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Abstract

As a powerful tool for fast and precise genome editing, the CRISPR/Cas9 system has been

applied in filamentous fungi to improve the efficiency of genome alteration. However, the

method of delivering guide RNA (gRNA) remains a bottleneck in performing CRISPR muta-

genesis in Aspergillus species. Here we report a gRNA transcription driven by endogenous

tRNA promoters which include a tRNA gene plus 100 base pairs of upstream sequence. Co-

transformation of a cas9-expressing plasmid with a linear DNA coding for gRNA demon-

strated that 36 of the 37 tRNA promoters tested were able to generate the intended mutation

in A. niger. When gRNA and cas9 were expressed in a single extra-chromosomal plasmid,

the efficiency of gene mutation was as high as 97%. Co-transformation with DNA template

for homologous recombination, the CRISPR/Cas9 system resulted ~42% efficiency of gene

replacement in a strain with a functioning non-homologous end joining machinery (kusA+),

and an efficiency of >90% gene replacement in a kusA- background. Our results demon-

strate that tRNA promoter-mediated gRNA expressions are reliable and efficient in genome

editing in A. niger.

Introduction

The filamentous fungus Aspergillus niger is an important cell factory used in industry for the

production of enzymes and organic acids. Owing to its genetic tractability, A. niger is widely

used for research in fungal physiology, biochemistry and biotechnology. The availability of

genome sequence of this organism [1,2] has facilitated numerous studies in gene function,

gene regulation, primary and secondary metabolism [3,4]. The utility of A. niger as an indus-

trial cell factory and as a model organism for research can be further improved by the develop-

ment of a highly efficiency genome-editing system. https://www.ncbi.nlm.nih.gov/pubmed/

17259976

Multiple nuclease-based gene targeting methods have been developed to improve the effi-

ciency and precision of generating genetic modifications. These include Zinc-finger nuclease

(ZFN) [5], Transcription Activator-Like Effector Nuclease (TALEN) [6], I-SceI meganuclease
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[7], and Clustered Regularly Interspaced Short Palindromic Repeat / associated nuclease 9

(CRISPR/Cas9) [8]. With the ability of nucleases to make DNA double strand break (DSB) in

the host organism, nuclease-based gene targeting methods have been successfully used for

gene disruption, knock-in mutation as well as improving heterologous protein production by

integrating foreign genes to defined genomic loci [5,9,10]. The type II CRISPR/Cas9 system

from Streptococcus pyogenes has revolutionized genome editing by providing a simple, flexible

and efficient strategy to precisely edit the genomes of mammals [11], plant [12], fly [13], fungi

[14] and bacteria [15]. Two components are essential in type II CRISPR/Cas9 system: a func-

tional Cas9 nuclease and a chimeric guide RNA (gRNA) consisted of two regions, a CRISPR

RNA (crRNA) harboring 20-nucleotide target-recognizing sequence at the 5’-end and a trans-

activating crRNA (tracrRNA) for Cas9 binding. The crRNA is user-defined to match the target

genomic locus. It guides the gRNA to form a RNA/DNA hybrid at the target genomic locus

and recruits the Cas9 nuclease to generate DNA DSB [16]. Consequently, the CRISPR/Cas9

approach supports the editing of numerous genomic loci.

An efficient promoter that can facilitate gRNA transcription in vivo is a bottleneck of adop-

tion of CRISPR/Cas9 system in Aspergilli. So far, in the reported CRISPR/Cas9 platform for A.

niger, RNA polymerase II (Pol II) promoter and terminator were employed to drive the tran-

scription of the gRNA, which required the inclusion of two self-splicing ribozyme sequences

flanking the gRNA sequence to free the mature gRNA transcript [14]. The endogenous U6
promoter, an RNA polymerase III (Pol III) promoter, has been used for CRISPR/Cas9 genome

editing in A. oryzaewith an efficiency lower than 20% in generating gene mutations [17].

