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Because of their capacity to alter floe size distribution
and concentration and consequently to influence
atmosphere-ocean fluxes, there is a compelling
justification and demand to include waves in
ice/ocean models and earth system models.
Similarly, global wave forecasting models like
WAVEWATCH HI® need better parametrizations
to capture the effects of a sea ice cover such as
the marginal ice zone on incoming wave energy.
Most parametrizations of wave propagation in sea
ice assume without question that the frequency-
dependent attenuation which is observed to
occur with distance x travelled is exponential, i.e.
A=Ape **. This is the solution of the simple
first-order linear ordinary differential equation
dA/dx = —aA, which follows from an Airy wave
mode ansatz Aexpi(kx = wt). Yet, in point of fact,
it now appears that exponential decay may not be
observed consistently and a more general equation
of the type dA/dx = —aA" is proposed to allow for a
broader range of attenuation behaviours should this
be necessary to fit data.

This article is part of the theme issue ‘Modelling of
sea-ice phenomena’.

1. Introduction

Ocean wave propagation into and within sea ice fields
is a well-established geophysical research topic that
is currently attracting renewed attention, prompted
by recent adjustments to Arctic sea ice especially,
which are occurring as a result of global climate
warming. Indeed, reviews [1,2] include exhaustive
bibliographies that catalogue early progress in the field,
with commentaries from the heroic era of exploration,
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experimental studies in the 1930s, the introduction of mathematical sophistication in the 1950s
and late 1960s, the influential work of Wadhams and others in the 1970s and 1980s [3,4]—the
latter prompted by the MIZEX campaign, and more recent further developments using powerful
theoretical and numerical solution methods for both shore fast sea ice [5] and the modestly sized
ice floes of the marginal ice zone (MIZ) [6].

As well as observations collected in situ, remote sensing has also provided valuable datasets
using both satellites and aircraft missions. Whether focused upon continuous pack ice, the loosely
compacted ice floes of the MIZ, or pancake ice, nilas, frazil and grease ice, the compilation of
research papers and reports is impressive and continues to grow as the contemporary importance
of the subject is recognized and technological advances make practicable more sophisticated
measurements that were not feasible 20 years ago.

Ocean waves propagating in an ice field are observed to decrease in amplitude. The observed
reduction is due to a combination of two processes—scattering and dissipation, which both
need to be accommodated in any earth system model, ice/ocean model or wave forecasting
parametrization. Scattering redistributes energy but does not eliminate it while dissipation,
insofar as the waves are concerned, removes energy. Undoubtedly, the latter process actually
reassigns the energy to other parts of the atmosphere/ice/water system, e.g. to kinetic energy
in the mixed layer, etc., and this will be important in earth system models which are required
to conserve energy because they compute results over very long time scales. However, this
prerequisite is not important here, as the system under consideration is not closed.

The energy transport equation, or the wave action equation in WAVEWATCH M® (hereinafter
WW?3) where ocean currents are included [7], is used to embed ocean waves in these large-scale
models. We express this equation in its simplest notional form for energy density E = E(x, w, 6),

(3 +cg.V)E= ) §=Sin + St + Sas + Sice, (11)

where x denotes the spatial coordinates, w is the radian frequency (=2nf=2x/T, where f
is the frequency and T is wave period), 6 is the direction of travel of the wave, the group
velocity cg is taken as constant and ) S encapsulates a number of source/sink terms, as follows.
Sin represents wind-wave interaction, Sy is a nonlinear wave-wave interaction term, Sgg is a
dissipation (whitecapping) term and Sjce = Sice(X, w, 0) is the term of interest in this work as it
characterizes how the waves are affected by the ice field. Sice can be partitioned into the two
processes introduced above, which are, respectively, designated energy attenuation coefficients
dscat and agis,

2
Sice = —Cg (E(O‘scat + agis) + JO EK(6 - ¢') d9/> ’ (1.2)

such that f%ﬂ Sice dd =0 and —ascat + I(Z)” K —0')d8’ =0 when agjs =0.

The author has specifically referred to ascat and agjs as energy attenuation coefficients, in
keeping with [7]. For clarity, I will use the generic unsubscripted symbol « to denote the amplitude
attenuation coefficient later, recognizing that for exponential attenuation oscat (and agjs) ~ 2a.

