to

what extent the microbiome is heritable as any apparent stab-

ility may be caused by environment effects shared by parent

and offspring (e.g. [113,114]). Nevertheless, even if micro-

organisms are transferred from the environment, the

bacterial community that establishes itself is filtered by and

adapted to host traits including gut physiology, enzymatic

phenotypes, immune function and dietary profiles, which is

suggestive of co-diversification [46]. Indeed, individual
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variation in the microbiome has been shown to be associated

specifically with host genetic variation [14,15], providing evi-

dence that host genomes are adapting to their microbiome

and vice versa. Further support for co-diversification comes

from phylogenetic comparative studies in the mammalian

lineage where diet and microbiome profiles have evolved

convergently [115,116]. Moreover, because microbiome diver-

sity is linked to fitness in mammals [117], life-history traits

including clutch size, lay date and adult survival in birds

[118] and fecundity in Drosophila [99], there is likely an adap-

tive component to microbiome variation that may function to

optimize food preferences, social behaviour, stress responses,

immune functions and cognitive abilities to mutually benefit

both host and microbes.
.R.Soc.B
373:20170286
7. Conclusion
We have proposed several potential causal links between the

gut microbiome, ecology, physiology, behaviour and cog-

nition in natural animal populations, derived from the

rapidly increasing plethora of studies from humans and lab-

oratory animals. Because the microbiome is ubiquitous across

species and variable among individuals, it is a promising

avenue of research for investigating cognition in the context

of individual differences across a broad range of taxa from

evolutionary, developmental and phenotypic plasticity per-

spectives. We encourage further research into unexplored

questions as to how natural variation in the microbiome is
determined by early life effects and throughout adulthood

due to socio-ecological factors as well as interactions with

adrenal and immunological systems. Furthermore, studying

multiple proximate mechanisms in tandem is necessary to

uncover the interacting and causal relationships between cog-

nition, behaviour, diet and the microbiome, and will help to

elucidate the environmental and genetic effects determining

individual differences in cognition and coevolutionary

processes between microbes and hosts.
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