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Abstract

In this study, using NextGen sequencing of the collective 16S rRNA genes obtained from two sets 

of samples collected from Lake Obersee, Antarctica, we compared and contrasted two 

bioinformatics tools, PICRUSt and Tax4Fun. We then developed an R script to assess the 

taxonomic and predictive functional profiles of the microbial communities within the samples. 

Taxa such as Pseudoxanthomonas, Planctomycetaceae, Cyanobacteria Subsection III, 

Nitrosomonadaceae, Leptothrix, and Rhodobacter were exclusively identified by Tax4Fun that 

uses SILVA database; whereas PICRUSt that uses Greengenes database uniquely identified 

Pirellulaceae, Gemmatimonadetes A1–B1, Pseudanabaena, Salinibacterium and Sinobacteraceae. 

Predictive functional profiling of the microbial communities using Tax4Fun and PICRUSt 

separately revealed common metabolic capabilities, while also showing specific functional IDs not 

shared between the two approaches. Combining these functional predictions using a customized R 

script revealed a more inclusive metabolic profile, such as hydrolases, oxidoreductases, 

transferases; enzymes involved in carbohydrate and amino acid metabolisms; and membrane 

transport proteins known for nutrient uptake from the surrounding environment. Our results 

present the first molecular-phylogenetic characterization and predictive functional profiles of the 

microbial mat communities in Lake Obersee, while demonstrating the efficacy of combining both 

the taxonomic assignment information and functional IDs using the R script created in this study 

for a more streamlined evaluation of predictive functional profiles of microbial communities.
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1. Introduction

Significant efforts using both culture-dependent and culture-independent methods have been 

used to understand taxonomic diversity as well as functional profiles of microbial 

communities in a wide range of environments, including extreme ecosystems (Fuhrman, 

2009; Huse et al., 2008). However, cultivation-based approaches are limited by their 

inability to culture most microorganisms using routine techniques, with estimates suggesting 

that fewer than 1% of the taxa from microbial communities in a given ecosystem are 

amenable to being cultured (Amann et al., 1995; Pace, 1997).

Our knowledge of the “unseen majority” has significantly advanced with the rapid progress 

of cultivation-independent NextGen sequencing (NGS) technology and the concurrent 

development of bioinformatics software (Horner et al., 2010; van Dijk et al., 2014). 

Traditionally, NGS technology has targeted bacterial 16S rRNA genes (V1–V9 segments) 

within metacommunity DNA revealing the taxonomic diversity of microbial communities in 

ecosystems of interest at the highest possible coverage (Chakravorty et al., 2007; Huse et al., 

2008; Martinez-Porchas et al., 2017; Sanschagrin and Yergeau, 2014; Shah et al., 2011). 

Powerful bioinformatics tools such as PICRUSt, Tax4Fun, and Piphillin have been recently 

introduced that utilize 16S rRNA gene-based taxonomic information to predict the 

functional attributes of microbial assemblages (Aßhauer et al., 2015; Iwai et al., 2016; 

Langille et al., 2013). These tools are designed to derive functional gene content of 

microorganisms based on the known genome information of bacteria closest to their 

taxonomic lineage. Bioinformatics packages offer an assessment of functional 

metagenomics by assigning gene IDs from gene data repositories (e.g., Kanehisa and Goto, 

2000; Kanehisa et al., 2014) to the Operational Taxonomic Units (OTUs) identified through 

a microbiome analysis. Importantly, to match gene content to observed taxa, OTUs defined 

in the microbiome analysis require a representative sequence and ID from 16S rRNA gene 

repositories such as Grenegenes (DeSantis et al., 2006) or SILVA (Quast et al., 2012). The 

application of NextGen sequencing technology has been particularly advantageous for the 

study of microbial community composition in extreme environments where microorganisms 

have adapted to unique physicochemical conditions that are difficult to recreate in the 

laboratory (Ramganesh et al., 2014). In this study, using both Greengenes and SILVA 

taxonomic databases used by the PICRUSt and Tax4Fun software packages, respectively, we 

present the first data describing microbial community composition of the microbial mats 

found beneath the thick, perennial ice of Lake Obersee Antarctica. We compared PICRUSt 

and Tax4Fun, which use 16S rRNA gene-based taxonomic information and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database to predict functional attributes of 

microbial communities in Lake Obsersee. In conjunction with the comparative analyses by 

these software packages, we developed a customized R script that allowed us to streamline 

the process of retrieving as well as revealing a comprehensive outlook of the KEGG 

functional categories from the KEGG database.
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2. Material and methods