Considerable modelling work has been done to understand ascat in the MIZ, e.g. the phase-
resolving, two-dimensional scattering theory described in [8,9] and tested against field data in
[10]. The most appreciable scattering occurs when floe diameters and ocean wavelengths are of
similar order, so waves passing through a field of pancake ice will not be scattered to any extent.
Although it is recognized that such scattering models are never perfect, the author feels that the
redistribution of wave energy that occurs due to scattering which results in attenuation of the
wave field expressed through the coefficient ascat is well understood and adequately modelled.
This is important because contemporary phase-resolving scattering models provide a direct link
to ice floe break-up and hence to how the floe size distribution changes, as flexural stresses in
the compliant ice floes that make up the MIZ are easily calculated [9]. It only remains to find a
numerically efficient way to replicate the properties of K(6 — 6’) in equation (1.2).

Unfortunately, the author cannot say the same in regard to agjs, for which no satisfactory
models exist. Dissipation is due to an abundance of processes that are symptomatic of a MIZ,
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defined as being the region of the ice cover that is substantially affected by open ocean processes.
As such, we expect considerable turbulence; inelastic ice floe collisions that can include reducing
the ice to a slurry by pummelling; vortex shedding; wave breaking, overtopping and repetitive
overwashing of the floes; spontaneous green water at large wave amplitudes; energy loss
associated with ice deformation under extreme conditions; ridging, rafting and ice floe fracture;
and no doubt other less obvious mechanisms. Near the ice edge, when the seas are rough,
considerable destruction of the ice floes can occur but, because the dissipation eliminates higher
frequency waves before lower frequency ones, the zone of intense energy loss is typically limited
to 10 or 20km or so in Arctic waters, see e.g. [11]. In the Southern Ocean, where seas are much
fiercer, the zone of destruction will be considerably broader. It is quite likely that the attenuation
rates in these outer zones may deviate significantly from those in the interior and may even have
a different functional dependence on the distance travelled by the waves. It is also conjectured
that large amplitude waves may attenuate differently from those with smaller amplitudes, as the
effects of nonlinear dissipation mechanisms such as overwash and wave breaking will be more
pronounced.

Creating a viable model that fits the multifarious realizations of the MIZ is unlikely to be
achievable, as the contribution from these several dissipative mechanisms will change with both
the wave and the ice conditions. Moreover, although the scattered fields are reasonably well
understood as noted above, potentially very energetic dissipation will also occur in the waters
between floes as a result of the scattering process itself. The convenience of separating agcat
and aqjs in equation (1.2) may be problematical in this regard, although we accept its utility.
Nonetheless, while its magnitude may change according to ice conditions, in field observations,
a simple power law of modest order appears to describe consistently how attenuation varies
with wave frequency. To the author’s knowledge, no dissipative model has reproduced this
proportionality yet unfortunately; indeed most are way off the mark and it is unlikely that a
linear model will ever accurately reproduce what is observed.

The above comments notwithstanding, it is conspicuous that the vast bulk of theoretical
models constructed to describe how waves are affected by sea ice or vice versa, are configured to
fit a linear paradigm, i.e. they employ an Airy wave mode ansatz [12] of the form A expi(kx £ wt).
In this expression, A is the initial wave amplitude, k denotes a generic complex wavenumber
that here defines either propagation in the water or beneath the ice cover, x is the direction
of propagation and ¢ is time. In the usual way, k=« + ix encapsulates dispersion (via the real
quantity «) and attenuation (via imaginary ix) into one consolidated complex wavenumber.
Typically, a boundary value problem is then solved, e.g. for open water surface gravity waves
travelling into an homogeneous plate or layer which can be semi-infinite or finite in horizonal
extent and has prescribed physical properties that define its behaviour in flexure. As a rule, the
ice would be designated as elastic, viscous or viscoelastic; each being reasonable when the wave
amplitudes are modest for the strain rates induced by typical surface waves in the sea ice under
various circumstances. The material properties chosen for the ice provide the dispersion relation
that regulates how the waves propagate under the ice cover, i.e. how they disperse and reduce in
amplitude, and, because the wavenumbers in open water and ice-covered sea are different, the
impedance change at the ice edge which causes some of the wave energy to be reflected. Weakly
nonlinear formulations exist but they are relatively rare, e.g. [13].

The author is not dismissing linear models that describe wave propagation into and
within ice fields. With graduate students and colleagues, I have constructed no end of linear,
physically based models, e.g. [5,6,8,9], over many years. Rather, I am cautioning that the a priori
adherence to the linear A =Age™*" prototype can be problematical when (i) parametrizing in
operational forecasting systems and earth system models, as it predisposes the attenuation to
be exponential; (i) attempting to fit any such model to data, because the exponential function
A=Ape ™™ may have too few degrees-of-freedom to fit the data at all the spectral wave
frequencies present. Moreover, (i) may contribute to enigmatic intermittent features that have
been seen in some field datasets, e.g. [4], acknowledging that specific phenomena such as
‘rollover’, whereby attenuation peaks at some wave frequency but decreases again at higher
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frequencies, has recently been explained by wind input and nonlinear energy transfer between
frequencies [14].

