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Causal decomposition in the mutual causation
system
Albert C. Yang 1,2,3, Chung-Kang Peng 1 & Norden E. Huang4,5

Inference of causality in time series has been principally based on the prediction paradigm.

Nonetheless, the predictive causality approach may underestimate the simultaneous and

reciprocal nature of causal interactions observed in real-world phenomena. Here, we present

a causal-decomposition approach that is not based on prediction, but based on the covar-

iation of cause and effect: cause is that which put, the effect follows; and removed, the effect

is removed. Using empirical mode decomposition, we show that causal interaction is encoded

in instantaneous phase dependency at a specific time scale, and this phase dependency is

diminished when the causal-related intrinsic component is removed from the effect. Fur-

thermore, we demonstrate the generic applicability of our method to both stochastic and

deterministic systems, and show the consistency of causal-decomposition method compared

to existing methods, and finally uncover the key mode of causal interactions in both modelled

and actual predator–prey systems.
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S ince the philosophical inception of causality by Galilei1 and
Hume2 that cause must precede the effect in time, the sci-
entific criteria for assessing causal relationships between

two time series have been dominated by the notion of prediction,
as proposed by Granger3. Namely, the causal relationship from
variable A to variable B is inferred if the history of variable A is
helpful in predicting the value of variable B, rather than using
information from the history of variable B alone.

Granger causality is based on the time dependency between
cause and effect4. As discussed by Sugihara et al.5, Granger
causality is critically dependent on the assumption that cause and
effect are separable3. While the separability is often satisfied in
linear stochastic systems where Granger causality works well, it
might not be applicable in nonlinear deterministic systems where
separability appears to be impossible because both cause and
effect are embedded in a non-separable higher dimension tra-
jectory6,7. Consequently, Sugihara et al.5 proposed the convergent
cross-mapping (CCM) method based on state-space reconstruc-
tion. In this context, cause and effect are state dependent, and
variable A is said to causally influence variable B, although
counterintuitive, if the state of variable B can be used to predict
the state of variable A in the embedded space, and this predict-
ability improves (i.e., converges) as the time series length
increases.

Existing methods of detecting causality in time series are pre-
dominantly based on the Bayesian8 concept of prediction.
However, cause and effect are likely simultaneous9. The succes-
sion in time of the cause and effect is produced because the cause
cannot achieve the totality of its effect in one moment. At the
moment when the effect first manifests, it is always simultaneous
with its cause. Moreover, most real-world causal interactions are
reciprocal; examples include predator–prey relationships and the
physiologic regulation of body functions. In this sense, predictive
causality may fail because the attempt to estimate the effect with
the history of cause is compromised as the history of the cause is
already simultaneously influenced by the effect itself, and vice
versa.

Another constraint of the generalised prediction framework is
that it requires a priori knowledge of the extent of past history
that may influence and predict the future, such as the time lag
between cause and effect in Granger’s paradigm, or the embed-
ding dimensions in state-space reconstructions such as CCM.
Furthermore, a causality assessment is incomplete if it is based
exclusively on time dependency or state dependency. Time series
commonly observed in nature, including those from physiologic
system or spontaneous brain activity, contain oscillatory com-
ponents within specific frequency bands10,11. Identification of
frequency-specific causal interaction is essential to understand the
underlying mechanism12,13. Furthermore, the application of
either linear Granger causality or the nonlinear CCM method
alone is insufficient to accommodate the complex causal com-
positions typically observed in real-world data blending with
oscillatory stochastic and deterministic mechanisms.

