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Abstract
1.	 In this study, we introduce metaproperty analysis of terrestrial laser scanner (TLS) data, 

and demonstrate its application through several ecological classification problems. 
Metaproperty analysis considers pulse level and spatial metrics derived from the hun-
dreds of thousands to millions of lidar pulses present in a single scan from a typical 
contemporary instrument. In such large aggregations, properties of the populations of 
lidar data reflect attributes of the underlying ecological conditions of the ecosystems.

2.	 In this study, we provide the Metaproperty Classification Model to employ TLS 
metaproperty analysis for classification problems in ecology. We applied this to a 
proof-of-concept study, which classified 88 scans from rooms and forests with 
100% accuracy, to serve as a template.

3.	 We then applied the Metaproperty Classification Model in earnest, to separate 
scans from temperate and tropical forests with 97.09% accuracy (N = 224), and to 
classify scans from inland and coastal tropical rainforests with 84.07% accuracy 
(N = 270).

4.	 The results demonstrate the potential for metaproperty analysis to identify subtle 
and important ecosystem conditions, including diseases and anthropogenic distur-
bances. Metaproperty analysis serves as an augmentation to contemporary object 
reconstruction applications of TLS in ecology, and can characterize regional 
heterogeneity.
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1  |  INTRODUCTION

Terrestrial laser scanner (TLS) instruments utilize Light detection and 
ranging (lidar) technology to emit pulses of light energy of controlled 
wavelengths and power. When these pulses encounter an object, 
back-scattering occurs, events which are referred to as “returns”. 
The TLS instrument records the time-of-flight and intensity of the 
reflected signal for each return, to infer the presence, position, and 
reflective properties of the object (Figure 1). In this way, each lidar 

pulse from a TLS instrument can be thought of as a discrete sample 
of the three-dimensional space around the instrument. Contemporary 
TLS scans often consist of hundreds-of-thousands to millions of lidar 
pulses, emitted across a range of view-angles surrounding the instru-
ment. Thus, properties of the large populations of pulses found in a 
TLS scan, such as the mean distance or intensity of the reflected signal, 
are direct products of the structure and positioning of objects in the 
surroundings of an instrument. We refer to such aggregate properties 
as metaproperties of the scan (Figure 2).
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For the study of ecosystems, individual metaproperties may de-
scribe and characterize particular attributes of an ecosystem. For ex-
ample, distance of returns in a forest scan could describe the spatial 
distribution of vegetation. By extension, groups of metaproperties 

describe multiple attributes of an ecosystem, and together act as a 
fingerprint for a scan’s location. Therefore, metaproperties can clas-
sify the type of ecosystem in which a scan was taken. Furthermore, 
comparing metaproperties between similar ecosystems can classify 

F IGURE  1 Photographs and compact 
biomass lidar point clouds of a Room 
(University of Massachusetts Boston), 
temperate forest (Harvard Forest) and 
tropical rainforest (La Selva, Costa Rica)

F IGURE  2 Diagram of metaproperties 
(descriptions in Table 4) featuring CBL2 TLS
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ecological conditions, while metaproperties of scans within a single 
ecosystem can characterize spatial gradients and distinct areas.

In this study, we separate metaproperties into two types, 
pulse metaproperties and spatial metaproperties (Figure 2). Pulse 
metaproperties are population statistics of attributes of the pulses 
in a scan. Examples of pulse metaproperties could include the mean 
distance of returns in a scan or the ratio of first to second returns 
in pulses in a scan. Spatial metaproperties, on the other hand, are 
geometric attributes of the empty space between and around the 
objects detected by a TLS scan. This space is treated as a hypothet-
ical object, whose geometric attributes, such as volume or cross-
sectional area, can be derived for use as spatial metaproperties. 
The concept of spatial metaproperties has precedent in the field of 
mathematical morphology. Mathematical morphology concerns the 
properties of objects whose shape is the empty space or medium 
between objects in a 3-D space, encountered from a point in that 
space (Serra, 1982).

Metaproperty analysis augments contemporary TLS object recon-
struction methods for studying ecosystems. Object reconstruction 
uses lidar data from one or more scans to construct representations 
of objects, such as trees, whose spatial properties, such as volume, are 
then measured and treated as proxies for the true objects’ ecological 
properties, such as biomass (Calders et al., 2015; Kaasalainen et al., 
2014; Krooks et al., 2014; Raumonen et al., 2015; Romanczyk et al., 
2013; Wu, Cawse-Nicholson, & van Aardt, 2013). In this way, object 
reconstruction techniques refine a subset of the TLS data in one or 
more scans to model particular attributes of ecosystem structure. 

Metaproperty analysis, on the other hand, utilizes almost all of the in-
formation in each scan, to provide a holistic assessment of ecosystem 
structure and reflective properties.