2.1. Study site

Perennially ice-covered Lake Obersee is located at 71°17'S 13°39'E in the Grüber Mountains 

of Central Queen Maud Land, East Antarctica (Loopmann et al., 1988) (Fig. 1). The lake is 

located 180 km from the coastal ice shelf at an elevation of 756 m above sea level. Lake 

Obersee has a surface area of approximately 3.4 km2 and a maximum depth of 83 m. The 

water column temperature ranges between 0.2 °C just below the ice-cover to a maximum of 

0.6 °C. Although the hydrochemistry, bathymetry and chlorophyll data of Lake Obersee 

have been documented (Martin, 1988, Andersen unpublished data), there is no information 

about the composition and function of the microbial community in the benthic mats which 

were first observed during this study.

2.2. Sample collection, DNA extraction, and sequence file analyses

In November–December 2012, benthic microbial mats at a depth of 15 m were imaged and 

sampled by scientific divers from a single dive hole employing sampling and diving 

techniques developed for the studies of Antarctic lakes (Andersen, 2007). Two core samples 

of the laminated microbial mats in Lake Obersee (herein referred to as OB12 and OB13) 

were collected by gently inserting a 50 mm diameter sterile polycarbonate tube into the mats 

and then sealing both ends with rubber stoppers before returning them to the surface. After 

collection, the set of intact cores were kept frozen (−20 °C) and returned to the University of 

Alabama at Birmingham (UAB) for DNA extraction and bioinformatics analyses.

Three subsamples (~1 cm2 each) from different laminae within each core were subjected to 

DNA purification using the MoBio PowerSoil DNA Isolation Kit (MoBio Laboratories Inc., 

CA; www.mobio.com; cat # 12888-100). DNA concentrations of each purified DNA sample 

were determined using the Eppendorf BioPhotometer Plus (Hamburg, Germany). An equal 

amount of high-quality DNA from each sample was pooled into a single sample (~1 μg) 

(Koo et al., 2016; White et al., 2016). A single pooled DNA sample from each mat was 

submitted to the Microbiome Resource Core Facility at UAB for 16S rRNA gene (V4) 

targeted metagenomics using the Illumina Miseq platform (paired-end, 2 by 250 bp).

The raw fastq sequence files were uploaded into Quantitative Insight into Microbial Ecology 

(QIIME, ver. 1.8.0) (Caporaso et al., 2010). The fastq-formatted sequences were quality-

checked, and ambiguous sequences were filtered (> 25 quality score, 80% coverage, and 

chimera sequences) by using FastQC (Andrews, 2010) and FASTX-Toolkit (http://

hannonlab.cshl.edu/fastx_toolkit/), respectively. After pre-processing, paired-end reads were 

merged by using USEARCH (Edgar, 2010) based on overlapping regions. The quality of 

sequences was checked again using FastQC to ensure sufficient quality for downstream 

analysis, and grouped into OTUs using UCLUST (Edgar, 2010) at a 97% sequence 

similarity. After representative sequences were selected for each OTU, these sequences were 

used for further analyses using two different approaches: 1) Silva (Quast et al., 2012; Yilmaz 

et al., 2013) with Tax4Fun (Aßhauer et al., 2015); and 2) Greengenes (DeSantis et al., 2006) 

with PICRUSt (Langille et al., 2013).
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2.3. Comparison of taxonomic information using Silva and Greengenes

In order to conduct the Silva-Tax4Fun approach, representative sequences were assigned to 

reference sequences in the SILVA database (release 123). However, to conduct the 

Greengenes-PICRUSt approach, the same representative sequences were used for taxonomic 

assignments based on Ribosomal Database Project (RDP) classifier (Wang et al., 2007), 

trained using the Greengenes (v 13.5) 16S rRNA database. The OTU table was then 

generated from each approach to visualize taxonomic information (up to genus level) and 

summarized in a stacked column bar graph.