Here, we present a causal-decomposition analysis that is not
based on prediction, and more importantly, is neither based on
time dependency nor state dependency, but based on the
instantaneous phase dependency between cause and effect. The
causal decomposition essentially involves two assumptions: (1)
any cause–effect relationship can be quantified with instanta-
neous phase dependency between the source and target decom-
posed as intrinsic components at specific time scale, and (2) the
phase dynamics in the target originating from the source are
separable from the target itself. We define the cause–effect rela-
tionship between two time series according to the covariation
principle of cause and effect1: cause is that which put, the effect
follows; and removed, the effect is removed; thus, variable A

causes variable B if the instantaneous phase dependency between
A and B is diminished when the intrinsic component in B that is
causally related to A is removed from B itself, but not vice versa.
To achieve this, we use the ensemble empirical mode decom-
position (ensemble EMD)14–16 to decompose a time series into a
finite number of intrinsic mode functions (IMFs) and identify the
causal interaction that is encoded in instantaneous phase
dependency between two time series at a specific time scale. We
validate the causal-decomposition method with both stochastic
and deterministic systems and illustrate its application to ecolo-
gical time series data of prey and predators.

Results
Illustration of the causal-decomposition method. Figure 1
depicts how the causal decomposition can be used to identify the
predator–prey causal relationship of Didinium and Para-
mecium17. Briefly, we decomposed the time series of Didinium
and Paramecium into two set of IMFs, and determined the
instantaneous phase coherence18 between comparable IMFs from
the two time series (Fig. 1a). Orthogonality and separability tests
were performed to determine the ensemble EMD parameter (i.e.,
added noise level) that minimises the nonorthogonal leakage and
root-mean-square of the correlation between the IMFs, thereby
ensuring the orthogonality and separability of the IMFs (Fig. 1d,
e). Subsequently, we removed one of the IMFs (e.g., IMF 2) from
Paramecium (Fig. 1b; subtract IMF 2 from the original Para-
mecium signal) and redecomposed the time series. We then cal-
culated the phase coherence between the original IMFs of
Didinium and redecomposed IMFs of Paramecium. This
decomposition and redecomposition procedure was repeated for
IMF 2 of Didinium (Fig. 1c) and generalised to all IMF pairs. This
procedure enabled us to examine the differential effect of
removing a causal-related IMF on the redistribution of phase
dynamics in cause-and-effect variables. The relative ratio of
variance-weighted Euclidian distance between the phase coher-
ence of the original IMFs (i.e., Fig. 1a) and redecomposed IMFs
(i.e., Fig. 1b, c) is therefore an indicator of causal strength
(Fig. 1f), where a ratio of 0.5 indicates either no causality is
detected or no difference in causal strength in the case of reci-
procal causation, and a ratio approaching 0 or 1 indicates a strong
causal influence from either variable A or variable B, respectively.

Application to deterministic and stochastic models. Figure 2
depicts the causal-decomposition analysis in both deterministic5

and stochastic10 models given in Eqs. 9 and 10. The IMF with a
causal influence identifies the key mechanism of the model data
in stochastic (Fig. 2a) and deterministic (Fig. 2b) systems. These
results indicate that the causal-decomposition method is suitable
for separating causal interactions not only in the stochastic sys-
tem, but also in the deterministic model where non-separability is
generally assumed in the state space. Furthermore, we validated
and compared the causal decomposition with existing causality
methods in uncorrelated white noise with varying lengths,
showing the consistency of causal decomposition in a short time
series and under conditions where no causal interaction should be
inferred (Fig. 3a). In addition, we assessed the effect of down-
sampling (Fig. 3b) and temporal shift (Fig. 3c) of a time series on
causal decomposition and existing methods, showing that causal
decomposition is less vulnerable to spurious causality due to
sampling issues3 and is independent of temporal shift, which is
significantly confounded with the predictive causality method19.

Validation of causal-decomposition analysis. We generated
10,000 pairs of uncorrelated white noise time-series observations
with varying lengths (L= 10–1000) and calculated causality based
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on various methods (Fig. 3a). Causal decomposition exhibited a
consistent pattern of causal strengths at 0.5 (the error bar denotes
the standard error of causality assessment here and in the other
panels), indicating that no spurious causality was detected, even
in the case of the short noise time series. Causality in the CCM
methods was indicated by the difference in correlations obtained
from cross-mapping the embedded state space. In the case of
uncorrelated white noise, the difference of correlation should be
approximately zero, indicating no causality. However, the CCM
method detects spurious causality with differences of up to 0.4 in
the crossmap correlations in the short time series, and the dif-
ference between the correlations decreased as the signal length
increased. A high percentage or intensity of spurious causality
was also observed in Granger’s causality and mutual information
from the mixed embedding (MIME) method20.