Another Pol III promoter, U3 promoter of A. fumigatus (AfU3), was successfully used to tran-

scribe gRNA in A. nidulans. However, endogenous U6 and AfU6 promoters failed in generat-

ing functional gRNA in A. nidulans, which indicates that U6 promoters have limited function

as gRNA promoters in fungi [18,19]. Therefore, it is important to find reliable promoters to

drive gRNA transcription in vivo that can result in efficient genome editing of A. niger to

expand its utility as a model and industrial organism.

In eukaryote cells, the transfer ribonucleic acid (tRNA) genes are transcribed by Pol III

[20]. The transcription of fungal tRNA and other eukaryotes genes is constitutive and is inde-

pendent of carbon source and cultivation conditions [21,22]. The tRNA promoter includes a

region centered approximately 30 base pairs (bp) upstream of the tRNA gene start site and two

intragenic sequences, Box A and Box B [20,23,24]. Their short sequences [25] and their self-

splicing capacity [26,27] make tRNA promoters suitable for transcribing the short and non-

coding gRNA sequence. The self-splicing ability of tRNA has been used to separate multi-

plexed gRNAs in plants [28] and recently in filamentous fungi [18]. To the best of our knowl-

edge, using tRNA promoter to independently drive gRNA transcription has not been

described in filamentous fungi. In this study, we describe the use of tRNA promoters and ter-

minators to drive the gRNA transcription in vivo and show that this method is highly efficient

in genome editing in A. niger.

Results

The use of tRNA promoters and terminators to drive gRNA transcription

in A. niger
We manually curated the genome of the A. niger NRRL3 (http://gbrowse.fungalgenomics.ca/

cgi-bin/gb2/gbrowse/Aspni_nrrl3_public) and identified 284 tRNA genes (chromosomal loca-

tions and sequences were listed in S1 Table). Six of the 284 tRNA genes are pseudogenes and

three encode selenocystein tRNA. There are 8–24 tRNA genes for 17 of the 20 main amino

acids. The three amino acids with fewer than eight corresponding tRNA genes are: tryptophan

tRNA promoter and gRNA expression
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with one, asparagine with three, and cysteine with four tRNA genes (S1 Table). To determine

the ability of tRNA promoters to drive the functional transcription of gRNA, we chose two

random tRNA genes from every amino acid except that of asparagine and tryptophan. Three

valine tRNAs were chosen due to the lack of intron in one and the difference in intron lengths

in the two others. In total, 37 tRNA genes and their flanking sequences to use as promoters

and terminators were selected (Table 1). Each gRNA cassette contains the following elements:

1) tRNA promoter which comprises the entire tRNA gene including introns, plus 100 nt

upstream sequence; 2) the gRNA sequence that comprises a 20 nt crRNA guiding sequence

that targets the albA gene (gene ID: NRRL3_00462) and a 80 nt tracrRNA sequence for Cas9

protein binding [29]; and 3) the 7–42 nt of tRNA terminator that spans from the end of tRNA

gene to the poly-T stretch. The gene albA encodes a polyketide synthase involved in both dihy-

droxynaphthalene melanin and naphtho-gamma-pyrone synthesis that are required for spore

pigmentation [30]. The disruption of albA prevents biosynthesis of black pigment, and results

in white mutant conidia [14,30]. This phenotypic change provided a visual scoring of mutants

directly on the transformation plate. For a quick, initial test of the ability of tRNA promoters

and terminators to regulate gRNA transcription, we co-transformed the 37 linear gRNA cas-

settes independently into A. niger with cas9-bearing plasmid ANEp8-Cas9 (Fig 1A). The

ANEp8-Cas9 plasmid was derived from the plasmid ANEp8 [31] that contains AMA1

sequence allowing extra-chromosomal replication [32] and the pyrG selection marker.

In the control plate where the cells were transformed with ANEp8-Cas9 alone, only black

colonies appeared (S1A Fig). Except in the case of tRNAGly5, all co-transformation yielded a

mixture of black and white mutant colonies. These results suggest that almost all endogenous

tRNA promoters and terminators are able to transcribe functional gRNA in the CRISPR/Cas9

system in A. niger. However, the co-transformation method resulted low inactivation rate of

albA gene, ranging between 2 to 13% (Table 1). The relatively low rates of mutation using this

co-transformation method is expected because the frequency of maintaining extra-chromo-

somal plasmid harboring the selectable marker is much higher than that of maintaining the

integrated exogenous DNA [32]. In other words, only an uncontrolled subpopulation of trans-

formants in these experiments is predicted to contain the linear gRNA cassette. Consequently,

this initial experiment only reveals that most endogenous tRNA promoters and terminators

are able to drive gRNA transcription and support CRISPR/Cas9 mutagenesis in A. niger, it

does not provide quantitative information on the efficiency of different tRNA promoters in

generating functional gRNA.

tRNA promoters are highly efficient in driving gRNA transcription

To compare the efficiency of different tRNA promoters in CRISPR/Cas9 system, the gRNA

cassette was cloned into ANEp8-Cas9 to generate plasmid ANEp8-Cas9-gRNA (Fig 1B). We

used extra-chromosomal plasmid for three reasons: 1) it supports high frequency of transfor-

mation [33]; 2) the transcription level of cas9 and gRNA are expected to be similar among

transformants as they are not influenced by the site of integration; and 3) the plasmid can be

removed easily by counter selection, leaving no exogenous DNA.

From the 36 positive tRNA-driven gRNAs (targeting albA) tested in the above co-transfor-

mation experiment, we chose eleven gRNA cassettes to construct plasmids containing both cas9
and gRNA. The eleven cassettes include tRNAs carrying hydrophilic (tRNAArg21, tRNACys1 and

tRNAGln2), polar aliphatic (tRNAAsp5), aliphatic hydrophobic (tRNAAla5, tRNALeu6, tRNAPro1

tRNAVal1; 4; 15) and aromatic hydrophobic (tRNATyr3) amino acids. Among them three valine

tRNA promoters were included because their tRNA genes contain either no intron or different

intron lengths (Table 1).

tRNA promoter and gRNA expression
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The eleven ANEp8-Cas9-gRNA plasmids were transformed individually into A. niger strain

N593 (Table 2). The results showed that ten out of eleven cassettes gave rise to transformants

of which 82–96% were mutants (Table 3 and S1A Fig). The tRNAGln2 cassette resulted in sig-

nificantly lower mutation rate of 15±6%. Additionally, the three tRNAVal promoters displayed

a similarly high level of mutational efficiency, suggesting that tRNA introns do not influence

its promoter capability in gRNA transcription.

Table 1. Functional testing of 37 tRNA promoters and terminators in CRISPR/cas9 genome editing.

tRNA

promoter

Length of tRNA

gene (bp)

Length of

intron (bp)

Anticodon Length of tRNA

promoter (bp)

Length of tRNA

terminator (bp)

Number of total colonies in

transformation plates�
Number of white

colonies (albA mutant)

tRNAAla5 72 0 AGC 172 16 88 9

tRNAAla23 72 0 AGC 172 7 36 2

tRNAArg8 72 0 ACG 172 9 96 12

tRNAArg21 72 0 ACG 172 9 71 8

tRNAAsp2 91 19 GTC 191 18 124 12

tRNAAsp5 90 18 GTC 190 11 65 2

tRNACys1 72 0 GCA 172 11 100 7

tRNACys2 72 0 GCA 172 15 72 5

tRNAGln1 72 0 CTG 172 16 72 6

tRNAGln2 92 20 TTG 192 20 102 6

tRNAGlu1 72 0 TTC 172 17 56 4

tRNAGlu12 71 0 TTC 171 16 63 3

tRNAGly5 71 0 GCC 171 26 68 0

tRNAGly13 71 0 GCC 171 16 34 3

tRNAHis2 84 12 GTG 184 42 62 4

tRNAHis3 71 0 GTG 171 32 82 4

tRNAIle4 74 0 AAT 174 16 60 3

tRNAIle8 74 0 AAT 174 17 94 4

tRNALeu6 111 27 AAG 211 17 148 8

tRNALeu14 112 27 AAG 212 13 46 1

tRNALys6 73 0 CTT 173 16 124 6

tRNALys17 73 0 CTT 173 18 82 5

tRNAMet4 72 0 CAT 172 15 84 2

tRNAMet9 72 0 CAT 172 21 78 3

tRNAPhe2 73 0 GAA 173 17 60 2

tRNAPhe12 73 0 GAA 173 11 88 10

tRNAPro1 91 19 AGG 191 17 57 7

tRNAPro3 91 19 AGG 191 17 68 3

tRNASer4 105 23 GCT 205 13 98 4

tRNASer7 81 0 AGA 181 15 90 4

tRNAThr5 73 0 AGT 173 15 46 4

tRNAThr6 73 0 AGT 173 13 48 4

tRNATyr3 88 13 GTA 188 22 63 6

tRNATy7 88 13 GTA 188 21 42 2

tRNAVal1 74 0 CAC 174 18 33 4

tRNAVal4 96 23 CAC 196 25 45 1

tRNAVal15 87 14 TAC 187 18 64 7

� The colonies number was from single transformations

https://doi.org/10.1371/journal.pone.0202868.t001
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To test the reliability of tRNA promoters in driving functional gRNA transcription in the

CRISPR/Cas9 system, we targeted another gene olvA (ID: NRRL3_01039) that is also involved

in the conidial pigmentation pathway. The loss of OlvA function results in olive-colored

conidial mutants [30] (S1 Fig). We used five different tRNA promoters to drive gRNA to target

olvA, four of which were randomly selected from the ten promoters that yielded >80% muta-

tional frequency. We included the tRNAGln2 promoter to assess whether the low frequency of

obtaining mutants is promoter dependent. The mutation rate of olvA was very similar to that

Fig 1. The schematic representation of tRNA-driven CRISPR/Cas9 system adapted for A. niger. (A) The ANEp8-Cas9 plasmid used to express cas9 gene. (B) The

construct of gRNA cassette and the ANEp8-Cas9-gRNA plasmid bearing both gRNA cassette and cas9 gene. The tRNA promoter is composed of a tRNA gene and 100

bp upstream sequences. Arrow indicates the start site of transcription. Abbreviations: bla, beta-lactamase gene conferring ampicillin resistance; pkiA Prom, promoter of

the pyruvate kinase gene; glaA Term, terminator of the glucoamylase gene; NLS: nuclear localization signal.

https://doi.org/10.1371/journal.pone.0202868.g001

Table 2. Strains and plasmids used in this study.

A. niger strains Genotype and/or Description References

NRRL3 Wild type

N593 (ATCC 64973) cspA pyrA6 [34]

NRRL2270 (ATCC11414) Citric acid producer [35]

NRRL2270ΔpyrG Uridine auxotroph This study

NRRL2270ΔpyrGΔkusA Uridine auxotroph and NHEJ deficient This study

Plasmids

ANEp8-Cas9 Extra-chromosomal cas9 expressing plasmid This study

ANEp8-Cas9-gRNAalbA Extra-chromosomal cas9 expressing plasmid with gRNA targeting albA locus This study

ANEp8-Cas9-gRNAolvA Extra-chromosomal cas9 expressing plasmid with gRNA targeting olvA locus This study

ANEp8-Cas9-gRNAglaA Extra-chromosomal cas9 expressing plasmid with gRNA targeting glaA locus This study

https://doi.org/10.1371/journal.pone.0202868.t002
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observed towards albA (Table 3). A mutation rate of 13±2% was achieved by using tRNAGln2,

while tRNAArg21, tRNACys1, tRNALeu6, and tRNAPro1 were able to induce mutation rates of

between 88 to 97%. These results indicate that 1) the efficiency of gene editing by the CRISPR/

Cas9 system is promoter-dependent; and 2) most endogenous tRNAs are very efficient and

reliable in driving gRNA transcription in the CRISPR/Cas9 system.

Both deletions and insertions are generated by tRNA promoter-driven

CRISPR/Cas9 mutagenesis

To determine the nature of CRISPR/Cas9-mediated mutations, we PCR-amplified the target

genomic regions of the phenotypic mutants and sequenced the PCR products. Thirty transfor-

mants were analyzed, representing 15 albA and 15 olvAmutants mediated by five different

tRNA promoters. These fragments covered the regions of albA and olvA that were expected to

be cleaved by Cas9. Table 4 shows that deletions were the predominant mutation with 22 out

of 30 of Cas9-induced mutations appeared as short deletions in the range of 1 to 27 bp at the

Cas9 cleavage site. Additionally, five mutants contained long deletions of 612–1051 bp. Inser-

tions were observed in three mutants. Sequence analysis indicated that the inserted sequences

were derived from ANEp8-Cas9-gRNA plasmid. These observations suggest that double

strand break mediated by Cas9 induces error-prone repair that resulted in mutation of the tar-

geted gene in A. niger. The results also suggest that the extra-chromosomal plasmid can func-

tion as pseudo-donor template in the insertion of sequences.

CRISPR/Cas9 mediates gene replacement in A. niger kusA+ and kusA-

backgrounds with different efficiencies

To evaluate how CRISPR/Cas9-mediated DSB can improve gene targeted replacement in A.

niger, we constructed a ANEp8-Cas9-gRNAglaA plasmid targeting the glaA locus, which is a

highly expressed gene encoding glucoamylase, and a linear gene replacement cassette as donor

template (S2 Fig). The linear donor template comprised the coding region of adaR (gene ID:

NRRL3_09545) flanked by 600 bp of glaA promoter and terminator sequences. The adaR gene

Table 3. Gene disruption rate mediated by using eleven different tRNA promoters in ANEp8-Cas9-gRNA

plasmid.

tRNA promoter Gene disruption rate (%)�

ΔalbA ΔolvA
tRNAAla5 93±2 nd†

tRNAArg21 92±2 97±1

tRNAAsp5 96±1 nd

tRNACys1 82±6 96±2

tRNAGln2 15±6 13±2

tRNALeu6 82±7 95±2

tRNAPro1 93±1 88±2

tRNATyr3 82±11 nd

tRNAVal15 82±14 nd

tRNAVal4 90±3 nd

tRNAVal1 94±1 nd

�

The rate was calculated as the percentage of mutant colonies in all transformants. Results were based on triplicate

transformations.
†nd: not determined.

https://doi.org/10.1371/journal.pone.0202868.t003
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encodes a transcription regulator involved in the biosynthesis of TAN-1612/BMS-192548, a

pigmented polyketide secondary metabolite [36]. The integration and overexpression of adaR
yields orange colonies because of the overproduction of TAN-1612/BMS-192548 [36]. Orange

colonies can be directly counted on transformation plates. As a control, we transformed donor

DNA with the plasmid ANEp8-Cas9 without the gRNA cassette. In addition, we created the

kusA- mutant strain according to Meyer et al. [35] and described in S3 and S4 Figs to evaluate

the role of non-homologous end joining (NHEJ) DNA repair in mediating CRISPR/Cas9

mutagenesis. Mutants deficient in KusA are defective in NHEJ and cannot repair DNA DSBs

[37,38]. Previous studies showed improved homologous recombination in NHEJ-deficient A.

niger strains [38–40]. However, little is known about the efficiency of homologous recombina-

tion when DSB is mediated by CRISPR/Cas9.

In order to easily distinguish gene integration mutants from abortive or young transfor-

mants, nine orange colonies from each transformation experiment were chosen for PCR

Table 4. Mutations generated by tRNA promoter-driven CRISPR/Cas9 mutagenesis.

tRNA promoter Target Gene Mutant number Deletion� Insertion Mismatch

tRNAArg21 albA 1 6 bp (+1 - +6)

albA 2 6 bp (+1 - +6)

albA 3 4 bp (+1 - +4)

olvA 1 8 bp (+1 - +8)

olvA 2 612 bp (-11 - +429; +438 - + 609)

olvA 3 72 bp (-1 - +1)

tRNACys1 albA 1 27 bp (-27 - -1)

albA 2 854 bp (-854 - -1)

albA 3 815 bp (-813 - +2) 1 bp (T-817C)

olvA 1 18 bp (+1 - +18)

olvA 2 10 bp (-2 - +8)

olvA 3 7 bp (-1 - +6)

tRNAGln2 albA 1 39 bp (-2 - -1)

albA 2 12 bp (-1 - +11)

albA 3 22 bp (-22 - -1)

olvA 1 13 bp (-12 - +1)

olvA 2 1096 bp (-1038 - +58)

olvA 3 11 bp (-8 - +3)

tRNALeu6 albA 1 1 bp (-1)

albA 2 15 bp (-3 - +12)

albA 3 979 bp (-979 - -1)

olvA 1 1 bp (-1)

olvA 2 88 bp (-1 - +4)

olvA 3 13 bp (-13 - -1)

tRNAPro1 albA 1 6 bp (-7 - -2)

albA 2 4 bp (-3 - +1) 1 bp (A-6G)

albA 3 2 bp (-2 - -1)

olvA 1 1 bp (-1)

olvA 2 2 bp (-2 - -1)

olvA 3 1 bp (-1)

�

The mutation locations are given in brackets. The Cas9 cleavage site is defined as 3 bp upstream of the PAM sequence and is designated position "0". The negative and

positive coordinates indicate mutations locate at 5’ and 3’ to the position 0, respectively.

https://doi.org/10.1371/journal.pone.0202868.t004
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screening using primers outside the glaA locus (S2 Fig). Table 5 shows that in the kusA+ back-

ground, without the gRNA no gene replacement occurred. In the presence of the gRNA in the

kusA+ background, about 75% of the transformants displayed orange colonies and 5 of 9

orange colonies tested were the results of homologous recombination, suggesting a frequency

of gene replacement of about 42%. In the kusA- background, the absence of gRNA yielded 21

orange colonies out of 75 transformants with 6 of 9 orange colonies tested positive for homolo-

gous recombination, suggesting a frequency of gene replacement of about 20%. This finding

supports previous observation that the turning off of NHEJ repair that improves homologous

recombination in A. niger [39,40]. In the kusA- background and in the presence of gRNA,

orange colonies comprised about 93% of the transformants with all 9 orange colonies tested

positive for homologous recombination. This would imply a gene replacement rate of ~93%.

In addition, in the kusA- strain, no transformant was found in the experiment in which only

the ANEp8-Cas9-gRNAglaA plasmid was transformed because fungal cells could not repair

the DSB in the absence of a repair donor template (Table 5). Based on this reasoning, we

would expect 100%, instead of 93%, gene replacement frequency in the situation where we

have functional gRNA and a gene replacement DNA template in the kusA- background. The

few non-orange transformants could be the result of less than 100% efficiency of the gRNA

and/or some of the young transformants scored did not have sufficient time to manifest the

mutant phenotype. Since kusA- strains cannot repair DSB, constructing mutants in the kusA-

genetic background using CRISPR/Cas9 and rescue templates has the advantage that off-target

mutations would be minimized as ectopic mutations would result in unrepaired chromosomal

breaks and cell lethality.

Discussion

Besides an active Cas9 protein, a functional gRNA is an essential component in CRISPR/Cas9

system to engineer the host genome. For delivering gRNA in vivo, the formation of functional

gRNA requires an efficient promoter to drive gRNA transcription and a splicing mechanism

to form mature gRNA transcript. In this study, we describe a strategy using Pol III tRNA pro-

moters to drive gRNA transcription. This study shows that the self-splicing ability of tRNAs is

highly efficient in generating functional gRNAs.

Since 2015, the CRISPR/Cas9 system in genome editing has been established in several gen-

era of filamentous fungi. As summarized in Table 6, the promoter selection has shifted from

Pol II promoter (e.g. pgdA and trpC promoters) to Pol III promoters for the in vivo transcrip-

tion of gRNA. This is because Pol III promoter is more suitable for in vivo transcription of

short non-coding transcripts such as gRNA [20,41]. In addition, the short length of Pol III pro-

moters and terminators makes it easier to construct gRNA cassette. Among Pol III promoters

Table 5. CRISPR/Cas9-mediated targeting homologous integration in A. niger.

CRISPR plasmid adaR donor

template

NHEJ competent strain (kusA+) NHEJ deficient strain (kusA-)

Total

colonies�
Orange

colonies�†
Gene replacement mutants /

Screened mutants‡
Total

colonies�
Orange

colonies�†
Gene replacement mutants /

Screened mutants‡

ANEp8-Cas9 Yes 125 ± 3 15 ± 1 0/9 75 ± 1 21 ± 5 6/9

ANEp8-Cas9-gRNAglaA Yes 106 ± 4 80 ± 3 5/9 88 ± 7 82 ± 6 9/9

ANEp8-Cas9-gRNAglaA No 98 ± 6 - - 0 - -

�

The value was calculated from duplicate independent transformations and the average is mentioned.
†The mutant number was counted according to the phenotype of orange color in the primary transformants.
‡From each scenario, nine of the orange colored transformants were selected to screen for gene replacement by PCR.

https://doi.org/10.1371/journal.pone.0202868.t005
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used in filamentous fungi CRISPR/Cas9 platforms, the species-specific U6 promoter is the

most widely used [17,42–47], and the SNR52 promoter from Saccharomyces cerevisiae has been

tested in Neurospora crassa [48] and A. fumigatus [49] (Table 6). In this study, the tRNA pro-

moters contain the entire sequence of tRNA gene plus 100 nt upstream sequence with a total

sequence varying from 171 to 272 nt (S2 Table), which is similar as the lengths of U6 (200 to

250 nt) and S. cerevisiae SNR52 (269 nt) promoters [29,50]. The main challenge of current Pol

III gRNA promoters such as U3 and U6 is that the same type of promoter results in highly var-

iable gene editing efficiency amongst different species. Unlike U6 promoter that is an upstream

element outside of the transcription start site [50], the tRNA gene is transcribed together with

gRNA sequence [20,51]. In the cell the tRNA transcript is posttranscriptionally cleaved at the

3‘-end by RNase Z [27,28]. Accordingly, tRNA promoter regulated system is able to release

mature functional gRNA transcript as demonstrated in this study and elsewhere [52].

By introducing upstream sequences, the tRNA promoters in our constructs include all

external and internal binding sites of Pol III transcription factors needed for transcription to

proceed normally. Except tRNAGln2, the tRNA promoters tested in this study lead to high rate

of gene mutation (82–97%). In endogenous U6 promoter-driven platforms, the mutation rate

is highly variable among different fungal species and ranges from 10 to 100% (Table 6). In a

recent study, the endogenous U6 promoter and the heterologous AfU6 promoter failed to tran-

scribe gRNA in CRISPR/Cas9 system in A. nidulans [18]. In addition, gRNAs transcribed by S.

cerevisiae SNR52 promoter resulted in mutation rates of between 25 to 53% in A. fumigatus
[49] (Table 6). These studies show that the type of promoters used to transcribe gRNA has a

high impact in CRISPR/Cas9 activity. Overall results show that expressing Cas9 and the gRNA

in single plasmid improve gene deletion and gene replacement. In addition no difference on

Table 6. Summary of CRISPR/Cas9-mediated gene mutation and replacement efficiencies in filamentous fungi.

Organism gRNA cassette components Gene replacement

rate (%)

Gene disruption

rate (%)

Expression plasmid/other

method

References

Promoter Ribozyme splicing

sequences

Terminator

A. niger tRNA No tRNA 42% or 93%
�

13–15% or 82–97%† Extrachromosomal (AMA1) This study

A. nidulans gpdA Yes trpC 90% 20–30% Extrachromosomal (AMA1) [14]

A. aculeatus gpdA Yes trpC 65% > 70% Extrachromosomal (AMA1) [14]

A. fumigatus snr52 No sup4 nd‡ 25–53% