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Abstract

The number of discovered natural miRNA sponges in plants, viruses, and mammals is

increasing steadily. Some sponges like ciRS-7 for miR-7 contain multiple nearby miRNA

binding sites. We hypothesize that such clusters of miRNA binding sites on the genome can

function together as a sponge. No systematic effort has been made in search for clusters of

miRNA targets. Here, we, to our knowledge, make the first genome-wide target site predic-

tions for clusters of mature human miRNAs. For each miRNA, we predict the target sites

on a genome-wide scale, build a graph with edge weights based on the pairwise distances

between sites, and apply Markov clustering to identify genomic regions with high binding

site density. Significant clusters are then extracted based on cluster size difference between

real and shuffled genomes preserving local properties such as the GC content. We then use

conservation and binding energy to filter a final set of miRNA target site clusters or sponge

candidates. Our pipeline predicts 3673 sponge candidates for 1250 miRNAs, including the

experimentally verified miR-7 sponge ciRS-7. In addition, we point explicitly to 19 high-confi-

dence candidates overlapping annotated genomic sequence. The full list of candidates is

freely available at http://rth.dk/resources/mirnasponge, where detailed properties for individ-

ual candidates can be explored, such as alignment details, conservation, accessibility and

target profiles, which facilitates selection of sponge candidates for further context specific

analysis.

Introduction

MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs of about 20 nucleo-

tides in length, which play crucial roles in transcriptional and post-transcriptional control of

gene expression through interacting with other RNAs [1–4]. To date, more than 2000 human

mature miRNAs (miRBase v20) [5] have been discovered. These mature miRNAs are formed

from pre-miRNAs, which are processed by DICER in the cytoplasm [6]. They are estimated

to regulate more than 60% of all human protein-coding genes (PCGs) [7] and have been
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implicated in many human diseases [8, 9]. With more and more miRNAs being discovered,

identifying their functions is becoming increasingly important for understanding the molecu-

lar mechanisms of diseases [10].

The miRNAs can themselves be regulated by so-called miRNA sponges, which are RNAs

with many miRNA binding sites that compete with the target sites for binding of one or more

miRNAs of interest. Denzler et al. analyzed the relationship between sponge activity and

number of binding sites and found that more binding sites enhance miRNA sponge effect on

releasing mRNA target repression regulated by that miRNA [11]. Artificial miRNA sponges

have been used to generate loss-of-function phenotypes for miRNAs in cell culture [12] and to

discover miRNA functions in vivo [13]. It has advantages over genetic knock-outs and anti-

sense oligonucleotide inhibitors by being cheaper and less time consuming [14]. They are also

of therapeutic interest [15, 16].

Natural miRNA sponges with many miRNA binding sites separated by linker regions

also exist [17] (S1 Table). They have also been called competing endogenous RNA (ceRNA),

and the ceRNA hypothesis suggests that RNAs regulate each other by competing for shared

miRNAs [18]. Recently, a circular RNA (circRNA) with more than 70 binding sites was

shown to function as a sponge for miR-7 [19, 20]. This natural sponge, named ciRS-7 and

CDR1as, has been implicated in cancer-related pathways [21]. A circRNA derived from the

gene encoding zinc finger protein 91 (circRNA-ZNF91) with 24 miR-23 binding sites has

similarly been identified as a possible miRNA sponge [22]. However, some studies consis-

tently mention that only few circRNAs can function as miRNA sponges [22, 23]. Other

types of transcripts can also serve as natural miRNA sponges, such as the pseudogene

PTENP1 [24] and the long non-coding RNAs (lncRNAs) H19 [25] and lincRNA-RoR [26].

It has been estimated that there are thousands of RNA transcripts functioning as potential

miRNA natural sponges [27], but despite increasing evidence for the ceRNA hypothesis, it

still attracts some skepticism [28]. Although there exist several compilations of putative ceR-

NAs derived from predicted miRNA target sites, CLIP-Seq data, or both [29–31], reviewed

in [32], none of the studies to date have systematically analyzed the genome for clusters of

miRNA binding sites.

In an attempt to shed more light on this, we here analyze the complete human genome for

clusters of predicted miRNA target sites, which may represent natural miRNA sponges. To

this end, we identify statistically significant clusters by comparing the numbers of binding sites

in the clusters obtained from the real genome and from shuffled genomes, retaining the local

sequence composition. We further filter the resulting clusters based on evolutionary conserva-

tion and binding energies. With this approach we rediscover one known miRNA sponge ciRS-

7 for miR-7 and identify 3672 novel sponge candidates.

Materials and methods

Data sources

The repeat-masked human genome sequence (hg19) was downloaded from the UCSC

Genome Browser database [33]. All 2578 human mature miRNAs were extracted from

miRBase v20 [5]. GENCODE v19 [34] and circBase [35] were used to annotate sponge candi-

dates, which cover protein-coding genes, lincRNAs, circRNAs, antisense (overlaps a protein-

coding locus on the opposite strand), pseudogene, and processed_transcript (a transcript

without an open reading frame). To get information about binding site conservation, phyloP

(phylogenetic P-values) scores [36] were downloaded from ftp://hgdownload.cse.ucsc.edu/

goldenPath/hg19/phyloP46way/.