Next, we assessed the effect of down-sampling on the various
causality methods (Fig. 3b). The stochastic and deterministic
models shown in Fig. 2 are used (the corresponding colour for
each variable is shown in the figure). The time series were down-
sampled by a factor 1 to 10. For Factor 1, the time series were
identical to the original signals. The down-sampling procedure
destroyed the causal dynamics in both models and made causal
inference difficult in predictive causality analysis19. Causal-
decomposition analysis revealed a consistent pattern of the
absence of causality when the causal dynamics were destroyed as
the down-sampling factor was >2. However, spurious causality
was detected with the predictive causality methods when the
signals were down-sampled.

Finally, we evaluated the effect of temporal shift on the
causality measures (Fig. 3c). Temporal shift (both lagged or
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Fig. 1 Causal-decomposition analysis. a Ensemble empirical mode decomposition (EEMD) analysis of Didinium (blue line) and Paramecium (red line) time
series yields five Intrinsic Mode Functions (IMFs) (i.e., stationary components) and a residual trend (i.e., non-stationary trend). Each IMF operated at
distinct time scales. Phase coherence values between comparable IMFs are shown at the right side of the panel. b Removal of an IMF (e.g., IMF 2)
from Paramecium with redecomposition leads to a decreased phase coherence between the original Didinium IMFs and redecomposed Paramecium IMFs.
c Repeating the same procedure in the Didinium time series resulted in a smaller decrease in phase coherence between the redecomposed Didinium IMFs
and the original Paramecium IMFs. The causal strengths between Didinium and Paramecium can be estimated by the relative ratio of variance-weighted
Euclidian distance of the phase coherence between (b) and a (for Didinium), and between c and a (for Paramecium). The ability of EEMD to separate time
series depends on the orthogonality and separability of the IMFs with added noise, which can be evaluated by (d) nonorthogonal leakages and e the root-
mean-square of correlations between pairwise IMFs. The strategy of choosing the added noise level in the EEMD is to maximise the separability (minimise
the root-mean-square of pairwise correlation values among IMFs <0.05) while maintaining acceptable nonorthogonal leakages (<0.05). A noise level r at
0.35 standard deviations of the time series was used in this case. f Generalisation of causal decomposition to each IMF uncovers a causal relationship from
Didinium (blue bar) to Paramecium (red bar) in IMF 2 but not in the other IMFs, indicating a time scale-dependent causal interaction in the predator–prey
system
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advanced up to 20 data points) was applied to both the stochastic
and deterministic time series. Causal decomposition exhibited a
stable pattern of causal strength independent of a temporal shift
up to 20 data points. CCM reduced its crossmap ability to detect
causa interaction in the bi-directional deterministic system as
temporal shift increased in either direction, and is unable to show
differences in crossmap ability in the anterograde temporal shift
in stochastic system. As anticipated, Granger’s causality showed
the opposite patterns of causal interaction in anterograde and
retrograde temporal shift in both deterministic and stochastic
system. MIME lost its predictability when the temporal shift is
beyond 5 data points and was inconsistent in stochastic system.

Quantifying predator and prey relationship. Figure 4 shows the
results of applying causal decomposition to ecosystem data from
the Lotka Volterra predator–prey model21,22 (Eq. 11; Fig. 4a),
wolf and moose data from Isle Royale National Park23 (Fig. 4b),
and the Canada lynx and snowshoe hare time series reconstructed
from historical fur records of Hudson’s Bay Company24 (Fig. 4c).
The causal decomposition invariantly identifies the dominant
causal role of the predator in the IMF, which is consistent with
the classic Lotka Volterra predator–prey model. Previously, the
causality of such autonomous differential equation models was
understood only in mathematical terms because there is no
prediction-based causal factor25, yet our results indicated that the
causal influence of this model can be established through the
decomposition of instantaneous phase dependency.