2. Appraisal

(a) Two paradigms

A crucial distinction needs to be made between two classes of theoretical model, designated
paradigms I and II herein. Papers [5,6,8,9] are paradigm I examples of models where the physics
of wave—ice interaction is replicated theoretically as credibly as possible. In [5], the reflection and
transmission coefficients are found at the interface between an open water half-space and a half-
space covered by a uniform ice sheet that represents so-called shore fast sea ice. In concert with
many models describing how ice flexes in response to waves, the ice is assumed to respond as a
thin elastic plate. Paper [6] also computes reflection and transmission coefficients, but this time
for a finite elastic ice floe. In the third example [8], a MIZ bathed by a prescribed directional
wave spectrum is modelled by means of large numbers of floating compliant plates which scatter
the penetrant wave energy in all directions. The fourth example [9], leads on from [8], using its
scattering theory to evolve the MIZ floe size distribution, by breaking up those ice floes that are
too large to exist in the wave field using a Mohr-Coulomb fracture criterion. In all cases, the
physical properties of the ice, namely observable state variables such as thickness, ice density and
the elastic moduli, etc., can be mapped straightforwardly onto the coefficients that appear in the
model and in situ experiments can be done to ascertain whether the model is a good fit to data. It
is these attributes that are symptomatic of a paradigm I model.

On the other hand, some theoretical work is more accurately labelled as a parametrization
and fits paradigm II, including models that are constructed for one purpose being used for
another. I am not dismissing the value of paradigm II, as it is simply not practicable to incorporate
fully phase-resolving wave—ice interaction theory into either an earth system model or WW3; a
pragmatical solution is, therefore, necessary that parametrizes the physics in the most accurate
way. Potential examples in current use are the viscoelastic layer in [15], which is well suited
to modelling waves travelling in homogeneous continuous ice, or the modified fast ice model
[5]* altered to have a complex flexural rigidity so as to produce damping, being used to model
an entire, potentially open, i.e. of low-concentration, heterogeneous ice field. (The superscript
w denotes viscosity, added to acknowledge that I am referring to a viscoelastic version of
the original elastic paper [5].) Parametrization aspires to represent a substantial region of ice
cover composed of many ice floes and ice cakes present at spatially variable concentrations
and thicknesses as an effective medium with a single dispersion relation that describes how the
waves disperse and attenuate via their wavenumber as they propagate. Zones with different
physical properties can be introduced, recalling that the impedance alters where properties
change so that a boundary value problem exists at each interface which strictly requires reflection
and transmission coefficients to be found. However, the real challenge is mapping a loosely
configured, heterogeneous array of independent ice floes, ice cakes and frazil onto the physical
material coefficients that appear in the ‘holistic” dispersion relation that describes the effective
medium. Unlike when the examples [5,6,8,9,15] given above are used as originally intended, there
is no way that this can be done by independently measuring each physical property of the sea ice
and the only recourse is to measure how the waves change as they pass through the ice medium
and then to tune the model parameters to ‘best fit’ the observed data. Accordingly, the model is
being calibrated with the very data it is predicting.

The computed model parameters also strictly have no material physical interpretation as they
are only associated with the experimental data being analysed, so generalization to other ice
fields or ocean wave states is challenging or impossible. Moreover, it must be asked how faithful
the model is to the physics of the process being observed and whether it is actually capable of
replicating observations. The author contends that this has not been convincingly demonstrated
to date. Indeed, there are incontestable analyses that suggest that [5]* and [15] can never replicate
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observations well as a paradigm II stratagem because their asymptotic behaviour at mid- to
high-frequencies is usually wrong and the same is true of viscous layer models such as that in [16].

Without knowing that they are a universally valid parametrization, some prototype models
are already being embedded within operational wave forecasting systems such as WW3 and
earth system models that operate under a very diverse range of environmental circumstances,
e.g. for large wave steepnesses where the differential equation predicting attenuation, namely
dyA = —aA with solution A = Age™*, is unlikely to be a reliable approximation to Nature in all
circumstances and the issue of poor adherence to observed «(w) behaviour at high frequencies is
becoming clear. (Here and subsequently the abbreviation d = d/dx is used.)