2.4. Comparison of predictive functions using Tax4Fun and PICRUSt

We obtained and compared the predictive functional attributes of microbial communities in 

the OB12 and OB13 mat samples using the Silva-Tax4Fun and the Greengenes-PICRUSt 

approaches. For the Silva-Tax4Fun approach, the SILVA-labeled OTU table was used by 

Tax4Fun (Aßhauer et al., 2015), which is an open-source R (http://www.R-project.org/) 

package, to investigate predictive functional attributes of microbial communities in the mat. 

For this approach, Tax4Fun converted the SILVA-labeled OTUs into prokaryotic KEGG 

organisms, and then normalized these predictions by the 16S rRNA copy number (obtained 

from the NCBI genome annotations) (Aßhauer et al., 2015; Kaiser et al., 2016). The 

predictive functions of the microbial communities were determined by linearly combining 

the normalized taxonomic abundances into the precomputed association matrix of KEGG 

Ortholog reference profiles to Silva defined microorganisms constructed by Tax4Fun.

For the Greengenes-PICRUSt approach, the Greengenes-labeled OTU table was uploaded 

into PICRUSt (Langille et al., 2013). Similar to Tax4Fun, PICRUSt utilized the Greengenes-

labeled OTU table to predict metabolic functions from the KEGG database. However, 

PICRUSt performed these assignments by referencing a pre-calculated file that contains 

Greengenes IDs and their associated KEGG functional categories, defined through ancestral 

state reconstruction (Langille et al., 2013). In accordance with the suggested practices of the 

PICRUSt manual, the OTU table was first normalized by the known or predicted 16S copy 

number abundance (Langille et al., 2013), and the resultant OTU table was used to derive 

predictive metagenomes by using the “predict_metagenomes.py” command. In addition, 

accuracy of the PI-CRUSt predictions was estimated using the Nearest Sequenced Taxon 

Index (NSTI) values of the two mat samples used in this study. The NSTI value validates the 

taxonomy-based PICRUSt-predicted KEGG functional categories of the microbial 

communities (Langille et al., 2013; Staley et al., 2014; Lopes et al., 2016; Kim et al., 2017). 

Since the output of the functional profiles generated by PICRUSt was not compatible with 

Tax4Fun, we have written an R script for the comparative analyses of the taxonomy-based 

metabolic functional predictions of the microbial communities in the two mat samples 

(Supplementary Materials, S1.1, S1.2, and S2).

3. Results

3.1. Total sequence reads, quality trimming, and OTU information

A total of 306,339 raw sequences reads were generated from the OB12 and OB13 mat 

samples (Table 1). After merging the forward and reverse raw sequences, quality-based 
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trimming and filtering produced 248,430 sequences, which were used for further 

bioinformatics analyses. Overall, with OTUs clustered at a 97% sequence similarity, a higher 

number of OTUs were generated in both samples using the Silva database (release 123) as 

compared to the Greengenes database (v.13.5).

3.2. Comparison of microbial diversity assigned by using Silva and Greengenes databases

Using both databases, the relative abundances of microbial taxa in the OB12 and OB13 mat 

samples were determined to the most resolvable level (up to family or genus) (Fig. 2). A 

total of 12 phyla and 68 genera were found in both Silva and Greengenes databases. As 

compared to the Greengenes database, five additional phyla (Armatimonadetes, 

Hydrogenedentes, Parcubacteria, TM6, Tenericutes) were detected by the Silva database. 

These phyla had a combined relative abundance totaling < 0.2% in each sample.

The microbial profiles revealed a relatively similar taxa distribution at the phylum level in 

the OB12 mat, based on both the Silva and Greengenes databases (Fig. 2a). Firmicutes and 

Bacteroidetes were highly abundant, followed by Planctomycetes, Proteobacteria, 

Actinobacteria, Gemmatimonadetes, and Cyanobacteria. However, both databases yielded 

significantly different microbial profiles in the OB13 sample at the phylum level (Fig. 2a). 