Comparison of causal assessment in ecosystem data. Figure 5
shows the comparison of causality assessment in these predator
and prey data using different methods. In general, results showed

that neither the Granger nor CCM methods consistently identify
predator–prey interactions in these data, indicating that the
predator–prey relationship does not exclusively fit either the
stochastic or deterministic chaos paradigms. The CCM result
showed a top–down causal interaction between lynx and hare,
and Didinium and Paramecium interactions17, which the latter
was consistent with the data presented by Suigihara et al.5

However, CCM method could not be used to detect causal
interaction in the Lotka Volterra predator–prey model, and it
exhibited a cross-over of correlations in the wolf and moose data.
Granger’s causality detected top–down causal interaction in the
Lotka Volterra predator–prey model and wolf and moose data,
but the bottom-up causal interaction was observed in Didinium
and Paramecium data, which the latter was also observed in the
supplementary data in Sugihara et al.5 The inconsistency in causal
strength was also observed in the results obtained with the MIME
method.

Discussion
An interdisciplinary problem of detecting causal interactions
between oscillatory systems solely from their output time series
has attracted considerable attention for a long time. The moti-
vation of causal-decomposition analysis is that the inference of
causality that is largely dependent on the temporal precedence
principle is of concern. In other words, observing the past with a
limited period is insufficient to infer causality because that history
is already biased. Instead, we followed another fundamental cri-
terion of causal assessment proposed by Galilei1—covariation of
cause and effect: cause is that which put, the effect follows; and
removed, the effect is removed. In this statement, however, the
prediction of time series based on the past history is neither
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required or implied. Therefore, the complex dynamical process
between cause and effect should be delineated through the
decomposition of intrinsic causal components inherited in causal
interactions.

It is noteworthy that our approach is essentially different by
combing EMD with existing causality methods, such as assessing
Granger’s causality between paired IMFs of economic time ser-
ies26, applying CCM to detect the nonlinear coupling of
decomposed brain wave data27, or measuring time dependency
between IMFs decomposed from stock market data28. The
decomposition of time series with EMD alone may improve the
separability of intrinsic components embedded in the time series
data, but does not avoid the constraints inherited from the
existing prediction-based causality methods. Furthermore, our
approach does not neglect the temporal precedence principle, but
emphasises the instantaneous relationship of causal interaction,
and is thus more amenable to detecting simultaneous or reci-
procal causation, which is not fully accounted for by predictive
methods.

Because our causal strengths measurement is relative, it detects
differential causality rather than absolute causality. Differential
causality adds to the philosophical concept of mutual causality
that all causal effects are not equal, and it may fit the emerging
research data better than linear and unidirectional causal theories
do. In addition, causal decomposition using EMD fundamentally
differs from the spectral extension of Granger’s causality29 in that
the latter involves the prior knowledge of history (e.g., auto-
regressive model order) and is susceptible to non-stationary
artefacts. Furthermore, without resorting to frequency-domain
decomposition, EMD bypasses the linear and stationary
assumptions, and the limitation of uncertainty principle imposed
on data characteristics as in Fourier analysis, and results in more
precise phase and amplitude definition30.

The operational definition of causal decomposition is in
accordance with Granger’s assumption on separability3 but in a

more complete form. We note that such definition is distinct
from non-separability assumed by CCM. Clearly, CCM is
developed under the constraints of perfect deterministic system,
in which the state of cause is encoded in effect that is not
separable from effect itself. The state-space reconstruction
approach such as CCM may be applicable to certain ecosystem
data, such as predator and prey interactions, in which they
represent non-separable components of the ecosystem31, but is
unlikely to generalise to all causal interactions being studied32. It
is noteworthy that the effect of temporal shift on the CCM shown
in Fig. 3c is relevant to the extended CCM to detect time-delayed
causal interactions33. The extended CCM has been shown to
capture bi-directional causal interactions in the deterministic
system. However, in the real-world data, the time-delayed causal
interaction has to be achieved by the arbitrary temporal shift of
time series data, and the interpretation of such results is still of
concern, as demonstrated in our Fig. 3c.