Although the purpose of this paper is not to review the field of wave-ice interactions, it
would be remiss of me not to corroborate the assertions I have made as best I can. This will
be done in later sections. Subsequently, using data from a recent field experiment, I will focus
on the constraints implicit in linear models that conflate dispersion and attenuation in ice
fields using the single complex wavenumber k =« +ic. An alternative differential equation,
namely dyA = —aA", derived using physical arguments for pancake ice in [17] and potentially
having an additional degree-of-freedom #, will also be presented as a generalization of the
archtypal exponential attenuation law A =Age™**. Remarkably, the model in [17] affords the
same equation for attenuation built from different physics in [18]. While the physical basis of
the latter publication can be challenged, the differential equation that parametrizes how wave
amplitude A changes from its value Ag at the ice edge as the wave advances through the ice
medium, namely

dyA=—aA" with solution A1~ = Agl_n) — (1 —n)ax, (2.1)

where 1 and « are to be found, is a generalized decay law that reverts to one with a constant rate
of decay when n = 0 and exponential decay when n =1 [17,18]. The equation is a consequence of
allowing viscosity to depend on strain rate and, because of this, frequency o, in a particular way
and derives from a power law fluid constitutive relation. Rather than just ‘best fit" observations,
I will also describe how the value of n can be predetermined to some extent by aggregating
intelligence about the nature of wave—ice interaction in MIZs.

Irrespective of the simplicity of 2.1 and the cognate linear equation when n =1, I reiterate that
ice fields are never homogeneous. Accordingly, it is highly unlikely that any parsimonious decay
equation will replicate the behaviour of ocean waves travelling in sea ice perfectly, because the
attenuation experienced depends on the local oceanographic and ice properties as reported in [11]
for the Bering Sea. In principle, zones with different values for n may help but, recognizing the
immense challenge of conducting wave experiments in sea ice, the importance of comprehensive
sea ice morphology and oceanographic observations collected simultaneously to complement the
wave data cannot be overstated if we are serious about calibrating an aspiring parametrization.

(b) Contemporary parametrization

I briefly discuss the three most common material descriptions used to categorize sea ice when
it is subjected to ocean wave forcing; elastic, viscous and viscoelastic. The common theme
is (i) linearization about the basic state of rest, (ii) assuming the motion is proportional to
Aexpi(kx £ wt) and (iii) derivation of a dispersion equation that connects w with k. The dispersion
relations, w = w(k), are distinct in each case and for different models but the dependency of the
amplitude A on x that follows is always exponential.

The generic ice wavenumber k is real when the ice is uniform and purely elastic if no further
dissipation, arising from a combination of ice flexing, dissipation in the water and mechanical
energy loss such as collisions between ice floes or cakes, is parametrized. Waves disperse
differently under solid ice compared with open sea and also attenuate due to scattering. This
is because the ice-coupled wavenumber depends on the physical properties of the sea ice so
transitions of ice morphology, e.g. thickness, or the edges of ice floes cause reflections to occur.
However, this process represents a redistribution of energy as opposed to dissipation. In the
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context of this paper, this means that a perfectly elastic sea ice cover can only reduce wave
amplitude if the ice is not spatially uniform.

A number of papers represent the entire sea ice cover as a viscous layer at the ocean surface,
e.g. [16] models wave propagation in a Newtonian viscous layer floating on an inviscid ocean,
while [19] add mathematical complexity of indeterminate oceanographical usefulness by making
the underlying ocean viscous. The primary focus of the model in [16] was to explain some
laboratory observations on wave propagation in grease ice written up subsequently in [20],
whereas a broader range of ice types including the MIZ are included in [19]. Using a Lagrangian
formulation, Weber [21] employs a viscous model also to represent a MIZ—in this case for an
unlayered, rotating ocean. A viscous boundary layer model based upon the eddy viscosity in the
turbulent boundary layer beneath the ice cover has also been suggested [22-24], recognizing that
eddy viscosity is a phenomenological parameter to be determined as a function of flow conditions
rather than a physical measurable viscosity. These few papers collectively illustrate a reasonably
common way of parametrizing the aggregated effect of sea ice on waves.

In fact, sea ice itself is viscoelastic, with different degrees of nonlinearity dependent on its
physical properties and environmental circumstances. At ocean wave forcing frequencies, first-
year sea ice itself is approximately anelastic [25], i.e. any viscous deformation is recoverable,
which is a specific form of viscoelasticity where the hysteresis loop is closed. However, current
viscoelastic plate [26] and viscoelastic layer [15,27-29] models—the latter originally built to
synthesize the elastic plate [5] and viscous layer model [16], ignore this subtlety. Instead, they
accommodate other kinds of sea ice deformation and/or alternative dissipative mechanisms that
cause energy loss as the waves propagate into and through the material. In doing this, they
are including both the modest dissipation due to sea ice flexure plus the typically substantial
energy loss arising from the several known but neglected pervasive mechanisms discussed in
§1l—many of which are nonlinear but are being rendered in a linear way in the model. In all cases,
a dispersion relation w = w(k) results that, as usual, is constructed by first assuming the Airy
wave mode ansatz A expi(kx + wt) with k = Rek expressing dispersion and o« =Imk expressing
attenuation via A = Ag e™** so any nonlinearity is neglected a priori.