Prediction of miRNA sponge candidates
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Pipeline for clustering of miRNA target sites

To identify genomic clusters of predicted miRNA target sites for a given miRNA, we have

developed a pipeline as outlined in Fig 1.

RIsearch2 screen for miRNA target sites. The computational screen on hg19 for target

sites of the miRBase miRNAs was performed with a preliminary version of RIsearch2 [37]. It

is a seed-and-extend approach to predict RNA–RNA interactions, applying suffix arrays in

the first stage to locate initial seed matches (allowing for G–U wobble matches) and using

dynamic programming (DP) to extend those matches with the simplified energy model as

introduced in RIsearch [38]. The seed was specified to require a stretch of six consecutive

bases within the first eight bases of the miRNA sequence to be paired. The window for DP

extension was set to always include the entire remaining query sequence outside the seed,

and the same number of nucleotides extended by five from the target. This parameter from the

preliminary version of RIsearch2 used in here has been replaced with a maximum extension

length in the released version. The default value of 20 nt should yield comparable results. The

maximum hybridization energy was set to −10 kcal/mol. Overlapping target sites were merged

in post-processing.

Markov clustering of predicted miRNA target sites. To identify genomic regions with a

high density of predicted binding sites for a given miRNA, we used the Markov Cluster (MCL)

algorithm [39], which does not need specify the number of clusters in advance. In our pipeline,

we run clustering for individual miRNAs, and each miRNA has different number of clusters.

To this end, we represented the predicted binding sites for each miRNA as a weighted net-

work, in which the weight of the edge between two sites on the same strand of the same chro-

mosome is defined based on their nucleotide distance (x) as follows:

simðxÞ ¼
C � x if x < C

0 if x � C

(

ð1Þ

Fig 1. Flowchart of the analysis pipeline. For each mature miRNA in miRBase v20, we ran RIsearch2 against both the

real repeat-masked genome and a shuffled version to predict binding sites. We then used the Markov Cluster (MCL)

algorithm to identify genomic clusters of binding sites and identified statistically significant clusters by comparing the

results for the real and shuffled genomes. Finally, the significant clusters were further filtered by conservation and

binding energy.

https://doi.org/10.1371/journal.pone.0202369.g001
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where the constant C = 1000 determines over which distance the weights decay. The value of C
was chosen to allow identification of large clusters while limiting the computational cost. Clus-

ters within this weighted network were then identified using the MCL algorithm with a range

of different values for the inflation factor parameter, which influences the size and number of

clusters.

Shuffling of genome sequence. We evaluate the statistical significance of the identified

clusters by creating a background model from randomized genome sequence and repeating

the RIsearch2 and MCL steps described above. To preserve the local dinucleotide content, the

non-masked sequence segments of the human genome are shuffled by uShuffle [40] in non-

overlapping windows of 120 nt, the typical size of structured RNA [41, 42].

Statistical significance of clusters. For each miRNA, we estimate a cutoff on the number

of predicted target sites in a cluster that is required for statistical significance. This is done by

fitting the size distribution of the top-10% largest clusters obtained for the miRNA in question

on the randomized genome, assuming an exponential tail.

log
10
ðyÞ ¼ a � x þ b ð2Þ

where x is the cluster size and y is the number of clusters of a given size. Based on this fit, we

extrapolate the largest cluster one would expect to observe in 1000 randomizations.

xcutoff ¼
log

10
ð1=1000Þ � b

a
ð3Þ

Only clusters larger than or equal to this cutoff are considered statistically significant. We

used this approximation because it would take prohibitively long time to run MCL clustering

on the RIsearch2 output for thousands of randomized genomes for every miRNA.

Filtering by conservation and binding energy. To further improve the quality of the pre-

dictions, we apply two additional filtering criteria to the statistically significant clusters. First,

we extract the evolutionarily conserved subset of target site predictions on the real genome,

by requiring that the miRNA seed site has at least five continuous nucleotides with a phyloP

score greater than 0.3 [20]. For individual miRNAs, clusters with the percent of conserved

sites smaller than 2 times as one would expect to observe in whole genome (the number of

conserved binding sites vs the number of all binding sites for this miRNA) are excluded. Sec-

ond, we filter out statistically significant clusters that are caused by repetitive sequences not

masked in the downloaded genome, because RepeatMasker and Tandem Repeats Finder by

default only mask simple repeats with a unit length up to 12 and curated repeats from Repbase

[43, 44]. Instead of rerunning RepeatMasker with different parameters, we use the binding

energies already calculated by RIsearch2 to eliminate clusters for which many sites have the

exact same predicted binding energy. To this end, we calculate the normalized Shannon

entropy of the binding site energies in each cluster as follows:

entropy ¼ �
Xm

i¼1

pi � log2
ðpiÞ=log2

ðnÞ ð4Þ

where m is the number of different binding energy values found in the given cluster, pi is the

relative frequency of a particular energy in there, n is the number of binding sites in the cluster.