Several limitations should be considered in interpreting the
causal strength presented in this paper. First, the causal decom-
position represents a form of statistical causality and does not
imply the true causality, which requires the inclusion of all
variables to conclude the existence of causal relationship3. Sec-
ond, the causal decomposition is limited to the pairwise mea-
surement in the current form, but we do not exclude the
possibility of the extension of the current method to multivariate
systems (e.g., functional brain networks) with the employment of
multivariate EMD34,35 in the future. In that case, we have to
define and work with the absolute causal strength matrix. Then
the redecomposition would be from one to many. Although the
causal principle remains the same, the computation would be
time consuming.

The use of EMD overcomes the difficulty of signal decomposi-
tion in nonlinear and non-stationary data, and it is applicable to
both stochastic and deterministic systems in that the intrinsic
components in the latter remain separable in the time domain.
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Furthermore, the central element in causal-decomposition analysis
is the decomposition and redecomposition procedure, and we do
not exclude the use of other signal decomposition methods36 to
detect causality in a similar manner. Therefore, the development of
causal decomposition is not to complement existing methods, but
to explore the use of covariation principle of cause and effect for
assessing causality. With the potential of the extension of ensemble
EMD to multivariate EMD34,35, we anticipate that this causal
decomposition approach will assist with revealing causal interac-
tions in complex networks not accounted for by current methods.

Methods
Causal relationship based on instantaneous phase dependency. We define the
cause–effect relationship between Time Series A and Time Series B according to the
fundamental criterion of causal assessment proposed by Galilei1: cause is that
which put, the effect follows; and removed, the effect is removed; thus, variable A
causes variable B if the instantaneous phase dependency between A and B is
diminished when the intrinsic component in B that is causally related to A is
removed from B itself, but not vice versa.

Coh A;B′ð Þ<Coh A;Bð Þ � Coh A′;Bð Þ ð1Þ

where Coh denotes the instantaneous phase dependency (i.e., coherence) between
the intrinsic components of two time series, and the accent mark represents the
time series where the intrinsic components relevant to cause effect dynamics were
removed. The realisation of this definition requires two key treatments of the time
series. First, the time series must be decomposed into intrinsic components to
recover the cause–effect relationship at a specific time scale and instantaneous
phase. Second, a phase coherence measurement is required to measure the
instantaneous phase dependency between the intrinsic components decomposed
from cause–effect time series.

Empirical mode decomposition. To achieve this, we decompose a time series into
a finite number of IMFs by using the ensemble EMD14–16 technique. Ensemble
EMD is an adaptive decomposition method originated from EMD (i.e., the core of
Hilbert–Huang Transform) for separating different modes of frequency and
amplitude modulations in the time domain14,15.

Briefly, EMD is implemented through a sifting process to decompose the
original time-series data into a finite set of IMFs. The sifting process comprises the
following steps: (1) connecting the local maxima or minima of a targeted signal to
form the upper and lower envelopes by natural cubic spline lines; (2) extracting the
first prototype IMF by estimating the difference between the targeted signal and the
mean of the upper and lower envelopes; and (3) repeating these procedures to
produce a set of IMFs that were represented by a certain frequency–amplitude
modulation at a characteristic time scale. The decomposition process is completed
when no more IMFs could be extracted, and the residual component is treated as
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the overall trend of the raw data. Although IMFs are empirically determined, they
remain orthogonal to one another, and may therefore contain independent
physical meanings15,37.