Proteobacteria was present at higher abundances in both databases. Using the Silva database, 

Bacteroidetes was found to be the second-most abundant taxon, followed by 

Gemmatimonadetes, Cyanobacteria, Planctomycetes, Actinobacteria, Acidobacteria, 

Verrucomicrobia, and Firmicutes. In contrast, by using the Grenegenes database, 

Gemmatimonadetes was found to be the second most abundant taxon, followed by 

Bacteroidetes, Cyanobacteria, Actinobacteria, Planctomycetes, Verrucomicrobia, and 

Acidobacteria.

At the most resolvable level (either family or genus), a total 146 taxa were identified by the 

Silva database and 103 taxa were identified by the Greengenes database (Fig. 2b). Although 

there was congruency between the two taxonomic assignment strategies, an additional 80 

taxa were exclusively identified by Silva, but not by Greenegenes, whereas 32 taxa were 

identified by Greengenes and not by Silva. While Prevotella, Megasphaera, Bifidobacterium, 

Blautia, Streptococcus, Bacteroides, Leptolyngbya, Paenibacillus, and Acidaminococcus 
were found using both databases in the OB12 mat sample, the Silva database revealed 

Planctomycetaceae, Gemmatimonas, and Pseudoxanthomonas at relatively high abundances, 

and conversely for Greengenes, taxa identified as Pirellulaceae, Lachnospiraceae, A1–B1, 

and Xanthomonadaceae were detected as more abundant (Fig. 2b). In the OB13 mat sample, 

Cytophagaceae, Gemmatimonas, Xanthomonadaceae Roseococcus, Sphingobacteriales, 

Leptolyngbya were detected by both databases. Only the Silva database revealed 

Pseudoxanthomonas, Cyanobacteria; SubsectionIII, Nitrosomonadaceae, Polaromonas, 

SM1A02, and Leptothrix, while Greengenes showed A1–B1, Pseudanabaena, 

Comamonadaceae, Ellin6067, and Opitutus to be represented (Fig. 2b). A detailed list of the 

distribution of taxonomic groups up to genus level for the Silva and Greengenes databases in 

OB12 and OB13 samples is elaborated in Supplementary Material S3.

Koo et al. Page 5

J Microbiol Methods. Author manuscript; available in PMC 2018 September 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



3.3. Comparison of predicted functional attributes

Comparison of the predicted metabolic functions of OB12 and OB13 showed highly 

abundant KEGG categories between the Tax4Fun and PICRUSt (Figs. 3 and 4). The NSTI 

value was estimated for each mat sample (0.10 in OB12 and 0.13 in OB13) and the mean 

value was calculated to be 0.12 ± 0.025 s.d. In general, RNA polymerase sigma-70 factor 

(K03088), putative ABC transport system ATP-binding protein (K02003), Acyl carrier 

protein (K02078), LacI family transcriptional regulator (K02529), ABC-2 type transport 

system ATP-binding protein (K01990), acyl-CoA thioester hydrolase (K07107), 3-

isopropylmalate/ (R)-2-methylmalate dehydratase small subunit (K01704), tRNA 

nucleotidyltransferase (K00974), and aspartyl-tRNA(Asn)/glutamyl-tRNA(Gln) 

amidotransferase subunit C (K02435) were highly abundant in mat samples analyzed by the 

PICRUSt method (Figs. 3 and 4). In contrast, mat samples analyzed by Tax4Fun showed a 

higher abundance of pathways related to excinuclease ABC subunit A (K03701), 

ribonuclease E (K08300), translation initiation factor IF-2 (K02519), type I restriction 

enzyme, hsdR (K01153), Cu2+-exporting ATPase (K01533), ribonucleoside-diphosphate 

reductase alpha chain (K00525), ATP-dependent Lon protease (K01338), ATP-dependent 

Clp protease ATP-binding subunit ClpB (K03695), and ATP-binding cassette (K15738) 

(Figs. 3 and 4). Of the total number of KEGG categories assigned to OB12 and OB13, 297 

KEGG categories were not identified using Tax4Fun, whereas 476 KEGG categories were 

missed by PICRUSt (Supplementary Material S4). Detailed information of each KEGG 

category identified using both PICRUSt and Tax4Fun are listed in Supplementary Material 

S5.

4. Discussion

16S rRNA gene-based sequencing technology is widely used to elucidate microbial 

community composition in various ecosystems including extreme environments. Knowledge 

of the predictive functional capabilities of these microbial communities through comparisons 

with gene data repositories could therefore be highly beneficial (Aßhauer et al., 2015). 

Recently, a comparative analysis of Piphillin software with PICRUSt and Tax4Fun showed 

that although the Piphillin performed better in predicting gene composition and disease 

associated with specific gene orthologs in human clinical samples, it underperformed on 

environmental samples including microbial mats from hypersaline environments (Iwai et al., 

2016). Thus, we used PICRUSt and Tax4Fun along with the R script to generate a 

comprehensive taxonomic listing, as well as predictive functional gene compositions in Lake 

Obersee mat samples. Results of the two taxa assignment strategies showed differences in 

microbial compositions, revealing five additional phyla along with 80 genera using the Silva 

database. In contrast, the use of the Greengenes database resulted in no additional phyla and 

32 genera (Fig. 2 and Supplementary Material S3). Subsequent assignment of functional 

categories through KEGG also showed that PICRUSt assigned 297 extra KEGG IDs, 

whereas Tax4Fun recorded 476 additional KEGG IDs. To account for this variation, we 

wrote a customized R script to consolidate all KEGG IDs, generated by the two software 

packages (Supplementary Materials S1 and S2). With this script we were able to retrieve a 

comprehensive list of KEGG IDs as opposed to using each of these software packages alone 

(Supplementary Material S4 and S5).
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The two core samples (OB12 and OB13) from Lake Obersee mats were dominated by 

Cytophagaceae, Prevotella, Gemmatimonas, Megasphaera, Xanthomonadaceae, 

Bifidobacterium, Polaromonas, Roseococcus, Streptococcus, Bacteroides, and 

Sphingobacteriales based on both the Silva and Greengenes databases. These groups of 

heterotrophic organisms are commonly identified in Antarctic soils, ice cores, and 

freshwater samples (Huang et al., 2014; Niederberger et al., 2015; Rampelotto, 2016; 

Segawa et al., 2010), In particular, members of Cytophaga of the phylum Bacteroidetes are 

chemoorganotrophic and known to enzymatically lyse Cyanobacteria and other Gram-

positive bacteria (Madigan et al., 2008; Marshall, 1989; Seckbach and Oren, 2010). 

Therefore, these groups likely play a significant role in nutrient recycling in Lake Obersee. 

Whether or not this could be a reason for the low relative abundances of Cyanobacteria 

species in the mats, requires additional investigation. In addition to mutually different 

bacterial profiles, each database (SILVA and Greengenes) provided unique taxa information. 

The Silva database detected a relatively high abundance of 1) filamentous-shaped, sulfur-

oxidizing bacteria (Leptothrix, Rhodobacter), which could be involved in the formation of 

the core structure of the mats (Drewniak et al., 2016); and 2) anammox bacteria 

(Planctomycetaceae), which could be co-occurring with the dominating members within 

Cytophaga and Gammaproteobacteria (i.e. Pseudoxanthomonas found in our study) by 

utilizing ammonium produced by the both groups (Wöbken, 2007) (Supplementary Material 

S3). In contrast, the Greengenes database identified relatively high abundances of 1) 

ammonia-oxidizing bacteria (Pirellulaceae), which could generate nitrites by oxidizing 

ammonium (Lawler et al., 2016); 2) benthic Cyanobacteria (Pseudanabaena), which is 

generally dominant in benthic microbial mats of polar freshwater ecosystems (Jungblut et 

al., 2010), and 3) family A1–B1 from phylum Gemmatimonadetes, of which little 

physiological information is available, and have rarely been found in the Antarctic continent 

(Foong et al., 2010).