In this paper we seek to provide several proofs-of-concept for the 
use of metaproperty analysis for ecosystem classification. We also 
provide a template, the Metaproperty Classification Model (MCM), 
for applying the methods to future studies. We evaluate the poten-
tial of metaproperty analysis for classifying ecosystems through three, 
increasingly subtle, binary classification problems (Figure 1). Each of 
these three analyses uses a group of metaproperties to predict the 
type of ecosystem in which TLS scans were performed. We begin by 
demonstrating the steps and principles of metaproperties analysis 
by performing the intuitively simple task of separating scans taken in 
rooms from those taken in forests. We then proceed to the distin-
guishing of tropical forests from temperate forests. Finally, we attempt 
to distinguish between coastal and inland tropical rainforest areas 
within Costa Rica.

2  | MATERIALS AND METHODS

2.1 | Classification problems

Three classification problems with independent TLS datasets are 
presented in this study (Rooms vs. Forests; Temperate vs. Tropical 
Forests; and Inland vs. Coastal Rainforests). Details of the sampling 
locations, dates, number of scans, and scanning instruments for these 
investigations can be found in Tables 1–3.

Dataset Location Year No. of scans Instrument

Rooms University of Massachusetts 
Boston

2016 32 CBL2

Forests Alice Holt, UK 2014 11 CBL1

Carbono Site A1, La Selva 
Biological Station, Costa Rica

36

Delamere Forest, UK 9

TABLE  1 Rooms vs. forests datasets

Dataset Site Location Year No. of scans Instrument

Temperate Hardwood Harvard Forest, 
MA, USA

2014 29 CBL2

Hemlock 13

Soil Moisture 2013 10 CBL1

Snow Study 63

Tropical Carbono A2 La Selva Biological 
Station, Costa Rica

2015 231 CBL2

Carbono A5 231

TABLE  2 Tropical vs. Temperate forests 
datasets

Dataset Location Year No. of scans Instrument

Coastal Sirena, Corcovado, Costa 
Rica

2014 431 CBL1

Inland Carbono Sites A1, A2, A5 
La Selva Biological 
Station, Costa Rica

2014/2015 498 CBL1/2

TABLE  3  Inland vs. Coastal Rainforests 
datasets
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2.2 | TLS data

The TLS data used in this study were acquired with the University of 
Massachusetts Boston Compact Biomass Lidar instruments: CBL1 and 
CBL2. These 905 nm, instruments acquire a scan of ~400,000 (CBL1) 
or ~800,000 (CBL2) pulses in 33 s, with the first and second returns 
recorded for each pulse. The CBL instruments have a maximum range 
of approximately 40 m, and a beam divergence of 15 mrad. The scan-
ners were deployed on tripods, with the optical centre at approxi-
mately 1.3 m height.

2.3 | Metaproperties used in this study

The metaproperties applied to the classification problems in this study 
are defined in Table 4 and depicted in Figure 2. There were two aims 
for the selection of the metaproperties for this study. The first aim 
was that the group of metaproperties could reasonably be expected 
to have explanatory power for the classification problems. We ad-
dressed this aim through the investigation of several independent pre-
liminary datasets, not included in this study. This process particularly 
helped suggest which descriptive statistics might be appropriate as 
pulse metaproperties.

The second aim was that the group of metaproperties demon-
strates the diversity of metrics that can be used with metaproperty 
analysis, so this study can act as a pathfinder for future studies. The 
spatial metaproperties, which are geometric attributes of the space, 
primarily fulfill this aim. The selected spatial metaproperties vary in 
their complexity, from the simple No returns:pulses, which is computed 
similarly to a traditional lidar estimation of gap fraction (Strahler et al., 
2008) (Table 4); to the more abstract optical plane area (OPA), which 
is the area of the polygon created by joining the two-dimensional (X 
and Y) Cartesian co-ordinates of all first returns from pulses emitted at 
the optical plane of the TLS instrument (Figure 2). In other words, the 
OPA is a derivation of the area of the empty space at the optical plane.

2.4 | Metaproperty classification model

We fully describe the MCM to provide a complete workflow for oth-
ers wishing to apply metaproperty analysis to their own TLS lidar 
data and evaluate the results. The MCM is currently comprised of ten 

stages, with additional discretionary steps to adapt to specific data 
scenarios. These stages of the MCM are summarized in Figure 3 and 
detailed below.

The central component of the MCM for the classification prob-
lems in this study is a binomial logistic regression (stage 5), in which 
the selected metaproperties are the explanatory variables, with the 
classified locations of CBL TLS scans (Rooms vs. Forests, Temperate 
vs. Tropical, Inland vs. Coastal) as the binomial response variable in 
each case. Note that other forms of modelling, including categorical 
and continuous forms of regression, and other inductive classification 
approaches, can be substituted into the MCM as required.

F IGURE  3 Flowchart of the steps in the Metaproperty 
classification model. Orange boxes denote discretionary steps to 
tackle specific data scenarios

TABLE  4 Definitions of metaproperties

Name Type Definition Pulse subset

Mean distance Pulse Mean distance to first returns Above optical plane 
(≤90° zenith angle)Mean intensity Mean intensity of first returns

1st:2nd returns Ratio of first to second returns

No return:pulses Spatial Ratio of the number of pulses with no returns, to total pulses emitted Zenith angle range 30°–35°

Optical plane area 
(OPA)

Area of the polygon defined by joining the two-dimensional (X and Y) Cartesian 
co-ordinates of first returns from pulses emitted at the optical plane.

Optical plane (=90° zenith 
angle)

Rugosity Ratio of the area of Delaunay triangulated surfaces (Lee & Schachter, 1980) 
fitted to the X, Y and Z co-ordinates of returns, to the area of the polygon 
defined by the two-dimensional (X and Y) Cartesian co-ordinates of returns.

Zenith angle range 0°–30°, 
First returns.
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2.4.1 | Step 1: Graphically assess explanatory  
variables

A scatter plot is created for each metaproperty, with the values of the 
metaproperty as the X axis and the classifications as 1 and 0 on the Y axis 
(for example, 1 = room, 0 = forest). This is overlaid with the logit trans-
form of the classification, which is a continuous function of probabilities 
from 0 to 1, across the range of metaproperty values. For an example of 
a plot with an overlain logit transform of a variable, see Figure 4.

2.4.2 | Step 2: Assess linearity and separation

Each metaproperty should be assessed for the linearity of its logit 
transform when plotted against the response variable. It is also im-
portant to note if any metaproperty appears to completely separate 
the classification groups. For guidance on how to assess linearity and 
separation, see Figures 4 and 5. If there is no overlap between the 
values in the classification groups, then Firth’s logistic regression, a 
penalized likelihood method, should be used in step 5.

2.4.3 | Discretionary step: Transformation

Suitable transformation (typically, natural logarithmic) can be applied 
if it improves linearity of the logit transformed variable.

2.4.4 | Step 3: Power analysis for testing sample size

A power analysis is performed to determine the required size of the 
testing dataset for 95% confidence and a 5% margin of error. This is 
of the form:

 

where Z is the critical value for the confidence level (1.96 for 95% 
confidence), r is the proportion of one classification set, N is the total 
number of scans, and E is the margin of error (0.05).

2.4.5 | Step 4: Separate training and testing data

Individuals for the testing set should be randomly selected without re-
placement from the classification groups of scans, proportional to the 
groups’ representation in the total population of scans.

2.4.6 | Step 5: Binomial logistic regression

A binomial logistic regression should be performed on the training set 
scans, with the metaproperties as explanatory variables, and the clas-
sification for the scans as the binary response variable. If complete 
separation was observed in step 2 for any metaproperties, Firth’s lo-
gistic regression should be used in place of standard binomial logistic 
regression. In either case, the Wald statistic (equivalent to a p value, 
for parameters of relational statistical models) of the β coefficient (a 
coefficient standardized for comparison of effect size) of the regres-
sion model should be assessed at an α value of 0.05.

2.4.7 | Discretionary step: Assess residuals for outliers

Individuals with high standardized residuals (>3) can be reported as 
outliers. If a Cook’s distance test reveals that these same individuals 

x=Z
2
r(100− r)x

n=
Nx

(N−1)E2+x
,

F IGURE  4 Examples of probability plots 
and logit transforms for the metaproperty 
mean Intensity in Temperate vs. Tropical 
Forests. Transformation can be used, 
as here, to improve the linearity of the 
variable, providing the smoothest transition 
of probability across the range of the 
variable

F IGURE  5 Example case where a 
metaproperty (1st:2nd Returns) completely 
separates two classification groups (Rooms 
vs. Forests). The probability is 0% or 100% 
of declaring a scan as a Forest (1). Such 
variables cannot be used in a binary logistic 
regression without employing a penalized 
likelihood method such as Firth’s logistic 
regression
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had a disproportionate influence (Cook’s distance >1.5) on the regres-
sion, then consider removing these cases and repeating the binomial 
logistic regression with the remainder of the same training set.

2.4.8 | Discretionary step: Reduce model

If the binomial logistic regression converges (Wald statistic of model 
<0.05), then the full model should be used, even if the β coefficients 
of one or more explanatory variables had Wald statistics exceeding 
the alpha value of 0.05. This guards against overfitting of the model. 
However, if the logistic regression fails to converge (Wald statistic of 
model >0.05), then consider reducing the model by iteratively remov-
ing the explanatory variable with the highest Wald statistic and rerun-
ning the binomial logistic regression with the same training data, until 
the model converges (Wald statistic of model <0.05).

2.4.9 | Step 6: Predict testing set

Use the β coefficients of the model with the metaproperties of the 
testing set to predict probabilities and assign predicted classifications 
for the testing set scans.

2.4.10 | Step 7: Accuracy assessment

Assess the overall accuracy of the model for the training and test-
ing sets. Calculate additional accuracy metrics which are informative 
to the specific classification problem. For example, true positive rate 
(sensitivity), true negative rate (specificity), false positive rate (recall) 
and false negative rate.

2.4.11 | Step 8: Chi-squared statistic

Calculate the chi-squared statistic for the results, and report the sta-
tistic along with degrees of freedom. Provided the chi-squared statis-
tic does not suggest a difference in the observed and expected groups 
(evaluated at an alpha value of 0.05), then this supports the perfor-
mance of the model.

2.4.12 | Step 9: Compare to accuracy by chance

Calculate the accuracy by chance as the sum of the squared propor-
tions of the number of individuals in each category to the total num-
ber of individuals in the population. This takes the form as follows:

where N is the total number of scans, and ni is the number of scans 
in group i.

2.4.13 | Step 10: Receiver operating characteristic (ROC)

Perform a separate ROC for the training and testing data and plot the 
curves together. Examine the plots, and report any localized changes 

in the rates of true and false positives. Report the area under curve 
(AUC) with 95% confidence intervals. High AUC (approaching 1) sug-
gest the model has strong discriminatory power.

2.4.14 | Discretionary step: Precision and recall

If the classification groups were represented particularly unevenly, 
which may be reflected in anomalies in ROC, then consider perform-
ing precision and recall analysis. Visualize the precision and recall 
curve and report any localized changes in precision and recall rates. 
Report the AUC with 95% confidence intervals. Low AUC (approach-
ing 0) suggests the model has strong discriminatory power, given the 
underlying distribution of individuals between the groups.

2.5 | Transformation of explanatory variables

Graphical assessment of the explanatory variables (steps 1 and 2 
of the MCM) for the Tropical vs. Temperate Forests analysis sug-
gested that log transformation was appropriate to improve the lin-
earity for the 1st:2nd Returns, mean intensity, OPA, and Rugosity in 
the Temperate vs. Tropical Forests classification problem; and for the 
1st:2nd Returns, mean intensity, and OPA in the Inland vs. Coastal 
Rainforest classification problem.

2.6 | Adaptations for rooms vs. forests

At step 2 of the MCM, we observed complete separation of Rooms 
and Forests with both the 1st:2nd Returns and no returns: pulses 
metaproperties. This prompted our addition of the recommendation 
that Firth’s logistic regression be used in such cases in the future. We 
proceeded to form the binary logistic regression for this proof-of-
concept classification problem without using the 1st:2nd Returns and 
no returns:pulses metaproperties as explanatory variables. Also, the 
regression for Rooms vs. Forests was trained and evaluated on the 
complete population of scans (no separation of training and testing 
sets).

3  | RESULTS

3.1 | Overall

The MCM formed models with greater than 80% accuracy for test-
ing set classification prediction for all of the classification problems. 
The performance of the classification models declined slightly as 
the subtlety of the classification problems increased: Rooms vs. 
Forests (100% set accuracy); Temperate vs. Tropical Forests (97% 
testing set accuracy); and Inland vs. Coastal Rainforests (84% test-
ing set accuracy). However, even for the most challenging classifi-
cation problem, Inland vs. Coastal Rainforests, the classification 
derived by MCM (84%) vastly exceeded the accuracy by chance 
(50.22%). Additionally, two metaproperties, 1st:2nd Returns and no 
returns:pulses, were found to be diagnostic, each completely sepa-
rating Rooms and Forests.

I
∑

i=1

(

ni

N

)2
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3.2 | Rooms vs. Forests

The full model with four metaproperties as explanatory variables was 
utilized, having converged successfully (Wald statistic <0.01, 81 df, 
Table 5). There was strong evidence of a relationship between the 
response variable and the explanatory variables mean distance (Wald 
<0.01), mean intensity (Wald: 0.012), and Rugosity (Wald <0.01). 
There was moderate evidence of a relationship between the response 
variables and OPA (Wald: 0.036). There were five outliers (standard-
ized residuals 3.2–4.1), but the distribution of standardized residuals 
did not suggest that these were exceptional. Cook’s distance test re-
vealed two influential individuals (Cook’s distance: 4.9, 1.9), but nei-
ther were among the outliers. The model discriminated rooms from 
forests with 100% accuracy.

3.3 | Tropical vs. Temperate Forests

The full model was utilized, having converged successfully (Wald 
statistic <0.01, 398 df, Table 6). There was strong evidence of a rela-
tionship between the response variable and the explanatory variables 
Log 1st:2nd Returns (Wald <0.01) and Log OPA (Wald <0.01). There 
was moderate evidence of a relationship between the response vari-
able and no returns:pulses (Wald: 0.04). The Wald statistic for mean 

intensity (0.05) provided little evidence of a relationship, while the 
Wald statistics for mean distance (0.71) and Rugosity (0.95) did not 
provide any evidence of a relationship with the response variable.

There were no outliers of note (all standardized residuals <3). The 
model discriminated tropical from temperate forest with 98.77% accu-
racy in the training set, and 97.09% accuracy in the testing set, com-
pared to 68.08% accuracy by chance. The chi-squared statistic was 
0.92 (Table 7), and the AUC of the ROC (Figure 6) was 0.989 for the 
training set (95% CI: 0.957–0.999) and 0.965 for the testing set (95% 
CI: 0.843–0.995). Due to the uneven representation of classification 
groups (34% temperate), precision and recall was employed (Figure 6). 
AUC for the training set was 0.183 (95% CI: 0.127–0.251), and AUC 
for the testing set was 0.196 (95% CI: 0.152–0.230).

3.4 | Inland vs. Coastal Rainforests

The full model for the binary logistic regression was utilized, hav-
ing converged successfully (Wald <0.01, 929 df, Table 8). There was 
strong evidence of relationships between the response variable and 
mean distance (Wald <0.01) and OPA (Wald <0.01). There was moder-
ate evidence of a relationship for Rugosity (Wald: 0.04). However, the 
Wald statistics for mean intensity (0.13), 1st:2nd Returns (0.61) and 
no returns:pulses (0.55) did not provide any evidence of a relationship 
between these explanatory variables and the response variable. There 
were no outliers of note (all standardized residuals <3). The model 
discriminated Inland from Coastal Rainforest with 84.31% accuracy 
in the training set and 84.07% accuracy in the testing set, compared 
to 50.22% accuracy by chance. The chi-squared statistic was 7.2301 
(1 df, Table 9), and the AUC of the ROC was 0.9151 for the train-
ing set (95% CI: 0.892–0.941) and 0.917 for the testing set (95% CI: 
0.867–0.941).

4  | DISCUSSION

4.1 | Performance of metaproperty analysis and the 
MCM

The classification models formed by metaproperty analysis, following 
the structure of the MCM, had strong predictive power. The classi-
fication models demonstrated 100% accuracy for separating Rooms 
vs. Forests, 97% testing set accuracy for delineating Temperate vs. 
Tropical Forests, and 84% testing set accuracy when predicting Inland 
vs. Coastal Rainforests. The observed accuracy of each of these mod-
els exceeded their expected accuracy by chance. In each classifica-
tion problem, a different subset of metaproperties was found to have 

TABLE  5 Binomial logistic regression (Rooms vs. Forests)

Variable β Coefficients Wald statistic SE

Model −15.07 <0.01 3.92

Mean distance 0.002 <0.01 0.0006

Mean intensity 20.76 0.012 8.23

OPA −0.0083 0.036 0.0040

Rugosity 0.12 < 0.01 0.033

TABLE  6 Binomial logistic regression (Temperate vs. Tropical)

Variable β Coefficients Wald statistic SE

Model 130.12 <0.01 23.01

Mean distance −0.0002 0.71 0.0004

Log mean intensity −3.07 0.054 1.59

Log 1st:2nd 
returns

8.64 <0.01 3.14

No return:pulses −54.76 0.036 26.08

Log OPA −7.72 <0.01 1.26

Log Rugosity 0.032 0.95 0.53

TABLE  7 Classification model performance breakdown (Temperate vs. Tropical)

Training set Testing set

Tropical 
(True)

Temperate 
(True)

Tropical 
(False)

Temperate 
(False)

Tropical 
(True)

Temperate 
(True)

Tropical 
(False)

Temperate 
(False)

Count 322/324 78/81 3/81 2/324 138/151 70/73 3/73 13/151
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explanatory power. Furthermore, each metaproperty had explanatory 
power in at least one of the classification problems (Table 10).

For the Rooms vs. Forests classification, we expected strong 
discrimination of Rooms from Forests. The Rooms vs. Forests clas-
sification problem was conducted primarily as a demonstration of 
metaproperty analysis, as well as a test for the workflow of the MCM. 
Regardless, unilateral separation (100% accuracy) was possible based 
on either of two individual metaproperties (1st:2nd Returns and no 
returns:pulses), as well as the combined explanatory power of the rest 
of the metaproperties. It is important to remember that since the re-
gression for Rooms vs. Forests was both trained and evaluated on the 
complete population of scans, confidence in this performance should 
be reduced accordingly.

The metaproperty 1st:2nd Returns was a diagnostic property for 
separating Rooms from Forests, as it was higher in Forests than in 
Rooms 100% of the time (Figure 7). This likely resulted from the solid 
surfaces of the Rooms providing only first returns, except where ob-
ject edges partially intercepted pulses, while the relatively fragmented 
structure of the Forests, consisting of many small components such 
as leaves and twigs (Figure 7), provided far more second returns. The 
metaproperty of no returns:pulses also completely separated Rooms 
from Forests, with more pulses without returns consistently observed 
in Forests. An intuitive explanation is that Rooms have continuous 

ceilings, while Forest canopies have gaps in their complex structure 
(Figure 8). Mean Intensity had a large effect size (β: 20.76) and was a 
strong discriminator (Wald: 0.01). This is likely due to Rooms being en-
closed spaces, comprising mostly continuous, reflective, hard surfaces 
that reflect the entire footprint of each pulse. Forests, on the other 
hand, comprise objects which are generally smaller, less reflective, and 
have more surface variation, lowering the amount of energy reflected 
from each pulse.

Rooms demonstrated a tendency towards higher mean distance 
and lower OPA (Figure 9) than Forests. Even though these had very 
small β coefficients, suggesting a low magnitude of effect, the exis-
tence of the relationships was strongly supported by the Wald statis-
tics (Table 5). The lower mean distance in Forests could be explained 
by the abundance of near-field vegetation and tree trunks, with the 
increased OPA resulting from the long sight-lines between these ob-
jects (Figure 9). The many long sight-lines of Forests could have been 
expected to increase mean distance, but sight-lines that exceeded the 
maximum range of the CBL, or corresponded to gaps in the canopy, 
did not contribute to mean distance, since the metaproperty only 
considers pulses with first returns. Rugosity was higher (β: 0.117) in 
Rooms than Forests. This counterintuitive result is discussed below, 
but Rugosity still provided extremely strong discriminatory power 
(Wald <0.001), and thus was still valuable for the task of classifying 
Rooms from Forests.

Classifying Tropical Forests from Temperate Forests is also an easy 
task, with many potential diagnostic properties, including such basic 
information as the latitude of a scan’s location. Given that metaprop-
erties draw distinctions between ecosystems based on the integration 
of a large amount of spatial and reflective information captured by 
lidar data, the 97% testing set accuracy is encouraging. However, the 
rare misclassified cases (16/224, Table 7) may warrant investigation.

There was strong evidence for the ability of Log 1st:2nd Returns 
and Log OPA to discriminate between Temperate Forests and Tropical 
Forests (Table 6). The higher frequency of second returns in Tropical 
forests (β: 8.64) could be attributed to the dense, leafy understory and 

F IGURE  6 ROC curve (Left) and 
Precision and Recall Curve (Right) 
for Temperate vs. Tropical Forests 
classification. ROC describes changes in 
false positive rate as true positive rate 
improves. Precision & Recall describes 
changes in positive predictive rate 
(Precision) as true positive rate (Recall) 
improves. The wedge/step in the bottom 
right of the plot for the testing data 
indicates that a range of Recall rates were 
observed 0.1 Precision

TABLE  8 Binomial logistic regression (Inland vs. Coastal)

Variable β Coefficients Wald statistic SE

Model −68.54 <0.01 6.99

Mean distance 0.0004 <0.01 0.0001

Mean intensity 0.77 0.16 0.50

1st:2nd returns −0.40 0.61 0.80

No return:pulses −7.26 0.55 12.24

OPA 3.70 <0.01 0.35

Rugosity −0.0097 0.044 0.0048

TABLE  9 Classification model performance breakdown (Inland vs. Coastal)

Training set Testing set

Inland (True) Coastal (True) Inland (False) Coastal (False) Inland (True) Coastal (True) Inland (False) Coastal (False)

Count 298/346 250/304 54/304 48/346 116/144 111/126 15/126 28/144
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generally denser vegetation, resulting in more partial interceptions of 
pulses in the near-field, and providing many additional targets for the 
remaining portions of pulses. The lower OPA in Tropical Forests (β: 
−7.72) could be attributed to the same vegetation features, since the 
more frequent and larger gaps between objects in Temperate Forests 
greatly increase the area of the optical plane (Figure 10).

There was also reasonable evidence for discrimination based on no 
returns:pulses (Wald: 0.035), which indicated a strongly negative rela-
tionship with Tropical Forests (β: −54.76). The subcanopy of Tropical 
Forests likely accounts for this (Figure 11), as it consists of broad-leafed 
plants that intercept more pulses within the range of the instrument. 
There was a weak indication (Wald: 0.054) that the Mean Intensity may 

have been lower in the Tropical Forest group. This may have resulted 
from a relatively higher moisture content, leading to the absorption of 
pulse energy at the 905 nm wavelength of the instrument.

The Coastal vs. Inland Rainforest classification was a more rigorous 
test of the capabilities of metaproperty analysis. While there are still 
direct ways to diagnose these ecosystems, including by geographical 

TABLE  10 Wald statistics of explanatory metaproperties in classification problems. Green indicates strong evidence of relationship between 
a metaproperty and the response variable of the classification (Wald statistic <0.02). Yellow indicates moderate to weak evidence (Wald 
statistic: 0.02–0.06). Red indicates no evidence (Wald statistic >0.06). Blue indicates a metaproperty completely separated classification groups 
(100% accuracy)

Metaproperty Rooms vs. Forests Temperate vs. Tropical Forests Inland vs. Coastal Rainforests

Mean distance <0.01 0.71 <0.01

Mean intensity 0.012 0.054 0.16

1st:2nd Returns Separation < 0.01 0.61

No return:pulses Separation 0.036 0.55

OPA 0.036 <0.01 <0.01

Rugosity <0.01 0.95 0.044

F IGURE  7 CBL point clouds showing the metaproperty 1st 
Returns and 2nd Returns, which was consistently higher in Rooms 
than in Forests

F IGURE  8 CBL point clouds for no returns in Rooms vs. Forests. 
Forests had consistently higher no returns:pulses than Rooms
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location, they are structurally much more similar than Temperate and 
Tropical Forests. The MCM did not perform as well as for the other 
classification problems, but the testing accuracy was still 84.07%. It 
should be noted that the high chi-squared statistic (7.23, p < .01) in-
dicates that the observed level of error in the model was not a func-
tion of chance. Therefore, improvements to this classification model 

should only be expected with metaproperties with more explanatory 
power, or more representative training data. Regardless, this classifica-
tion problem shows metaproperty analysis and the MCM successfully 
performing the function for which they were created: separating an 
ecosystem condition that is reflected only in the integration of small 
differences in ecosystems attributes.

F IGURE  9 OPA for Rooms vs. Forests. 
Forests consistently had higher OPA than 
Forests. OPA, optical plane area 

F IGURE  10 OPA polygons for 
Temperate vs. Tropical Forests. Temperate 
Forests tended towards higher OPA
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Mean Distance, OPA, and Rugosity (noting the borderline Wald 
statistic of 0.04) were found to have explanatory power for separating 
Inland Rainforests from Coastal Rainforests. OPA was much higher in 
Coastal Rainforest (β: 3.7) than Inland Rainforest. The lower OPA of 
Inland Rainforests suggests the presence of a more dense subcanopy, 
further supported by the slightly but consistently higher Mean Distance 
(β < 0.01, Wald <0.01). The OPA profiles for Coastal Rainforest and 
Inland Rainforest were similar in form, but with far smaller overall ex-
tent in the Inland group (Figure 12). The Inland Rainforest may have 
more vertical variation due to both the prevalent subcanopy, and the 
relative abundance of epiphytic plants on the trunks of trees (Merwin, 

Rentmeester, & Nadkarni, 2003). This vertical variation may account 
for its increased Rugosity (β: −0.0097), since height variation in lidar 
returns increases the 3D area.

4.2 | Selection of metaproperties

There are many possible metaproperties that could be extracted from 
TLS scans, and these could be used in many different combinations. 
Selecting an appropriate metaproperty, or set of metaproperties, is 
therefore a challenging process. Sometimes a particular metaprop-
erty will be hypothesized a priori to explain a particular, measurable 
ecosystem condition. For example, one might hypothesize that the 
number of laser pulses with multiple returns might be large in conifer 
forests, given their fine needles. In such cases, the single metaprop-
erty can simply be extracted and the relationship to the ecosystem 
condition can be tested via traditional inferential statistical techniques 
such as linear regression.

However, when metaproperties are being used for more explor-
atory studies where no particular relationships are hypothesized a 
priori, as in this paper, a suite of metaproperties is desirable. The set 
of metaproperties to be included in an exploratory study should ide-
ally be determined in an independent, but ecologically similar, prelim-
inary dataset. Examining multiple potential combinations in the main 
dataset to select metaproperties is to be avoided, as this sort of “data 
snooping” drastically decreases confidence in any relationships that 
are eventually observed.

In the absence of a preliminary dataset, we can still guide the a 
priori selection of metaproperties with several general considerations. 
Firstly, a group of metaproperties should include pulse metaproperties 
that utilize as much of the information captured in the lidar pulses 
of the relevant TLS instrument as possible. TLS instruments other 
than the CBL may capture more returns per pulse or full waveform 
data (Calders et al., 2015), or return intensity at multiple wavelengths 
(Douglas et al., 2012; Gaulton, Danson, Pearson, Lewis, & Disney, 
2010; Howe et al., 2015), resulting in many potential pulse metaprop-
erties. In general, pulse metaproperties will take the form of descrip-
tive statistics of the entire population of pulses, such as the mean, 
minimum, maximum, standard deviation, range, or ratio. In this study, 
the particular statistics used as pulse metaproperties were partly cho-
sen to provide some resilience against “ecosystem scaling.” Ecosystem 
scaling occurs when objects are different in physical size, but not gen-
eral morphology, such as dwarf vs. tall forests.

Secondly, spatial metaproperties should be independent of each 
other, since explanatory variables in a binomial logistic regression 
are assumed to be independent. Independence, in this case, means 
that the spatial metaproperties should not consider the same geo-
metric properties or regions of the empty space. Additionally, spatial 
metaproperties should also not be substantially dependent on pulse 
metaproperties, such that they obviously co-vary. Of course, an un-
derstanding of the technology makes it clear that all lidar metaprop-
erties are, at some level, interdependent. Thus, the aim is to employ 
metaproperties that are influenced far more by the attributes of the 
ecosystem than by each other. The spatial metaproperties chosen for 

F IGURE  11 CBL point clouds showing no returns:pulses, which 
tended to be higher in Temperate Forests than in Tropical Forests, 
attributable to the denser sub-canopy layer of Tropical Forests, which 
intercepts many pulses
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this study, for example, consider the peripheral geometric properties 
of the empty space, and therefore interact minimally with the pulse 
metaproperties.

Metaproperties may also have dependencies on the attributes of 
particular TLS instruments. For example, the CBL has a wider beam 
divergence than other contemporary TLS (15 mrad). This attribute may 
have a notable influence on the metaproperty of no returns:pulses, 
since wider beams are more likely to encounter an object, reducing 
the frequency of gap observation. Another example of a scanner attri-
bute influencing a metaproperty was apparent in the Rugosity values 
of Rooms vs. Forests. The flat ceilings of Rooms would be intuitively 
expected to have less complex 3D structure, and therefore lower 
Rugosity values, than Forests. However, Rugosity values were gener-
ally higher (β: 0.117) in Rooms than in Forests.

This counterintuitive result stems from the variation in the range 
estimation of returns in CBL pulses (±50 mm). This instrument-specific 
range variation creates a large amount of 3D structure out of a rela-
tively flat surface such as a Room ceiling. Conversely, in Forests, the 
CBL range variation is mitigated by the natural variation in the verti-
cal structure of the canopy. In addition, the pulses that form Rugosity 
are emitted at a range of zenith angles (0°–30°), and therefore have 
a larger spread, and thus a larger 2D area, with distance. Since the 
ceilings of Rooms are much lower than Forest canopies, the 2D areas 
for calculating Rugosity were often much smaller in Rooms, further 
increasing the Rugosity values.

This discussion of interactions between scanner and ecosystem 
attributes highlights the dependence of metaproperties on both the 
structural properties of the ecosystem being studied and the idio-
syncrasies of the instrument used for the study. Therefore, results 
should always be contextualized by the attributes of the instrument, 
as in this study. It should be noted that scanner idiosyncrasies are a 
systematic source of variation, and therefore they are not detrimen-
tal to analyses that use a single instrument. However, in the case of 
analysing combined datasets from multiple instruments, caution will 
be necessary.

4.3 | Independence of TLS data in overlapping scans

Within a logistic regression, individual samples of explanatory variables, 
which in this study are individual TLS scans, are assumed to be inde-
pendent. This raises the question of whether TLS scans can be consid-
ered independent if they are acquired close together, and therefore 
interact with common regions of space, since characteristics of com-
mon regions are then included in the metaproperties of multiple scans, 
violating their independence. There is spatial overlap of this nature for 
many of the scans in this study. However, due to the discontinuous 
sampling and line-of-sight limitation of TLS instruments, the values of 
metaproperties for a location are heavily dependent on the specific 
position of the TLS instrument. This considerably mitigates concerns 
about scan independence. The dependence of metaproperties on 
viewing angle could be investigated empirically, but the conservative 
option for future studies would be to avoid spatial overlap of scans.

5  | CONCLUSIONS

In this study, we introduced metaproperties as metrics that aggregate 
the spatial and reflective information in lidar data. We established 
metaproperty analysis as a way to effectively utilize the increasing va-
riety and quality of information from contemporary TLS instruments to 
classify ecosystems. Through a series of ecosystem classification prob-
lems, we demonstrated how metaproperty analysis can find individual, 
powerful indicators for ecosystem type, as well as weighing more sub-
tle evidence from multiple metaproperties. The MCM provided a com-
plete workflow for ecosystem investigation, including considerations 
of statistical power, optimization of models, presence and influence of 
outliers, and appropriate metrics to assess model accuracy. The discre-
tionary steps of the MCM are adaptable to a range of data scenarios.

Since metaproperty analysis can simultaneously consider many 
attributes of an ecosystem, it can uncover single diagnostic proper-
ties or form predictive models based on multiple metaproperties for 

F IGURE  12 OPA polygons for Inland 
vs. Costal rainforests, plotted to scale. 
Coastal Rainforests tended towards higher 
OPA
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ecosystem types and conditions. This could improve characterization 
of conditions which are currently challenging for ecological assess-
ment, such as disease, storm damage, and anthropogenic disturbances. 
Metaproperty analysis may be particularly useful for studying diseases 
and infestations in their early stages. While these conditions eventually 
result in easily identifiable changes in ecosystems, effective manage-
ment relies on their classification in early stages, when the changes 
are more subtle. Metaproperty analysis could help establish patterns of 
spatial heterogeneity within ecosystem, which could guide appropriate 
stratified sampling for validation of airborne and satellite observations. 
Metaproperty analysis methods can also be applied to historical lidar 
data, providing a baseline for observing ecosystem change.

The emerging class of TLS instruments that are optimized for rapid 
scanning and portability, such as the Compact Biomass Lidar (CBL), 
synergize well with metaproperty analysis. Favourable deployment 
logistics enable the capture of many TLS scans across large areas of 
ecosystems (Paynter et al., 2016). The resulting increase in sample size 
compared with previous instruments improves the inferential power 
of metaproperty analyses. A large number of scans can also provide 
subsets of data for preliminary analyses, yielding refined groups of 
metaproperties or candidates for diagnostic metaproperties for eco-
system conditions. Consideration of preliminary studies could be 
added to the MCM as a discretionary step. However, targeting re-
duced groups of metaproperties also warrants caution, as overfitting 
analyses to a current set of observations may exclude metaproperties 
with explanatory power for future observations and conditions.

Metaproperty analysis also reduces lidar data to a lightweight format, 
which improves the accessibility of the techniques, and thus encourages 
large-scale and collaborative ecosystem studies. To encourage collabo-
ration, and maximize use of historical data, we must facilitate the combi-
nation of datasets from different TLS scanners. Adapting metaproperty 
analysis for use with airborne lidar data could also be extremely useful 
to achieve ecosystem assessment over larger spatial extents. The in-
dependence of metaproperties, and the independence of overlapping 
scans, also remains important topics for further investigation. However, 
metaproperty analysis techniques have the potential to be a pathfinder 
for transitioning TLS sampling from the plot scale to the landscape scale.
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