The IMF decomposed from EMD enables us to use Hilbert transform to derive
physically meaningful instantaneous phase and frequency14,29. For each IMF, they
represent narrow-band amplitude and frequency-modulated signal S(t), and can be
expressed as

S tð Þ ¼ A tð Þcos; tð Þ ð2Þ

where instantaneous amplitude A and phase ∅ can be calculated by

applying the Hilbert transform, defined as SH= 1
π

R Sðt′Þ
t�t′ dt′; A(t)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 tð Þ þ S2HðtÞ

p
;

and ∅(t)= arctan SH tð Þ
S tð Þ

� �
. The instantaneous frequency is then calculated as the

derivative of the phase function ω(t)= d∅(t)/dt.
Thus, the original signal X can be expressed as the summation of all IMFs and

residual r,

XðtÞ ¼
Xk

j¼1
Aj tð Þ exp i

R
ωjðtÞdt

� �
þ r ð3Þ

where k is the total number of IMFs, Aj(t) is the instantaneous amplitude
of each IMF; and ωj(t) is the instantaneous frequency of each IMF. Previous
literature have shown that IMFs derived with EMD can be used to delineate
time dependency38 or phase dependency37,39–42 in nonlinear and non-stationary
data.

The ensemble EMD15,16,43 is a noise-assisted data analysis method to further
improve the separability of IMFs during the decomposition and defines the true
IMF components Sj(t) as the mean of an ensemble of trials, each consisting of the
signal plus white noise of a finite amplitude.

Sj tð Þ ¼ lim
N!1

XN

k¼1
Sj tð Þ þ r ´wkðtÞ

n o
ð4Þ

where wk(t) is the added white noise, and k is the kth trial of the jth IMF in the
noise-added signal. The magnitude of the added noise r is critical to determining
the separability of the IMFs (i.e., r is a fraction of a standard deviation of the
original signal). The number of trials in the ensemble N must be large so that the
added noise in each trial is cancelled out in the ensemble mean of large trials (N=
1000 in this study). The purpose of the added noise in the ensemble EMD is to
provide a uniform reference frame in the time–frequency space by projecting the
decomposed IMFs onto comparable scales that are independent of the nature of the
original signals. With the ensemble EMD method, the intrinsic oscillations of
various time scales can be separated from nonlinear and non-stationary data with
no priori criterion on the time–frequency characteristics of the signal. Hence, the
use of ensemble EMD could complement the constraints of separability in
Granger’s paradigm44 and potentially capture simultaneous causal relationships
not accounted for by predictive causality methods.

Orthogonality and separability of IMFs. Because r is the only parameter involved
in the causal-decomposition analysis, the strategy of selecting r is to maximise the
separability while maintaining the orthogonality of the IMFs, thereby avoiding
spurious causal detection resulting from poor separation of a given signal. We
calculated the nonorthogonal leakage14 and root-mean-square (RMS) of the
pairwise correlations of the IMFs for each r with an increment of 0.05 in the
uniform space between 0.05 and 1. A general guideline for selecting r in this study
is to minimise the RMS of the pairwise correlations of the IMFs (ideally under 0.05)
while maintaining the nonorthogonal leakage also under 0.05.

Phase coherence. Next, the Hilbert transform is applied to calculate the instan-
taneous phase of each IMF and to determine the phase coherence between the
corresponding IMFs of two time series18. For each corresponding pair of IMFs
from the two time series, denoted as S1j(t) and S2j(t), and can be expressed as

S1jðtÞ ¼ A1jðtÞcos;1jðtÞ and S2jðtÞ ¼ A2jðtÞcos;2jðtÞ; ð5Þ

where A1j, ∅1j can be calculated by applying the Hilbert transform, defined as

S1jH ¼ 1
π

R S1jðt′Þ
t�t′ dt′, and A1j tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21jðtÞ þ S21jHðtÞ

q
, and ∅1j(t)= arctan

S1jH tð Þ
S1j tð Þ

� �
;

and similarly applied for S2jH, A2j, and ∅2j. The instantaneous phase difference is
simply expressed as Δ∅12j(t)=∅2j(t)∅1j(t). If two signals are highly coherent, then
the phase difference is constant; otherwise, it fluctuates considerably with time.
Therefore, the instantaneous phase coherence Coh measurement can be defined as

Coh S1j; S2j
� �

¼ 1
T

Z T

0
eiΔ;12jðtÞdt

�
�
�
�

�
�
�
� ð6Þ

Note that the integrand (i.e., eiΔ;12jðtÞ) is a vector of unit length on the complex
plane, pointing toward the direction which forms an angle of Δ;12jðtÞ with the +x

axis. If the instantaneous phase difference varies little over the entire signal, then
the phase coherence is close to 1. If the instantaneous phase difference changes
markedly over the time, then the coherence is close to 0, resulting from adding a set
of vectors pointing in all possible directions. This phase coherence definition allows
the instantaneous phase dependency to be calculated without being subjected to the
effect of time lag between cause and effect (i.e., the time precedence principle), thus
avoiding the constraints of time lag in predictive causality methods10.

Causal decomposition between two time series. With the decomposition of the
signals by ensemble EMD and measurement of the instantaneous phase coher-
ence between the IMFs, the most critical step in the causal-decomposition ana-
lysis is again based on Galilei’s principle: the removal of an IMF followed by
redecomposition of the time series (i.e., the decomposition and redecomposition
procedure). If the phase dynamic of an IMF in a target time series is influenced by
the source time series, removing this IMF in the target time series (i.e., subtract
an IMF from the original target time series) with redecomposition into a new set
of IMFs results in the redistribution of phase dynamics into the emptied space of
the corresponding IMF. Furthermore, because the causal-related IMF is removed,
redistribution of the phase dynamics into the corresponding IMF would be
exclusively from the intrinsic dynamics of the target time series, which is irre-
levant to the dynamics of the source time series, thus reducing the instantaneous
phase coherence between the paired IMFs of the source time series and redec-
omposed target time series. By contrast, this phenomenon does not occur when a
corresponding IMF is removed from the source time series because the dynamics
of that IMF are intrinsic to the source time series and removal of that IMF with
redecomposition would still preserve the original phase dynamics from the other
IMFs. Therefore, this decomposition and redecomposition procedure enables
quantifying the differential causality between the corresponding IMFs of two time
series.

Because each IMF represents a dynamic process operating at a distinct time
scale, we treat the phase coherence between the paired IMFs as the coordinates in a
multidimensional space, and quantify the variance-weighted Euclidean distance
between the phase coherence of the paired IMFs decomposed from the original
signals as well as the paired original and redecomposed IMFs, which are expressed
as follows:

D S1j ! S2j
� �

¼ Pm
j¼1 Wj Coh S1j; S2j

� �
� Coh S1j; S

′
2j

� �h i2� �1
2

D S2j ! S1j
� �

¼ Pm
j¼1 Wj Coh S1j; S2j

� �
� Coh S′1j; S2j

� �h i2� �1
2

Wj ¼ Var1j ´Var2j
� �

=
Pm

j¼1 Var1j ´Var2j
� �

ð7Þ

The range of D represents the level of absolute causal strength and is between 0 and
1. The relative causal strength between IMF S1j and S2j can be quantified as the
relative ratio of absolute cause strength D S1j ! S2j

� �
and D S2j ! S2j

� �
, expressed

as follows:

C S1j ! S2j
� �

¼ D S1j ! S2j
� �.

D S1j ! S2j
� �

þ D S2j ! S1j
� �h i

C S2j ! S1j
� �

¼ D S2j ! S1j
� �.

D S1j ! S2j
� �

þ D S2j ! S1j
� �h i

:
ð8Þ

This decomposition and redecomposition procedure is repeated for each paired
IMF to obtain the relative causal strengths at each time scale, where a ratio of 0.5
indicates either that there is no causal relationship or equal causal strength in the
case of reciprocal causation, and a ratio toward 1 or 0 indicates a strong differential
causal influence from one time series to another. To avoid a singularity when both

D S1j ! S2j
� �

and D S2j ! S1j
� �

approach zero (i.e., no causal change in phase

coherence with the redecomposition procedure), D+ 1 is used to calculate the
relative causal strength when both absolute causal strength D values are <0.05.

In summary, causal decomposition comprises the following three key steps: (1)
decomposition of a pair of time series A and B into two sets of IMFs (e.g., IMFs A
and IMFs B) and determining the instantaneous phase coherence between each
paired IMFs; (2) removing an IMF in a given time series (e.g., time series A),
performing the redecomposition procedure to generate a new set of IMFs (IMF A′)
and recalculating the instantaneous phase coherence between the original IMFs
(IMFs B) and redecomposed IMFs (IMFs A′); and (3) determining the absolute and
relative causal strength by estimating the deviation of phase coherence from the
phase coherence of the original time series (IMFs A vs. IMFs B) to either of the
redecomposed time series (e.g., IMFs A′ vs. IMF B).

Validation of causal strength. To validate the causal strength, a leave-one-
sample-out cross-validation is performed for each causal-decomposition test.
Briefly, we delete a time point for each leave-one-out test and obtain a distribution
of causal strength for all runs where the total number of time points is <100, or a
maximum of 100 random leave-one-out tests where the total number of time
points was higher than 100. A median value of causal strength is observed.
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Deterministic and stochastic model data. The deterministic model was used in
accordance with Sugihara et al.5 based on a coupled two-species nonlinear logistic
difference system, expressed as follows (initial value x(1)= 0.2, and y(1)= 0.4):

x t þ 1ð Þ ¼ x tð Þ 3:8� 3:8x tð Þ � 0:02y tð Þ½ �
y t þ 1ð Þ ¼ y tð Þ 3:5� 3:5y tð Þ � 0:1x tð Þ½ � ð9Þ

For the stochastic model, we used part of the example shown in Ding et al.10 for
Granger causality, which is expressed as follows (using a random number as the
initial value).

x t þ 1ð Þ ¼ 0:95
ffiffiffi
2

p
x tð Þ � 0:9025x t � 1ð Þ þ w1ðtÞ

y t þ 1ð Þ ¼ 0:5x t � 1ð Þ þ w2ðtÞ
ð10Þ

Ecological data and validation. We assessed the causality measures in both
modelled and actual predator and prey systems. The Lotka Volterra predator–prey
model21,22 is expressed as follows:

dx=dt ¼ αx � βxy

dy=dt ¼ δxy � γy
ð11Þ

where x and y denote the prey and the predator, respectively (α= 1, β= 0.05,
δ= 0.02, γ= 0.5 were used in this study).

Experimental data on Paramecium and Didinium are available online45, and
these were obtained by scanning the graphics in Veilleux17 and digitising the time
series. Wolf and moose field data are available online at the United States Isle
Royale National Park23. The lynx and hare data were reconstructed from fur
trading records obtained from Hudson’s Bay Company24. The benchmark time
series46 was reconstructed from various sources in two periods (the 1844–1904 data
were reconstructed from fur records, whereas the 1905–1935 data were derived
from questionnaires)24. We used the fur-record time series between the year 1900
and 1920 for illustrative purposes.

Comparison with other causality methods. We compared causal decomposition
with CCM, Granger’s causality, and MIME method20. The detail of the calculation
of CCM5, Granger causality10, and MIME20 has been documented in the literature.
Of note, both the CCM and Granger causality involve the selection of lag order. In
this paper, the lag order (i.e., embedding dimension) of 3 was chosen for the
application of CCM method to the ecosystem data5, and the lag order in the
Granger causality was selected by the Bayesian information Criterion. The MIME is
an entropy-based causality method which also employs the time precedence
principle47 and is equivalent to Granger’s causality in certain conditions48.

Code availability. The source code for the causal-decomposition analysis
(including ensemble EMD (http://rcada.ncu.edu.tw/research1.htm)) is imple-
mented in Matlab (Mathworks Inc., Natick, MA, USA), and the current version
(causal-decomposition-analysis-v1.0) or any future versions of the codes will be
available at GitHub.

Data availability. The Didinium and Paramecium data that support the findings of
this study are available in http://robjhyndman.com/tsdldata/data/veilleux.dat. Wolf
and moose field data are available online at the United States Isle Royale National
Park. Lynx and hare data are available online at https://github.com/bblais/Systems-
Modeling-Spring-2015-Notebooks/tree/master/data/Lynx%20and%20Hare%
20Data.
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