The divergent taxonomic profiles generated by the Silva (release 123) and Greengenes 

(v13.5) databases may be due to the update frequency of the microbial taxa-respective 

databases. The current reference genomes supported by the Silva database was released in 

2015, which includes 1,756,783 bacterial, archaeal, and eukaryotic sequences. However, the 

Greengenes database was released in 2013, which contains 1,262,986 archaeal and bacterial 

sequences. Certain genomes that were observed in our study, such as Hydrogenedentes and 

Parcubacteria, were only found in the Silva database, and did not have reference genomes in 

the Greengenes database. Thus, by coupling the taxonomic information from these two 

databases using the R script, we were able to obtain a more inclusive microbial profile than 

using either Silva or Greengenes alone.

The predictive functional profiles of microbial communities determined by combining the 

Tax4Fun and PICRUSt outputs using the R script revealed a relatively higher abundance of 

enzymes such as serine/threonine protein kinase, acyl-carrier protein reductase (Bechet et 

al., 2009; Toomey and Wakil, 1966); components necessary for carbohydrate and amino acid 

metabolisms; and importantly, the Uup protein belonging to the subfamily of ATP-binding 

cassette of the ABC transporter system (Davidson et al., 2008; Wilkins et al., 2013). Serine/ 

threonine kinases have been found in various bacteria and appear to be involved in the 

regulation of cellular functions, including cell development processes (Bechet et al., 2009; 
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Bakal and Davies, 2000). In addition, the acyl-carrier protein reductase was firstly reported 

in E. coli, and is shown to be involved in the bacterial fatty acid synthesis system (Toomey 

and Wakil, 1966; Cukier et al., 2013). Moreover, ABC transporters play crucial roles in 

bacteria in nutritionally poor environments, as these systems function to move organic and 

inorganic molecules across the cell membrane to regulate several physiological processes 

(Davidson et al., 2008; Wilkins et al., 2013). ABC transporters mobilize a variety of 

substrates across the cell membrane, from smaller to larger molecules such as amino acids, 

nucleotides, metal clusters, lipid molecules, and oligonucleotides (Gerday and Glansdorff, 

2009; Horikoshi et al., 2010). Hence, its presence may confer an advantage to the microbial 

communities in the oligotrophic environment of Lake Obersee. Additionally, the high 

abundance of heterotrophic communities correlates with the relatively dominant 

carbohydrate and amino acid metabolism pathways (Vincent and Laybourn-Parry, 2008).

The R-script used in this study was able to identify functional categories that were missed by 

either PICRUSt or Tax4Fun (Supplementary Material S4). The results showed that Tax4Fun 

was able to detect additional categories of polyketide biosynthesis proteins, transcription 

factors, membrane transport, and energy metabolism (nitrate/nitrite, and a sulfonate 

transport systems, and a methane metabolism), which were not identified by PICRUSt. 

These functional categories are related to energy metabolisms, and are known to play key 

roles in the biogeochemical cycles, adaptation, and survival of bacteria in the extreme 

Antarctic ultraoligotrophic environment (Laybourn-Parry and Pearce, 2016; Vincent and 

Laybourn-Parry, 2008).

The mean NSTI value of our mat samples using the PICRUSt showed 0.12 ± 0.025 s.d., 

which is better than previously reported studies on various environmental samples such as: 

soil samples from cold deserts of the Antarctic McMurdo Dry Valleys and hot deserts of the 

Southwestern United States (mid-range NSTI = 0.17 ± 0.02 s.d.), rhizosphere microbial 

communities (mean NSTI = 0.23 ± 0.02 s.d.), hypersaline mat microbiome (mean NSTI = 

0.23 ± 0.07 s.d.), and surface soil samples from the Austre Lovénbreen glacier in High 

Arctic (mean NSTI = 0.18 ± 0.03 s.d.) (Langille et al., 2013; Staley et al., 2014; Lopes et al., 

2016; Kim et al., 2017). Thus, the mean NSTI values in our study suggest that the predicted 

metabolic functions of the microbial communities in Lake Obersee mat samples are close to 

the known microbial reference genome databases, implying higher accuracy of the 

predictions. To the best of our knowledge, like PICRUSt, Tax4Fun does not provide a means 

to calculate the NSTI values for the taxonomic-based predicted metabolic functions of the 

organisms to the known microbial reference genome database. Therefore we were unable to 

compare the NSTI values from the PICRUSt analysis with the Tax4Fun-predicted metabolic 

functions of the microbial communities.

Overall, our study revealed that the functional profile predicted by Tax4Fun using the Silva 

database produced 14.95% higher KEGG functional IDs as compared to the PICRUSt 

method which uses the Greengenes database. However, it is important to note that PICRUSt 

identified certain KEGG functional categories that were not identified through Tax4Fun. 

Therefore, the use of both bioinformatics software packages was necessary for a more 

comprehensive outlook of the metabolic functions of mat communities in Lake Obersee. 

Moreover, the proposed R script allowed us to streamline the comparative aspects of the 
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analysis of the KEGG functional categories generated by the two software packages to 

consolidate the functional genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Geographical location and underwater photographs of the benthic microbial mats of Lake 

Obersee, East Antarctica. (A) Satellite image map of Lake Obersee (71.17° S 13.39° E) in 

the NE corner of Untersee Oasis, Antarctica. (Satellite imagery copyright DigitalGlobe, Inc. 

Provided by NGA Commercial Imagery Program); (B) Oblique view of the microbial mats 

in Lake Obersee, depth 30 m; (C) Microbial mats in Lake Obersee, depth 15 m.
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Fig. 2. 
Stacked column bar graph revealing the distribution and abundances of bacterial 

communities in Lake Obersee mat samples (OB12 and OB13) analyzed using both the Silva 

and Greengenes databases. The bar graphs show the bacterial distribution up to (A) Phylum 

level and (B) Genus level. OB12-Silva: OB12 microbial mat sample analyzed by using 

Silva; OB12-Greengene: OB12 microbial mat sample analyzed by using Greengenes; OB13-

Silva: OB13 microbial mat sample analyzed by using Silva; OB13-Greengene: OB13 

microbial mat sample analyzed by using Greengenes.
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Fig. 3. 
Scatter plot comparison using STAMP of the KEGG functional categories identified by 

Tax4Fun and PICRUSt. The dotted line shows equal distribution of KEGG functional 

categories between the two analyses. Circles above this dotted line represent KEGG 

functional categories generated by Tax4Fun, whereas the circles below generated by 

PICRUSt. Circles distributed closer to the dotted line represent a similar relative abundance 

of KEGG functional categories. Labeled circles indicate the greatest proportional differences 

of KEGG functional categories between Tax4Fun and PICRUSt. The KEGG functional 

profiles detected by both analyses represented in this figure are elaborated in the 

Supplementary Material (S5).
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Fig. 4. 
A comparison of the KEGG functional categories between PICRUSt and Tax4Fun are 

represented in an extended error plot. Total mean proportions in the KEGG categories are 

represented by the bar graph (left column); the upper bar graph (blue) represents the 

PICRUSt results, whereas the lower bar graph (red) resulted from the Tax4Fun analysis. The 

colored circles corresponding to the right column (blue and red) represent 95% confidence 

intervals calculated by Welch's t-test (Bluman, 2007). KEGG functional categories were 

filtered by p-value (0.05) and effect size (0.04). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Raw and trimmed sequence reads following NextGen sequencing of the V4 region of the 16S rRNA gene. The 

number of OTUs based on both Greengenes (v. 13.5) and Silva (release 123) databases and calculated 

Shannon- and Simpson-diversity indices of the microbial mat samples (OB12 and OB13) in Lake Obersee are 

listed.

OB12 OB13 Total

Number of raw sequences 129,660 176,679 306,339

Number of sequences after trimming and filtering processes 106,450 141,980 248,430

Number of OTUs based on Greengenes (v 13.5) database 1307 1336 2643

Number of OTUs based on Silva (release 123) database 1839 1742 3581

Shannon diversity 5.213 5.394 –

Simpson diversity 0.903 0.944 –
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