It is also noteworthy that variations in concentration c are treated by reducing the effective
medium’s response linearly. At first sight this seems reasonable but, when it is recognized that
most of the dissipation arises because of turbulence in the water, it becomes counterintuitive.
Surely the level of dissipation would increase initially with a reduction in ¢, as ice floes become
more mobile and ‘belligerent’, and then start to decrease as ¢ — 0 as the effects of floe collisions,
waves breaking over floes and overwashing subside.

Observations suggest that a(w) o« @?-w® in many circumstances, yet Meylan et al. [30] show,
after switching off any elasticity, that [5]* and [16] have power 11 and power 7 asymptotic
proportionality, respectively. The dispersion relation in [15] is so complicated that it is hard to
be absolutely sure about its asymptotic behaviour but with zero shear modulus it is expected to
behave like the Keller model [16], so is also likely to be power 7. Enhanced viscosity ocean models
[21-24] go as ’/? when dispersion is assumed to be the same as in open water. The closest to
w?~3 to date is the model in [31], for which a(w) o ®. It has simple velocity-dependent damping
incorporated in the elastic plate model [5] as an alternative to the flexural rigidity being made
complex in [5]*.

This problem is well illustrated in figure 1, which shows attenuation coefficient « plotted as a
function of wave frequency f from 403 wave buoy spectra collected during a 2015 field experiment
in the Beaufort Sea carried out from the ship R/V Sikuliag in a mixture of pancake ice and frazil.
Results are clustered into three coloured sub-groups representing experiments where dissipation
was high (red), medium (cyan) and low (green). When no usable ice observations are available
the experiment’s o are shown in black. Using an inversion process to provide physical moduli,
these data are compared with the viscoelastic layer model [15] with the shear modulus set to
zero (orange)—making it equivalent to the viscous layer model in [16], and with non-zero shear
modulus (blue); each for two ice thickness values. Figure 1 indicates that the steepness of the
curves is notably greater than that implied by the inversion process but that the introduction
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Figure 1. Dissipation profiles from a simple application of the Wang and Shen model [15] are shown in orange (without
elasticity) and blue (with elasticity) for two ice thicknesses (solid: 10 cm; dashed: 60 cm), alongside field data from the 2015
R/V Sikuliag Beaufort Sea field experiment. After [32], with thanks to Dr Erick Rogers.

of elasticity reduces the steepness. Unfortunately, including elasticity also causes root finding
difficulties [26]. Presumably, a(w) o o’ behaviour contributes to the observed steepness. A more
general equation describing attenuation such as dyA = —a A" could possibly help, as we shall find

that it allows viscosity to be functionally dependent on frequency as opposed to being constant
(see §3).

3. The power law model

(a) Agranularfloe jostling model

To the author’s knowledge, the differential equation dyA = —a A" was first applied to sea ice back
in 1973 [18], specifically invoking a model of dissipation based on the Glen-Nye flow law for
glacial steady-state flow, where nn = 3. In its general form the equation requires that the viscosity of
the deforming material  is not constant, as it would be for Newtonian flow, but that it depends on

strain rate. When n =3, u(-) is inversely proportional to the square of [ =,/ %al;.d) al;d) =1, whichis

defined as the second invariant of the deviatoric stress tensor aigd), but when n is unspecified u(-) «
(=" The quantity 7 is called the effective shear stress or octahedral stress. Physically, a choice
of n =23 is hard to justify as anything other than a parametrization characterizing the synthesis
of all of the dissipative processes effected on ocean wave trains as they propagate within a MIZ,
because there is no physical argument that can explain why waves should lose energy in the
same manner as a creeping glacier. The strain rates associated with the two natural phenomena
are different by several orders of magnitude. Yet, despite the disputable time scales, the model
did surprisingly well in replicating observations in both the Arctic and Antarctic MIZs for the
particular wave fields and ice covers that prevailed at the time [18].

Nonetheless, although serendipitous, back-of-the-envelope calculations of pancake ice
subjected to waves invoking granular flow theory [17], produce the same differential equation, i.e.
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dyA = —aA". The equation actually arises from the so-called power-law fluid, defined such that

o =2u()ey =23M T )e =2(M TG, (3.1)
where M is constant, n > 0 with n=0 treated as a special case, €jj is the strain rate tensor and
€= %e’ije}j is effective strain rate.

Power-law fluids have a strain-rate-dependent apparent viscosity p(-) ¢=m/n The value
that the index n takes on determines the way the material deforms; for example, when 0 <n <1,
w(-) increases with increasing strain rate and it is said to be dilatant or shear thickening; when
n=1, u=const.; and when 1 <n < oo, u(-) decreases as strain rate increases and the material is
described as pseudo-plastic or shear thinning. Because shorter period waves reduce in amplitude
more rapidly than longer ones in sea ice, i.e. attenuation increases as frequency and strain rate
increase, the phenomenon of wave—ice interaction is dilatant. This does not, however, necessarily
mean that sea ice is a dilatant material; indeed at very long time scales it would be expected to
behave similarly to fresh water glacial ice and to be pseudo-plastic. To the author’s knowledge,
the power law fluid has not been considered as a viable constitutive relation for sea ice itself.

Interestingly, dilatancy has the special cases (i) n =0, where viscosity u increases at a uniform
rate with 7, which in the present context leads to the imperative of wave trains reducing in
amplitude in direct proportion to the distance they travel and, axiomatically, the complete
elimination of wave energy over a finite distance; (ii) n = %, where 1 increases uniformly with
¢ and (iii) n =1, where p = const. and an exponential decay law holds. Of course, n can take
on other values that determine whether the attenuation is less or more rapid than exponential
over a finite domain. Recognize that in a power law fluid n > 0, as stated. This is not necessary for
equation (2.1), where n < 0 can lead to very rapid attenuation of the incoming sea, which increases
with distance travelled unphysically for a uniform ice cover.

(b) Choosingn

In §2b, I observed that several models describe wave propagation in the MIZ by making the
ocean more viscous there, typically using an eddy viscosity that captures the enhanced internal
fluid friction arising from the turbulent transfer of momentum by eddies analogous to the action
of molecular viscosity in laminar flow but on a much larger scale. These models have a dispersion
relation of the form pg?k* = 2w(w?* — gk)? and furnish an a(w) ox w’/? for a very thin viscous layer
overlying an ocean of much lower viscosity (see equations (4.14) and (4.15) of [21]). While this
result is only asymptotic, by way of demonstration I ask the question ‘can w(-) be adjusted such
that the order of these viscous models is reduced from w’/? to w? by choosing n such that the
excessive dilatancy is eliminated to give a beneficial j(w)?’. It is conjectured that n = —2 achieves
this goal, ultimately producing a(w) o @? from that predicted by the dispersion relation.

Also, by way of illustration, we can investigate how a plausible RMS amplitude spectrum Ay(f)
evolves with distance x, again assuming that a(f) oc f2 and recalling that @ = 27f. Ag(f) is derived
from the quintessential Pierson-Moskowitz energy density spectrum Eo = Eq(f) at the ice edge, by
integrating across a comb of frequency bands and then taking the square root. What we are calling
an RMS amplitude spectrum is, therefore, the square root of a spectrum composed of a set of
contiguous bandlimited energy density integrations. Although Ag(f) depends on bandwidth, this
is unimportant here as all calculations are relative rather than absolute. The Pierson-Moskowitz
spectrum Ey, see figure 24, has the form

_ Y . 5 (h\
Eo(f)=8.1x 10 3(2n)4f Sexp (—4 (7) ) (3.2)

where fp is the peak frequency which is set to 0.1Hz to be consistent with [32], ¢ is the
acceleration due to gravity and the numerical constant 8.1 x 103 is known as the Phillips
constant [33]. Equation (3.2) can be integrated to give [ Eo(f) df =exp (—1.25 x 1074 ~%), soitisan
easy matter to create Ag directly or by numerical integration. The two sets of amplitude spectra,
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Figure 2. (a) The Pierson—Moskowitz spectrum £; defined by equation (3.2). (b) The partially obscured green bar graph is
an RMS amplitude spectrum A (f) created from Eo(f) by integrating across frequency bands of width 0.01 Hz with the central
frequency at the mid-point. Ao (f) is plotted as a bar graph to emphasize that each amplitude is valid over a frequency band, e.qg.
from 0.2 to 0.21 Hz with a central frequency 0.205 Hz, rather than at a single frequency. The other amplitude spectra, coloured
magenta and yellow, respectively, show how A, evolves exponentially, i.e. when n =1, as x increases. (c) Amplitude spectra
constructed in the same manner as for (b), but for n = 0. Identical values for the constant of proportionality in v o f2 and the
distances from the ice edge are used for (b) and (c), chosen to emphasize the disparity between the two types of attenuation.
Itis the relativity between the same colours in plots (b) and (c) that is important, rather than the absolute values.

coloured green, magenta and yellow in figure 2b,c, shows the frequency-dependent attenuation
experienced by the Ag(f) spectrum as it advances into the notional ice cover, which either
(figure 2b) attenuates exponentially with penetration x, or (figure 2c) in direct proportion to x. It
is evident that the latter decay (figure 2c) is much greater for the same constant of proportionality
in a ocf2. Although artificial, it does demonstrate the potential of the more general behaviour
furnished by dxA = —a A", which may be especially useful for parametrizing dissipation caused
by the aggregation of nonlinear processes that expunge energy from incoming wave trains for the
first 10 or so kilometres from the ice edge or, in all likelihood, farther when wave amplitudes are
large (see §1).

Finally, let us consider some real data and arbitrarily adopt the solid red curve in fig. 6 of
[32], which shows that the outer energy density Eo(f) has an f —4 tail above f=0.1Hz,i.e. Eg(f) x
f~* = Ap(f) of 2. (The Pierson-Moskowitz spectrum has an f~° tail and we have confirmed
that the Ap(f) spectrum in figure 2b,c has an f~5/2 tail, as required.) Seek a model that has an «(f) oc
f? form irrespective of the value of 7, interpreting o throughout equivalently. Three examples are
considered, the first of which is somewhat artificial, as follows.

(i) Suppose that the f —4 tail in the spectrum doesn’t change as the wave field from which
it is constituted propagates farther into the sea ice cover. Using equation (2.1), it is
straightforward to argue that n =2 is the only value of n that can produce the desired
behaviour for « at frequencies above about 0.1 Hz. Forn =2, « = (A7l — Ay 1) /x.

(ii) Exponential attenuation is recovered when n=1. In this case, amplitude A=
Ag exp (—ax) ocf_2 exp (—ax) =f_2(1 —ax+---),sothat A %f_z(l - clfzx) to first order,
i.e. the initial decay is proportional to distance covered.

(iii) Forn =0, A=A — ax o<f_2(1 — C2f4x).

In the above c1 and ¢, are constants that arise from the proportionalities assumed, i.e. in the tail
of the incident energy density spectrum, where Eo(f) ocf~* and a(f) ocf2. Although Ay initially
reduces in direct proportion to distance x when n =1, the decrease with x is greater for the n =0
example if the magnitudes of « are numerically similar (recalling that the interpretation of o and
its units differ in each case).
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Figure 3. Panel (a) shows n versus £, created from clusters of £y that each contain about 100 estimated values. Each point on
the plot gives the mean of this sample of £y values versus the median of the corresponding sample of n values. The transition
between n = Tand n = 0 occurs at £y ~ 1.5 ms. The median of n versus the mean of the frequency calculated as the mean of
all the frequency samples corresponding to the £y samples in a bin is shown in (b). There is a dependence on frequency which
follows closely the dependence on energy because the two are strongly correlated for f > 0.1Hz in the spectral tail where
Ey oc =, () The percentage of profiles in each £y bin where n = 0, i.e. the waves decay in direct proportion to the distance
traversed.

(c) Limiting cases

Based upon observations transmitted to satellite by some floating wave buoys, it is reported that
the significant wave height of modest incident seas diminishes exponentially in the Southern
Ocean MIZ [34], but that attenuation proportional to distance travelled is observed when seas
are higher. The properties of the ice field through which the waves propagate undoubtedly
affect the amplitude at which the transition occurs. A similar analysis of field data from an
experiment collected during the 2015 R/V Sikuliag field programme produces an analogous
conclusion for pancake ice [35], specifically that significant wave heights less than 3 m seem to
reduce exponentially with distance x but in direct proportion to x when they exceed 3 m. However,
respecting the comments I made earlier about ice field heterogeneity, it is acknowledged that it is
also possible for these data that this effect is due to the sea ice being more broken up when the
waves are higher.

Reanalysis of the dataset in [34] over two distinct frequency bands without integrating across
all frequencies to get significant wave height [36] reaches the alternative conclusion that, although
long period swells are insensitive to wave amplitude and consequently behave linearly, the
attenuation of short period waves increases with wave amplitude. This outcome is based upon
an a priori assumption of exponential decay across pairs of stations using the Airy wave mode
ansatz introduced earlier. As a consequence, it is of interest to establish whether a similar kind
of attenuation occurred during the 2015 R/V Sikuliag field programme, where wave amplitudes
were often quite large during one of the experiments. This accords with our original conjecture
in §1. We consider the single wave attenuation experiment that took place from 11 to 13 October
2015 in figure 3, where the median 0 <n <1 value extracted from a direct best fit of the SWIFT
buoy data [32,35] is plotted against energy density in figure 3a, median # is plotted against the
mean value of frequency in figure 3b and the percentage of n =0 attenuation profiles as a function
of energy density is plotted in figure 3c. (This notwithstanding, note that the more thorough
analysis reported in [35] contrasts results from the two types of wave buoy deployed in the
experiment.) It is evident that the likelihood of a profile being of type n =0, increases with the
energy density and hence wave amplitude from figure 3a. From figure 3b, n = 0 is also associated
with low frequencies but this is because the shape of the wave spectrum entering the ice field goes
as f~* in the part of the spectrum where significant energy exists. The percentage of n =0 decay
profiles increases monotonically with energy density, flattening out at about 60% or so beyond an
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Eo of about 5m?s as shown in figure 3c. While it is acknowledged that these results may be due
to variations of ice type as opposed to larger amplitude waves, or indeed to other geophysical
variations, the resilient dependency on the magnitude of Ey, the abruptness of the switch from
n=1ton=0, and figure 3c add weight to our conjecture. Observe, however, that figure 3 relates
to energy density and not to amplitude as expressed in equation (2.1) and that while n =1 implies
exponential decay for both A and Ey, a decay in Ej that is directly proportional to x does not mean
the same for A. While equation (2.1) may hold for both amplitude and energy density, the value
of n can be different.

4. Conclusion

The most significant opinions expressed in this paper are drawn together as a useful resource.

(i) It is unfeasible to use a paradigm I model in a global scale earth system model or WW3.

(ii) Ocean waves travelling in sea ice reduce in amplitude due to two phenomena:
conservative scattering by ice floes, which relocates energy; and true dissipation, arising
from several poorly quantified nonlinear phenomena that remove energy.

(iii) Dissipation is most extreme near the ice edge and/or when the waves are most fierce but
the width of the zone over which it dominates other sources of attenuation will vary with
the wave and ice conditions.

(iv) Scattering is most significant when floe diameters and wavelengths are of the same
order, while dissipation is always present to a greater or lesser degree depending on the
properties of the sea ice and the waves.

(v) Although the energy transport equation’s source/sink term Sjc., defined in equation (1.2),
separates ascat and ogjs, the scattered wave field will also be subjected to considerable
dissipation that will reduce its impact on surrounding floes.

(vi) Ocean waves break up ice floes to create the floe size distribution, an important process
that is modelled by scattering theory, taking into account the flexural stresses in the floes
provoked by wave-induced bending [9].

(vii) Nearly, all contemporary models constructed to characterize wave propagation into and
beneath sea ice in its several forms are linear including those associated with paradigm II,
with some having been reapplied to represent ‘effective media’ in circumstances that they
were not originally intended to model.

(viii) The fidelity of current effective media models in the MIZ has not yet been demonstrated.

(ix) Material constants in effective media have no physical meaning, as to make its predictions
the medium aggregates a smorgasbord of disparate mechanisms and calibration is
unattainable because of the unique set of conditions that define each experiment.

(x) Conceding the scattered nature of the field data, it appears that the attenuation coefficient
a(w)xwf, 2<p<3, with some experiments suggesting p=2, yet contemporary
paradigm II parametrizations do not easily reproduce this asymptotic behaviour.

(xi) Primarily because of dissipation, there is reasonable observational evidence to conclude
that attenuation is not always exponential and a natural consequence of this is that waves
may experience different ‘attenuation laws’, during their passage through ice fields.

(xii) Because of nonlinearity, exponential attenuation appears to be associated with waves of
low amplitude while more substantial waves may experience other kinds of damping,
e.g. proportionate to the distance they travel.

(xiii) While at first sight scaling material constants in parametrizations in proportion to
concentration is physically plausible, it may actually not be an effective universal
stratagem because of the substantial damping that can occur in the water between ice
floes.

(xiv) Acknowledging that, as always, calibration will be challenging, the equation dyA = —a A"
with solution A0~ :Aélfn) — (1 — n)ax, or its equivalent energy density form with a
different value for 1 # 1, may be helpful as a simple yet more general parametrization of
wave attenuation in pancake ice that includes both scattering and dissipation.
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