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Abstract

Measures obtained from diffusion-weighted imaging provide objective indices
of white matter development and injury in the developing preterm brain. To
date, diffusion tensor imaging (DTI) has been used widely, highlighting
differences in fractional anisotropy (FA) and mean diffusivity (MD) between
preterm infants at term and healthy term controls; altered white matter
development associated with a number of perinatal risk factors; and
correlations between FA values in the white matter in the neonatal period and
subsequent neurodevelopmental outcome. Recent developments, including
neurite orientation dispersion and density imaging (NODDI) and fixel-based
analysis (FBA), enable white matter microstructure to be assessed in detail.
Constrained spherical deconvolution (CSD) enables multiple fibre populations
in an imaging voxel to be resolved and allows delineation of fibres that traverse
regions of fibre-crossings, such as the arcuate fasciculus and
cerebellar—cortical pathways. This review summarises DTI findings in the
preterm brain and discusses initial findings in this population using CSD,
NODDI, and FBA.
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Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) is a
non-invasive imaging technique that measures the displacement
of water molecules in tissue over time. As such, dMRI offers
the opportunity to investigate tissue microstructure in vivo and
provides quantitative measures that relate to brain injury and
development. The most widely used dMRI analysis approach
in the developing brain is diffusion tensor imaging (DTI),
which has proven to be extremely useful for investigating brain
development and injury. More recent approaches have moved
beyond the tensor model to incorporate biophysical models to
study tissue microstructure more specifically.

The aim of this review is to briefly describe studies assessing
white and grey matter in the developing brain using advanced
analysis approaches that have been used widely in the adult
brain, such as neurite orientation dispersion and density imaging
(NODDY), fixel-based analysis (FBA), and constrained spherical
deconvolution (CSD). These approaches require high b-value
(typically >2,000 s/mm?), high angular resolution dMRI data
which pose additional challenges in neonatal imaging including
longer acquisition times, which may lead to motion corrupt
data, reduced signal-to-noise ratio, and increased distortions.
However, recent advances in data acquisition approaches and
hardware, coupled with imaging at 3 Tesla, mean it is now
possible to acquire high-quality HARDI data in the neonatal
brain'. We believe these techniques will be increasingly used
to improve our understanding of the neural substrate associated
with impaired brain development in this population.

Diffusion-weighted imaging

Diffusion is the constant motion of molecules due to ther-
mal energy. Given an environment without restrictions, water
molecules will traverse a random walk, with direction changes
following collisions with other particles. However, in the
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brain, the presence of axons, neuronal cell bodies, glial cells,
and macromolecules comprise a heterogeneous environment
which hinders and restricts diffusion. In the presence of these
impediments, the measured root-mean-square displacement
will be lower than predicted for water at room temperature. The
term “apparent diffusion coefficient” is used to convey that the
observed measure is influenced by the tissue microstructure.
Diffusion is restricted if it is confined by physical boundaries,
such as the diffusion of molecules in the intra-axonal space,
causing the diffusion to become non-Gaussian™.

Diffusion tensor imaging

The organisation of tissue microstructure will affect how
water molecules diffuse. In a homogenous medium, the diffusion
of water molecules is equal in all directions; this is isotropic
diffusion. However, in a coherently organised microstructure,
such as in white matter, diffusion is anisotropic’™. Within white
matter, water molecules diffuse more slowly perpendicular to the
fibres than parallel to them (Figure 1). Under these conditions,
the apparent diffusion coefficient will be different depending on
the direction in which it is measured. To account for this, Basser
et al.” proposed that diffusion is characterised using a math-
ematical tensor model. To examine water molecular motion in a
tissue with an ordered microstructure using the tensor
model, a minimum of six non-collinear directions of diffusion
sensitisation is required, in addition to one with no diffusion
weighting, although usually at least 30 unique sensitised direc-
tions are recommended to robustly estimate the tensor model
parameters.