We used an entropy threshold of 0.6 to filter out clusters that have many sites caused by repeti-

tive sequences.

Prediction of miRNA sponge candidates
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Characterization of sponge candidates

To characterize the sponge candidates within the web interface, we annotate them with over-

lapping genes based on their coordinates and strand using genes from GENCODE v19 and

circBase. Thus we create a reference annotation in which GENCODE annotation is primary

and all annotation from circBase not overlapping that of GENCODE is included as additional

annotation. We further calculate a number of properties for each sponge candidate, which are

described in the following sections.

SNP density ratio. CircRNAs have significant lower SNP density at miRNA seed sites

than in their flanking regions and other sites, suggesting selective pressure to maintain those

binding sites [45]. We calculated the SNP density ratio (SDR) between miRNA seed sites and

the remaining sequence. For every binding site within a sponge, the seven nucleotides base-

pairing with the miRNA seed region (positions 2–8) are defined as miRNA seed site. The gap

region between every two seed sites is defined as flanking region, hence also including regions

base-pairing with the miRNA outside the seed. The SDR is calculated as ratio between the SNP

density in miRNA seed sites and flanking region, shown in Eq (5). SNP data was downloaded

from Ensembl 75 [46].

SNPdensity ¼
# of SNPs

# of nucleotides

SDR ¼
SNPdensity in seed sites

SNPdensity in flanking region

ð5Þ

Fraction of binding sites within exons. It is furthermore important whether the pre-

dicted binding sites are intronic or exonic [22]. We thus calculate the fraction of binding sites

in the sponge candidate that fall within exons (FBSE) based on GENCODE v19 as follows:

FBSE ¼
# of binding sites within exon

# of binding sites within sponge
ð6Þ

Energy and fraction of paired nucleotides for binding sites. For each sponge candidate,

we plot the predicted binding site energies and compare them to the distribution of binding

site energies for known targets of the same miRNA. We calculated the latter by running

RIsearch2 on the 3’ UTRs from Ensembl 75 of the known and experimentally identified

miRNA targets in the RAIN database [47]. We similarly plot the fraction of paired nucleotides

for the binding sites, which is defined as the number of base-pairings between the binding site

and the miRNA divided by the length of the mature miRNA.

Visualization of sponge candidates in genome browser. To allow for visualization of

sponge candidates in the UCSC browser [33], we display tracks with the position, binding

energy, conservation, and accessibility of each binding site. The accessibility track contains the

probability of each nucleotide being unpaired within the internal structure of the transcript, esti-

mated using RNAplfold [48] with a maximum base pair span of 120 nt and window size 170 nt.

Results

Clusters of predicted miRNA binding sites

The first step in searching for clusters of predicted miRNA binding sites is to predict the binding

sites themselves. To do that several tools can potentially be employed; however, doing a large-

scale screen on the complete human genome requires speed. We primarily focus on RIsearch2 as

Prediction of miRNA sponge candidates
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it was benchmarked against miRNA tools and found to be substantially faster than other RNA–

RNA interaction prediction tools [37]. We justify this choice by comparing the RIsearch2-based

screen to screens based on a GUUGle search (using a minimum match size of six nucleotides)

[49] and a relaxed BLAST search (E-value< 10 000) [50]. For all three tools we subsequently

employ the MCL clustering algorithm (with the default inflation factor of 2.0) to identify clusters

in the genome with a high density of predicted binding sites for a given miRNA.

We used RIsearch2 to search the 2578 mature miRNAs from miRBase (v20) against the

human genome (hg19) and its shuffled counterpart. For each miRNA, we subsequently used

MCL to identify clusters of predicted miRNA binding sites and compared the number of clus-

ters obtained on the real and shuffled genomes as function of cluster size (S2 Table). Whereas

we were able to perform this analysis for all miRNAs using RIsearch2, this was not feasible for

the GUUGle screen due to the large number of predicted miRNA binding sites.

We thus instead, as an example, compare the results from the three methods for miR-7

(Fig 2). For the RIsearch2 screen (Fig 2A) we obtain far more large clusters on the real genome

than on the shuffled one. For the BLAST search (Fig 2B) we see a similar but much weaker

trend with fewer clusters both on the real and shuffled genome. A possible explanation is that

BLAST does not allow G–U base pairing and thus predicts much fewer binding sites. In con-

trast, GUUGle predicts many more binding sites resulting in more and larger clusters (Fig 2C).

However, we observe only very small differences between the real and the shuffled genomes. It

should be noted, that GUUGle is intended to be used as a prefilter for more sophisticated but

computationally expensive methods. However, as RIsearch2 evaluates the thermodynamic

strength of the predicted binding sites and is nonetheless faster [37], we opted to use RIsearch2.

To further illustrate the predictive power of RIsearch2, we compare its predicted miR-7

binding sites to those of TargetScan [51] for the natural sponge ciRS-7 [19]. Both RIsearch2

and TargetScan predict 73 binding sites, of which 72 are in common. The one binding site

found by TargetScan, but not by RIsearch2, has a predicted binding energy of −9.87 kcal/mol,

which is only slightly above the energy cutoff (−10 kcal/mol). By contrast, the BLAST screen

predicts only seven binding sites. While giving comparable results to TargetScan, RIsearch2

runs approximately four times faster.

Whereas RIsearch2 is our preferred miRNA binding sites predictor, we can further improve

the results by changing the main parameter in MCL, the inflation factor, which affects the

granularity of the clusters. To this end, we ran our pipeline with inflation factors 1.5, 2.0, 2.5,

3.0, 3.5 and 4.0 for each miRNA on both the real and shuffled genomes. These runs took

roughly three months to compute on a cluster with 16 nodes, each equipped with two Intel

Xeon E5-2650 processors, having a total of 256 cores. For each inflation factor, we pooled the

Fig 2. Cluster size distribution for predicted miR-7 binding sites. The plots show the size distributions of the clusters obtained for the real and shuffled genomes when

running MCL clustering with an inflation factor of 2.0 on the miR-7 binding sites predicted by (A) RIsearch2, (B) BLAST, and (C) GUUGle.

https://doi.org/10.1371/journal.pone.0202369.g002
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resulting clusters for all miRNAs and plotted the cluster size distributions (S1 Fig). As antici-

pated, higher inflation factors led to smaller clusters. Based on visual inspection of the differ-

ences between real and shuffled genomes, we decided to use an inflation factor of 3.5 (Fig 3).

The more predicted miRNA binding sites a cluster contains, the less likely it is to occur in a

shuffled genome. We can thus estimate the statistical significance of a cluster based on its size.

Since different miRNAs give rise to different cluster size distributions on shuffled genomes (S2

Fig), significance analysis is done separately for each miRNA. In principle, one could estimate

the false discovery rate corresponding to a given cutoff on cluster size based on the empirical

distribution obtained from thousands of shuffled genomes. However, as this is not computa-

tionally feasible, we instead fit the tail of the distribution obtained from a single shuffled

genome to find a cluster size cutoff for each miRNA. For example, although the largest miR-7

cluster found in the shuffled genome contains 15 predicted binding sites, we extrapolate that

a miR-7 cluster must contain at least 20 binding sites to have less than 0.1% probability of

appearing by chance alone. We refer to this as the empirical p-value.

Fig 3. Overall cluster size distribution of miRNA binding sites predicted by RIsearch2. The plot shows the size distributions obtained for real and

shuffled genomes when pooling the results for 2578 mature human miRNAs. For each miRNA, we used RIsearch2 to predict binding sites and clustered

them using MCL with inflation factor 3.5.

https://doi.org/10.1371/journal.pone.0202369.g003
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As a control we also checked if we obtained the same number of predicted miRNA binding

sites in the real and shuffled genome. These numbers (at the −10 kcal/mol cutoff) are 3 430 423

948 and 3 386 114 664, with a ratio of 1.013 constituting no bias in the volume of binding sites

in the two genomes.

Sponge candidates

Using the pipeline shown in Fig 1 to the second last step, we obtained a total of 71 106 statisti-

cally significant (P< 0.001) clusters of binding sites for 2543 mature miRNAs (for 35 mature

miRNAs we obtained no significant clusters). To identify the ones most likely to be of biologi-

cal relevance, we employ the last step by filtering for conservation and binding energy (see

Methods for details). This reduced the clusters to 3673 sponge candidates for 1250 miRNAs,

which can all be viewed and downloaded via our web resource (http://rth.dk/resources/

mirnasponge).

To annotate the sponge candidates with presumed genes of origin, we compared the

genome coordinates of each sponge to annotated circRNAs from circBase and other genes

from GENCODE. We annotated a sponge candidate to a gene if the larger of these two geno-

mic regions covered at least 50% of the smaller one. Given this criterion, the majority of our

candidates (2162 out of 3673) fall in unannotated genomic regions, which is not surprising

considering that 85.9% of the genome is not covered by either GENCODE or circBase (Fig 4,

Fig 4. Genomic context of the sponge candidates. The upper bar chart shows the percentage for the different types of transcripts in the genome based on GENCODE

and circBase, and their percentage within our sponge predictions are calculated after we assign annotations to the predicted sponge candidates. For each type of

transcript, we calculate the percentage of their nucleotides under whole genome and annotated sponges. Then we can evaluate the enrichment via comparing the

percent between sponges and whole genome. There is big overlap between PCGs and circRNAs, so we further divide them into “PCG not circRNA”, “circRNA not

PCG” and “circRNA and PCG”. They refer to PCGs not overlapping with circRNAs, circRNAs not overlapping with PCGs, and PCGs overlapping with circRNAs,

respectively. The lower bar chart shows the percentage of nucleotides located in intron, exon, 3’ UTR, and 5’ UTR for all annotated PCG sponge candidates. All

percentages are calculated based on the number of nucleotides, excluding masked repeats, and are strand-sensitive.

https://doi.org/10.1371/journal.pone.0202369.g004
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upper panel). Most notably, the predicted sponges are enriched for overlaps with circRNAs

and protein-coding genes. In particular the circRNA sponges overlapping with PCGs have

four times (22.9%) as many sponges as what one would expect by chance (5.7%) from the

genomic annotation. The overlaps of sponge candidates with specific parts of protein-coding

genes (intron, exon, 3’ UTR, and 5’ UTR) are shown in Fig 4 (lower panel).

To identify a subset of sponge candidates of particular interest, we first select the 768

sponge candidates that have at least 10 predicted binding sites more than what is required

for the significance cutoff. Of these we focus on the subset that could be annotated with

known genes and further require that at least 9% of the predicted binding sites reside within

exons (FBSE > 0.09, which is the mean value of FBSEs for sponge candidates annotated with

known genes). These sponge candidates are listed in Table 1 and include the known natural

sponge ciRS-7.

Web interface

The predicted sponge candidates are freely available through a web interface at http://rth.dk/

resources/mirnasponge. The interface provides the ability to search for sponge candidate for

a particular miRNA of interest as well as to download the full set of sponge candidates for all

miRNAs. An example for miR-7 is shown in Fig 5A. For each sponge candidate, we provide

detailed information related to properties of natural miRNA sponges to assist in prioritization,

including alignment details from RIsearch2, FBSE, SDR, and accessibility and target profiles

with links to the UCSC genome browser (e.g. Fig 5B for miR-7 sponge ciRS-7). The help page

provides a detailed explanation of all these properties.

Table 1. Filtered miRNA sponge candidates. The table provides an overview of miRNA sponge candidates that have at least 10 binding sites more than what is required

for statistical significance, can be annotated with known genes, and have more than 9% of predicted miRNA binding sites within exons. The column cluster size lists the

number of binding sites in the given cluster for real genome and the cluster size cutoff for statistical significance obtained from shuffling. The sponge candidates are sorted

based on the difference between these two cluster sizes.

miRNA Cluster size

real / cutoff

Genomic coordinate

chromosome: range (strand)

Annotation

hsa-miR-7-5p 76 20 chrX: 139 865 250–139 866 947 (+) circRNA: ciRS-7

hsa-miR-4310 54 26 chr22: 50 671 491–50 673 762 (−) protein_coding: TUBGCP6

hsa-miR-376b-5p 38 18 chr15: 101 093 988–101 095 732 (−) pseudogene: PRKXP1

hsa-miR-766-5p 70 51 chrX: 139 865 341–139 867 009 (+) circRNA: ciRS-7

hsa-miR-4295 35 17 chr16: 690 762–691 826 (−) pseudogene: AL022341.1

hsa-miR-4729 44 27 chr16: 90 060 979–90 062 561 (+) circRNA: hsa_circ_0041137

hsa-miR-190b 38 21 chr17: 412 328–413 728 (+) antisense: RP5-1029F21.3

hsa-miR-93-3p 61 46 chr16: 90 060 884–90 062 555 (+) circRNA: hsa_circ_0041137

hsa-miR-8077 52 38 chr17: 80 211 257–80 213 687 (−) circRNA: hsa_circ_0046395

hsa-miR-545-3p 32 18 chr10: 133 771 747–133 773 035 (+) protein_coding: PPP2R2D

hsa-miR-4712-3p 38 24 chr12: 50 745 528–50 747 302 (−) protein_coding: FAM186A

hsa-miR-433-5p 44 30 chr16: 600 512–601 669 (−) antisense: LA16c-366D1.3

hsa-miR-649 30 18 chr8: 142 262 432–142 264 762 (−) circRNA: hsa_circ_0001829

hsa-miR-219b-5p 38 27 chr22: 21 537 410–21 538 848 (+) processed_transcript: FAM230B

hsa-miR-6761-5p 49 39 chr14: 107 147 088–107 148 903 (−) circRNA: hsa_circ_0033997

hsa-miR-649 28 18 chr9: 139 996 161–139 997 435 (+) circRNA: hsa_circ_0089635

hsa-miR-4668-3p 27 17 chrX: 139 865 277–139 866 621 (−) protein_coding: CDR1

hsa-miR-5692b 20 10 chr3: 195 607 265–195 609 187 (−) circRNA: hsa_circ_0001377

hsa-miR-34a-3p 31 21 chr10: 133 770 676–133 771 926 (+) protein_coding: PPP2R2D

https://doi.org/10.1371/journal.pone.0202369.t001
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Fig 5. Web resource of miRNA sponge candidates. To illustrate the web resource, we show the results for miR-7. (A) When searching

for a miRNA, the user is presented with an overview table of the corresponding miRNA sponge candidates. In case of miR-7, our

pipeline suggests four sponge candidates, the top scoring of which is the known sponge ciRS-7 (named hsa_circ_0001946 in circBase).

Clicking detail opens a page with detailed properties of this sponge candidate. (B) Clicking the coordinate of a sponge opens the UCSC
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Discussion

Natural miRNA sponges have recently attracted much attention due to the discovery of

increasing numbers of novel miRNA sponges, some of them have been linked to diseases

[24, 52]. Experimental verification is still highly time-consuming and prohibitively expensive

to perform systematically on a genome-wide scale. For this reason databases such as starBase

v2.0 and lnCeDB rely on computational predictions of miRNA sponges; however, because the

methods employed focus purely on annotated genes, they are unable to identify other genomic

regions that may function as miRNA sponges.

Our study is based on the hypothesis that groups of adjacent binding sites may function

together as miRNA sponges. This is consistent with a recent study showing that the number

of miRNA binding sites within a sponge correlates with its ability to derepress targets of

the miRNA in vivo [11]. We have made a genome-wide computational screen that detected

potential sponge candidates through clustering of nearby miRNA binding sites. In total,

we identified 3673 sponge candidates spanning 1250 miRNAs. The genome-wide analysis

was made possible by the RNA–RNA interaction prediction tool RIsearch2, which can

predict miRNA binding sites with high speed and with accuracy comparable to that of

other methods. Although we compare cluster sizes between real and shuffled genomes and

select candidates based on the differences in sizes, further refinement involves calculating

p-values over all cluster sizes. However, this will require comparison across clusters based

on different miRNAs as some due to their composition might have different clusters sizes

than others. To the best of our knowledge, this is the first genome-wide computational

approach to predict sponge candidates specifically based on high binding site density in

genomic regions.

There are, however, still many limitations to prediction of miRNA sponges. Like all tools

for predicting miRNA binding sites, RIsearch2 produces many true and false predictions.

The latter can give rise to false predictions of miRNA sponges if they appear clustered in the

genome, although our filtering steps do much to alleviate this problem.

In conclusion, we have presented a computational pipeline for discovery of clusters of puta-

tive miRNA binding sites. Interestingly, we observe an enrichment (*2.5-fold) of clusters in

protein-coding sequence which is not also annotated as circular RNA. For clusters overlapping

sequence annotated both circular RNA and protein-coding sequence we observed an even

stronger enrichment (*4-fold). Both competing endogenous RNA (mRNA) and circular

RNA have previously been reported to compete for miRNA binding. Hence, we consider our

clusters of miRNA binding sites as miRNA sponge candidates and we in particular obtain

intriguing candidates overlapping known genes.

Supporting information

S1 Fig. Overall cluster size distributions of predicted binding sites using different inflation

factors. The cluster size distributions shown for both real and shuffled genomes were obtained

by pooling results for all 2578 mature human miRNAs. For each miRNA, we used RIsearch2

to predict binding sites and clustered them using MCL with different inflation factors (1.5, 2.0,

2.5, 3.0, 3.5 and 4.0).

(EPS)

genome browser with tracks showing conservation, accessibility profile (probability of the bases being unpaired in the RNA structure),

and target profile (binding energies for the miRNA as predicted by RIsearch2). In the example, we show the region chrX: 139 865 280–

139 866 947 (+), which corresponds to ciRS-7.

https://doi.org/10.1371/journal.pone.0202369.g005
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S2 Fig. The fitting on cluster size distribution from shuffled genome for miRNAs with dif-

ferent GC contents. The linear function was fitted using the top-10% largest clusters obtained

for the miRNA in question on the shuffled genome, where the count was transformed using

log10. The GC content of miRNAs in A-H are 0.22, 0.35, 0.41, 0.50, 0.60, 0.71, 0.78 and 0.89,

respectively.

(EPS)

S1 Table. Discovered verified miRNA sponges. The table shows detailed information

about the sponges, including their number of miRNA binding sites from literature and from

RIsearch2 predictions.

(PDF)

S2 Table. Estimated cutoff for significant clusters of 2578 miRNAs. For each miRNA, the

number of clusters obtained on the shuffled genomes are fitted as linear functions of cluster

size, where the counts are transformed using log10. In each line, it gives the fitted parameters

and cutoff for significant clusters of each miRNA, and the cutoff is estimated using the fitted

parameters by extrapolating the largest cluster one would expect to observe in 1000 randomi-

zations.

(TXT)

Acknowledgments

The authors thank Jørgen Kjems for constructive comments and Christian Anthon for help on

the computational infrastructure.

Author Contributions

Conceptualization: Lars Juhl Jensen, Jan Gorodkin.

Data curation: Xiaoyong Pan, Anne Wenzel, Lars Juhl Jensen, Jan Gorodkin.

Formal analysis: Xiaoyong Pan.

Funding acquisition: Lars Juhl Jensen, Jan Gorodkin.

Investigation: Xiaoyong Pan, Anne Wenzel.

Methodology: Xiaoyong Pan, Anne Wenzel, Lars Juhl Jensen, Jan Gorodkin.

Project administration: Lars Juhl Jensen, Jan Gorodkin.

Resources: Lars Juhl Jensen, Jan Gorodkin.

Software: Xiaoyong Pan, Anne Wenzel.

Supervision: Lars Juhl Jensen, Jan Gorodkin.

Validation: Xiaoyong Pan, Anne Wenzel.

Visualization: Xiaoyong Pan.

Writing – original draft: Xiaoyong Pan, Anne Wenzel, Lars Juhl Jensen, Jan Gorodkin.

Writing – review & editing: Xiaoyong Pan, Anne Wenzel, Lars Juhl Jensen, Jan Gorodkin.

References
1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2):281–297.

https://doi.org/10.1016/S0092-8674(04)00045-5 PMID: 14744438

Prediction of miRNA sponge candidates

PLOS ONE | https://doi.org/10.1371/journal.pone.0202369 August 24, 2018 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202369.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202369.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202369.s004
https://doi.org/10.1016/S0092-8674(04)00045-5
http://www.ncbi.nlm.nih.gov/pubmed/14744438
https://doi.org/10.1371/journal.pone.0202369


2. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows

that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 116(2):769–773.

https://doi.org/10.1038/nature03315

3. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2):215–233. https://

doi.org/10.1016/j.cell.2009.01.002 PMID: 19167326

4. Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol. 2009; 10(2):116–

125. https://doi.org/10.1038/nrm2621 PMID: 19165214

5. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data.

Nucleic Acids Res. 2011; 39:D152–157. https://doi.org/10.1093/nar/gkq1027 PMID: 21037258

6. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis

pathways and their regulation. Nat Cell Biol. 2009; 11(3):228–234. https://doi.org/10.1038/ncb0309-228

PMID: 19255566

7. Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of

microRNAs. Genome Res. 2009; 19(1):92–105. https://doi.org/10.1101/gr.082701.108 PMID: 18955434

8. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011; 12(12):861–874. https://doi.org/

10.1038/nrg3074 PMID: 22094949

9. Mørk S, Pletscher-Frankild S, Caro AP, Gorodkin J, Jensen LJ. Protein-driven inference of miRNA–

disease associations. Bioinformatics. 2013; 30(3):392–397. https://doi.org/10.1093/bioinformatics/

btt677 PMID: 24273243

10. Holohan KN, Lahiri DK, Schneider BP, Foroud T, Saykin AJ. Functional microRNAs in Alzheimer’s dis-

ease and cancer: differential regulation of common mechanisms and pathways. Front Genet. 2013;

3:323. https://doi.org/10.3389/fgene.2012.00323 PMID: 23335942

11. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantita-

tive measurements of miRNA and target abundance. Mol Cell. 2014; 54(5):766–776. https://doi.org/10.

1016/j.molcel.2014.03.045 PMID: 24793693

12. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mamma-

lian cells. Nat Methods. 2007; 4(9):721–726. https://doi.org/10.1038/nmeth1079 PMID: 17694064

13. Loya CM, Lu CS, Vactor DV, Fulga TA. Transgenic microRNA inhibition with spatiotemporal specificity

in intact organisms. Nat Methods. 2009; 6(12):897–903. https://doi.org/10.1038/nmeth.1402 PMID:

19915559

14. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA. 2010; 16(11):2043–2050.

https://doi.org/10.1261/rna.2414110 PMID: 20855538

15. Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MKS, Halsema N, et al. Rapid generation of micro-

RNA sponges for microRNA inhibition. PloS One. 2012; 7(1):e29275. https://doi.org/10.1371/journal.

pone.0029275 PMID: 22238599

16. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug devel-

opment. Nat Rev Drug Discov. 2013; 12(11):847–865. https://doi.org/10.1038/nrd4140 PMID: 24172333

17. Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Curr Biol. 2010; 20(19):R858–

R861. https://doi.org/10.1016/j.cub.2010.08.052 PMID: 20937476

18. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden

RNA language? Cell. 2011; 146(3):353–358. https://doi.org/10.1016/j.cell.2011.07.014 PMID:

21802130

19. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles

function as efficient microRNA sponges. Nature. 2013; 495(7441):384–388. https://doi.org/10.1038/

nature11993 PMID: 23446346

20. Memczak S, Jens M, Elefsinioti A, Torti F, Janna Krueger AR, Maier L, et al. Circular RNAs are a large

class of animal RNAs with regulatory potency. Nature. 2013; 495(7441):333–338. https://doi.org/10.

1038/nature11928 PMID: 23446348

21. Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013; 73

(18):5609–5612. https://doi.org/10.1158/0008-5472.CAN-13-1568 PMID: 24014594

22. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian cir-

cular RNAs. Genome Biol. 2014; 15(7):1. https://doi.org/10.1186/s13059-014-0409-z

23. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, et al. Diverse alternative back-splicing and

alternative splicing landscape of circular RNAs. Genome Res. 2016; 26(9):1277–1287. https://doi.org/

10.1101/gr.202895.115 PMID: 27365365

24. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor

suppressor PTEN by competing endogenous mRNAs. Cell. 2011; 147(2):344–357. https://doi.org/10.

1016/j.cell.2011.09.029 PMID: 22000013

Prediction of miRNA sponge candidates

PLOS ONE | https://doi.org/10.1371/journal.pone.0202369 August 24, 2018 13 / 15

https://doi.org/10.1038/nature03315
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1016/j.cell.2009.01.002
http://www.ncbi.nlm.nih.gov/pubmed/19167326
https://doi.org/10.1038/nrm2621
http://www.ncbi.nlm.nih.gov/pubmed/19165214
https://doi.org/10.1093/nar/gkq1027
http://www.ncbi.nlm.nih.gov/pubmed/21037258
https://doi.org/10.1038/ncb0309-228
http://www.ncbi.nlm.nih.gov/pubmed/19255566
https://doi.org/10.1101/gr.082701.108
http://www.ncbi.nlm.nih.gov/pubmed/18955434
https://doi.org/10.1038/nrg3074
https://doi.org/10.1038/nrg3074
http://www.ncbi.nlm.nih.gov/pubmed/22094949
https://doi.org/10.1093/bioinformatics/btt677
https://doi.org/10.1093/bioinformatics/btt677
http://www.ncbi.nlm.nih.gov/pubmed/24273243
https://doi.org/10.3389/fgene.2012.00323
http://www.ncbi.nlm.nih.gov/pubmed/23335942
https://doi.org/10.1016/j.molcel.2014.03.045
https://doi.org/10.1016/j.molcel.2014.03.045
http://www.ncbi.nlm.nih.gov/pubmed/24793693
https://doi.org/10.1038/nmeth1079
http://www.ncbi.nlm.nih.gov/pubmed/17694064
https://doi.org/10.1038/nmeth.1402
http://www.ncbi.nlm.nih.gov/pubmed/19915559
https://doi.org/10.1261/rna.2414110
http://www.ncbi.nlm.nih.gov/pubmed/20855538
https://doi.org/10.1371/journal.pone.0029275
https://doi.org/10.1371/journal.pone.0029275
http://www.ncbi.nlm.nih.gov/pubmed/22238599
https://doi.org/10.1038/nrd4140
http://www.ncbi.nlm.nih.gov/pubmed/24172333
https://doi.org/10.1016/j.cub.2010.08.052
http://www.ncbi.nlm.nih.gov/pubmed/20937476
https://doi.org/10.1016/j.cell.2011.07.014
http://www.ncbi.nlm.nih.gov/pubmed/21802130
https://doi.org/10.1038/nature11993
https://doi.org/10.1038/nature11993
http://www.ncbi.nlm.nih.gov/pubmed/23446346
https://doi.org/10.1038/nature11928
https://doi.org/10.1038/nature11928
http://www.ncbi.nlm.nih.gov/pubmed/23446348
https://doi.org/10.1158/0008-5472.CAN-13-1568
http://www.ncbi.nlm.nih.gov/pubmed/24014594
https://doi.org/10.1186/s13059-014-0409-z
https://doi.org/10.1101/gr.202895.115
https://doi.org/10.1101/gr.202895.115
http://www.ncbi.nlm.nih.gov/pubmed/27365365
https://doi.org/10.1016/j.cell.2011.09.029
https://doi.org/10.1016/j.cell.2011.09.029
http://www.ncbi.nlm.nih.gov/pubmed/22000013
https://doi.org/10.1371/journal.pone.0202369


25. Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, et al. The imprinted H19 lncRNA antagonizes let-7 micro-

RNAs. Mol Cell. 2013; 52(1):101–112. https://doi.org/10.1016/j.molcel.2013.08.027 PMID: 24055342

26. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, et al. Endogenous miRNA sponge lincRNA-RoR regulates

Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013; 25(1):69–80.

https://doi.org/10.1016/j.devcel.2013.03.002 PMID: 23541921

27. Ee-chun C, Lin H. Repressing the repressor: a lincRNA as a MicroRNA sponge in embryonic stem cell

self-renewal. Dev Cell. 2013; 25(1):1–2. https://doi.org/10.1016/j.devcel.2013.03.020

28. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev

Genet. 2016 May; 17(5):272–283. https://doi.org/10.1038/nrg.2016.20 PMID: 27040487

29. Sarver AL, Subramanian S. Competing endogenous RNA database. Bioinformation. 2012; 8(15):731–

733. https://doi.org/10.6026/97320630008731 PMID: 23055620

30. Das S, Ghosal S, Sen R, Chakrabarti J. lnCeDB: Database of Human Long Noncoding RNA Acting as

Competing Endogenous RNA. PloS One. 2014; 9(6):e98965. https://doi.org/10.1371/journal.pone.

0098965 PMID: 24926662

31. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and

protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014; 42:D92–

D97. https://doi.org/10.1093/nar/gkt1248 PMID: 24297251

32. Le TD, Zhang J, Liu L, Li J. Computational methods for identifying miRNA sponge interactions. Brief

Bioinform. 2016;p. bbw042. https://doi.org/10.1093/bib/bbw042

33. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, et al. The UCSC

Genome Browser database: 2015 update. Nucleic Acids Res. 2015 Jan; 43(Database issue):D670–

D681. https://doi.org/10.1093/nar/gku1177 PMID: 25428374

34. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the refer-

ence human genome annotation for The ENCODE Project. Genome Res. 2012; 22(9):1760–1774.

https://doi.org/10.1101/gr.135350.111 PMID: 22955987
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