The diffusion tensor provides scalar, rotationally invariant
indices’. Indices derived from A, A,, A, (Figure 1) are, by defini-
tion, independent of orientation. The magnitude of the diffusiv-
ity along the main fibre orientation as estimated by DTI is given
by A, termed the axial diffusivity (AD). The average of the other

Figure 1. Isotropic and anisotropic diffusion in the brain. In the white matter of the corpus callosum (red), diffusion occurs preferentially
along the axonal fibres, resulting in anisotropic diffusion (b). In the ventricular cerebrospinal fluid (CSF; green), diffusion is unhindered and can
be described as isotropic (¢). Diffusion tensor ellipsoids representing anisotropic and isotropic diffusion are shown in b and ¢, respectively.

Reproduced with permission from 9.
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two eigenvalues, the radial diffusivity (RD), describes the mag-
nitude of diffusivity across the fibres. The mean diffusivity (MD)
is the average of all three eigenvalues and provides a measure
of the overall diffusivity within a voxel. Fractional anisotropy
(FA) is the variance of the three eigenvalues normalised by the
magnitude of the tensor and takes values between 0 and 1.

DTI studies in the infant brain

The perinatal period is characterised by a pattern of decreasing
MD, RD, and AD and increasing FA in the cerebral white
matter in preterm infants'"'* and term infants'>'°. White matter
maturation follows a heterogeneous spatiotemporal pattern,
with different fasciculi maturing at different times and different
rates’>™ in a posterior-to-anterior and a central-to-peripheral
direction of maturation. The increase in FA takes place before
myelin is evident histologically and is attributed to changes in
white matter structure which accompany the premyelinating
state including an increase in axonal membrane maturation and
microtubule-associated proteins, a change in axon caliber, and
an increase in oligodendrocyte number’°. At this stage, the
highest FA values are seen in the unmyelinated but highly
organised commissural fibres in the splenium and genu of the
corpus callosum. The second stage is associated with the histo-
logical appearance of myelin and subsequent maturation, with
the earliest signs observed in the projection fibres of the posterior
limb of the internal capsule around term*’.

Lower FA and increased MD are found across the white
matter in preterm infants compared with term-born infants™**~,
and increased prematurity is associated with lower FA and
higher MD'**'=*>_ Furthermore, infants with white matter injury
identified on conventional MRI show reduced anisotropy and
increased MD and RD across the white matter in comparison to
preterm infants with normal MRI'“*~’. White matter diffusion
measures in preterm infants at term equivalent age have been
related to subsequent neurodevelopmental performance.
Increased FA and decreased MD and RD in the white matter
at term equivalent age are associated with improved motor,
cognitive, and language performance in early childhood*~’ and
improved visual function**=".

In addition to assessing white matter, DTI studies of cortical
grey matter have identified altered cortical development in
infants born preterm. Cortical maturation up to term equivalent
age is characterised by decreasing FA and MD, reflecting
increased dendritic arborisation and synapse formation®-'=*. FA
and MD are elevated in preterm infants at term equivalent age
compared to infants born at term, suggesting impaired cortical
development in this population®.

Limitations of DTI

While DTI has proven to be a powerful technique for studying
the brain, a major limitation is that it is only able to depict a
single fibre population within a voxel. DTI fails to represent
appropriately the tissue microstructure in the presence of
crossing fibres and DTI-derived measures lack tissue specificity,
as these measures can be affected by multiple microstructural
features. Moreover, in a restricted environment, diffusion is no
longer Gaussian and the tensor model deviates from the signal.
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The use of more advanced analysis approaches, such as those
that enable microstructure to be studied with greater specificity,
require high angular resolution diffusion imaging (HARDI)
acquisitions at a higher b-value than has typically been used
in the neonatal brain. These approaches have long acquisition
times and so their use in unsedated neonates has been limited.
However, advances in MRI acquisition techniques, such as
the use of protocols designed specifically for neonates using
neonatal head coils and multiband MRI coupled with modern
gradient coil systems, with maximum gradient amplitude, slew
rate, and duty cycle'”*, now enable HARDI data to be acquired
in a clinically feasible time.

Compartment models of microstructure

Compartment models provide a biophysical interpretation of
the diffusion-weighted signal and attempt to characterise the
complexity of cerebral tissue by decomposing the signal into
compartments describing diffusion within distinct microstruc-
tural constituents.

Stanisz et al.” first introduced the three-compartment model
comprising a restricted intra-axonal compartment, anisotropic
hindered extra-axonal compartment, and a restricted isotropic
compartment describing diffusion within cellular structures such
as glial cells. Behrens e al.”® presented a method to account for
multiple fibre populations using the ball and stick model where
diffusion along axons is represented by sticks and outside the
axons diffusion is an isotropic ball. CHARMED" models the
intra-axonal space using cylinders with a distribution of radii
given by the I'-distribution and extra-axonal space as tensor
with a principle direction aligned with the cylinders. This
was extended to provide an estimate of axon diameter in the
AxCaliber framework™’. Alexander” simplified CHARMED
by using a single axon radius and symmetric tensor that was
used in the ActiveAx framework to estimate axon diameter in
biological tissue®-** and axon diameter mapping in the presence
of orientation dispersion®. However, recent work shows that the
gradient amplitudes attainable with current clinical scanners are
not able to estimate axon diameter accurately® .

NODDI* provides measures of neurite density index (NDI)
and orientation dispersion index (ODI). The model consists of
three compartments modelling the intracellular, extracellular,
and cerebrospinal fluid (CSF) environments. The intraneurite
compartment captures the diffusion inside dendrites and axons,
collectively termed neurites. The intraneurite compartment is
modelled using sticks to represent unhindered diffusion along
the neurites and highly restricted diffusion perpendicular to
the neurites. The orientation distribution can vary from being
highly parallel, reflecting the coherent organisation of white
matter fibres such as in the posterior limb of the internal capsule
or the corpus callosum, to highly dispersed, such as in regions
of crossing fibres like the centrum semiovale or the complex
configuration of the cortex. The extraneurite compartment
represents the space occupied by glial cells and neuronal somas
where diffusion is hindered and is modelled as an anisotropic
Gaussian distribution using a zeppelin. The CSF compartment is
modelled as isotropic Gaussian diffusion.
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The NODDI model has been applied to investigate white and
grey matter maturation in the preterm brain**, NDI increases
in the white matter with increasing maturation, with the highest
NDI values observed in primary motor and somatosensory tracts
and lower values observed in association fibres®*”. Combined
with graph theoretical approaches and network-based analysis,
both FA- and NDI-weighted connections were highly correlated
with age at MRI in a widespread pattern encompassing most white
matter connections between 25 and 45 weeks post-menstrual age
(PMA). Lower gestational age (GA) at birth was significantly
correlated with lower FA and NDI, and we observed a consistent
negative correlation of relative NDI-weighted global efficiency
with GA at birth, suggesting an alteration in network topology
with increased prematurity at birth. Cortical grey matter
maturation is characterised by increasing ODI (accompanied
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by decreasing MD and FA), reflecting increased dendritic
arborisation. At around 38 weeks’ GA, this increase in ODI
plateaued, but after this period NDI increased in primary
motor and sensory regions (Figure 2), suggesting that cortical
development up to 38 weeks” PMA shows a predominant
increase in dendritic arborisation and neurite growth, while
after 38 weeks’ PMA it is dominated by increasing cellular and
organelle density™.

The DIAMOND model” combines compartmental and statis-
tical modelling to represent restricted, hindered, and isotropic
compartments using three peak-shaped matrix-variate distribu-
tions. DIAMOND estimates the number of tissue compartments
in each voxel and provides compartment-specific measures of
FA, AD, RD, and MD and a measure of heterogeneity within

PMA at scan > 38 weeks

r

g\/}”' " %

;‘
L7

.
s

Figure 2. Correlation between cortical diffusion characteristics and age at scan. Hot colours indicate increase and cool colours indicate
decrease in diffusion measure. Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; NDI, neurite density index; ODI, orientation

dispersion index; PMA, post-menstrual age. Reproduced from 34.
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the compartment. This model was recently applied to assess
cortical maturation in the preterm cortex, demonstrating a
decrease in the radial organisation of the cortex’'.

Approaches to model the diffusion signal have limitations,
including assuming non-exchanging tissue compartments and
fixed compartmental diffusivities’’, and, to date, there have been
no studies validating these measures with human preterm or
neonatal tissue samples. However, ODI measures have recently
been correlated with changes in neurite geometrical configura-
tion assessed with histology in a population with spinal cord
multiple sclerosis”, suggesting that model indices are relevant
proxies of underlying microstructure.

Constrained spherical deconvolution

CSD estimates the fibre orientation distribution (FOD) in the
presence of multiple fibre orientations’™"*. It was initially
introduced for single-shell HARDI data”™ and is able to estimate
FODs regardless of the number of fibre populations within a
voxel. It is assumed that each fibre bundle has the same diffusion
properties, apart from the orientation, and that no exchange
occurs between bundles over the time-scale of DWI acquisi-
tion. The signal emanating from each fibre bundle is independent
and they can be summed. The diffusion-attenuated profile for an
anisotropic fibre bundle is represented by a response function.
The response function is low amplitude along the axis, where
diffusion is high, and high amplitude in the radial plane,
where diffusion is low. Recently, multi-tissue CSD has been
introduced, which exploits the different diffusion dependencies
of different tissues at multiple b-values (b-value refers to the

(a)

(b)
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degree of diffusion weighting which is related to the amplitude
and duration of the diffusion gradients and the time interval
between the leading edges of the two pulsed gradients) to derive
tissue-specific response functions, where grey matter and CSF
response functions are both isotropic, leading to improved
estimation of the FOD™.

CSD-based tractography has been used in a limited number of
studies in the infant brain to visualise fibre bundles that are not
readily delineated using DTI-based approaches. In Pieterman
et al’', we were able to visualise cerebellar—cortical pathways
crossing in the mid-brain (Figure 3). In another recent study, we
were able to delineate the arcuate fasciculus, which traverses
regions of fibre crossings in the centrum semiovale and we
observed that FA values of the arcuate fasciculus in preterm
infants at term equivalent age correlated with language perform-
ance at 2 years (Figure 4)*.

Fixel-based analysis

CSD has led to the development of fibre bundle-specific
measures. Raffelt er al.* introduced a measure of apparent fibre
density (AFD) of individual fibre populations estimated
from the FOD. A fixel describes an individual different fibre
bundle within an imaging voxel where fibre bundles of different
orientations may be present in an imaging voxel. AFD is based
on the assumptions that the intra-axonal water diffusion is
restricted in the direction perpendicular to the fibre orientation,
the extra-axonal diffusion-weighted signal is attenuated at
high b-values (>2,000 s/mm?), and the diffusion-weighted
signal from the restricted compartment is preserved under

Figure 3. Reconstruction of cerebello-thalamo-cortical tract (CTC, red-yellow) and cortico—ponto—cerebellar tract (CPC, blue-green)
in an infant born at 33 weeks and imaged at 40 weeks post-menstrual age with fibre orientation distribution plots overlaid on the
diffusion data. (a) Crossing fibres of the CTC tract at the level of the mesencephalon. (b) Crossing fibres of the CPC tract at the level of the

pons. (¢) 3D reconstruction of both tracts. Reproduced from 81.
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typical diffusion-weighted gradient pulse durations used
in vivo. Consequently, the radial diffusion-weighted signal is
approximately proportional to the volume of the intra-axonal
compartment®. Since the FOD amplitude is proportional to the
radial diffusion-weighted signal, it provides a measure of fibre
density (FD) determined as a proportion of the volume occupied
by the fibre population®, as illustrated by Figure 5. This
measure would detect within-voxel changes related to the
volume of restricted water along a specific direction. AFD also
accounts for differences in macroscopic white matter structure
across subjects. FODs are modulated according to changes
in local volume, such as expansion or contraction, that occur
during registration. This presents a measure pertaining to both
microscopic changes in FD and macroscopic morphological
changes that occur across voxels.

PLS linguistic scores

F1000Research 2018, 7(F1000 Faculty Rev):1326 Last updated: 21 AUG 2018

Raffelt er al** make a distinction between the changes in
microstructure that occur within a voxel and the macroscopic
changes in morphology that occur across voxels. They introduced
a measure of FD derived solely from unmodulated FOD ampli-
tude so as to describe changes in white matter microstructure
without the effects of macroscopic morphological changes.
Changes in white matter microstructure which would result in a
reduction in FD can be visualised in Figure 6. Nonetheless, mac-
roscopic alterations in morphology are likely to occur across
white matter during development and need to be accounted for.
Raffelt et al.* provide, in addition to FD, a measure of macro-
scopic differences in morphology based on the local deformations
that are applied during registration. Changes in brain morphology
have previously been investigated using voxel-based morphom-
etry (VBM)® and tensor-based morphometry**’. Local changes

-1 0 1 2
PLS fractional anisotropy scores

Figure 4. Inter-subject differences in linguistic performance at two years were associated with term equivalent fractional anisotropy
(FA) of the left and right arcuate fasciculus independently of degree of prematurity. (a) Visualisation of an infant brain and the reconstructed
arcuate fasciculi from left-frontal, right-frontal, frontal, and top view. The tracts are coloured by direction: green for anterior-posterior, red for
left-right, and blue for superior-inferior. (b) Using cross-validated partial-least-square (PLS) regression, one statistically significant mode of
brain-behaviour covariation between PLS FA scores and PLS language scores was identified (r = 0.36; family-wise error [FWE]-corrected
P-value = 0.0110). Term equivalent FA of the left and right arcuate fasciculi was associated with individual differences in composite linguistic
skills in early childhood. This link was still present even when controlling for degree of premature delivery measured by gestational age (GA)
at birth (r= 0.32, FWE-corrected P-value = 0.0230). Reproduced from 82.
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Figure 5. A single fibre population within a voxel (A, B), the expected diffusion-weighted signal profile (C), and the associated fibre orientation
distribution (FOD) (D) The FOD amplitude is proportional to the radial signal profile and therefore the fibre density of the fibre population.

Image adapted from 88.
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Figure 6. A schematic representation of a fibre bundle cross-section made of numerous axons (grey circles). Anterior commissure
voxels represented by the grid. Panels (a), (b), and (¢) describe three different ways in which a fibre bundle can change: (a) a reduction in
within-voxel fibre density, (b) a macroscopic change in fibre-cross section across voxels, and (¢) a combination of reductions in both fibre

density and cross-section. Image adapted from 84.

in volume can be investigated using the information from a
subject’s nonlinear deformation to a template. At each voxel, the
determinant of the Jacobian describes the expansion or contrac-
tion of the subject image relative to a target. This method focuses
on the changes in fibre bundle that occur perpendicular to the
main fibre orientation, as a reduced fibre bundle cross-section
would imply a reduced number of axons. Using FOD registration,
it is possible to assess changes in volume with respect to specific
fibre orientations. This provides a fibre bundle-specific measure
of fibre cross-section (FC) based on the Jacobian determinant
following registration of FOD images.

To date, there have been few studies assessing white matter in
the preterm brain using FBA. Pannek er al. demonstrated
reduced FD, FC, and FD multiplied by FC (FDC) in the
corticospinal tract and corpus callosum in preterm infants at term
equivalent age compared to healthy controls®. We have
observed a significant negative correlation between FC and FDC
and duration of mechanical ventilation and parenteral nutri-
tion in preterm infants at term equivalent age, suggesting that
aberrant white matter development previously attributed to
microstructural changes may be due to alterations in the size (fibre
cross-sectional area) of specific fibre bundles at the macroscopic

scale”.

Summary

Recent advances in diffusion acquisition and analysis approaches
enable white and grey matter microstructure to be probed in
detail, demonstrating increases in NDI and FC in white matter
and increasing ODI in cortical grey matter with increasing
maturation. CSD-based tractography facilitates the delineation of

complex fibre bundles that have not been clearly depicted using
DTI approaches. Large-scale studies (such as the developing
Human Connectome Project, http://www.developingconnectome.
org) are now underway and are obtaining high b-value
HARDI data in the neonatal brain with the aim of improv-
ing our understanding of human brain development and
the impact of environmental and genetic factors on brain
development. It is likely that the acquisition and analysis
techniques outlined in this review will be confined to the
research environment in the short term. However, the ultimate
aim of neonatal neuroimaging is to facilitate early diagnosis
and prognosis, and innovations in image acquisition including
multiband techniques to reduce acquisition time are likely to
facilitate the increased use of these advanced methods in the
neonatal brain in the future.
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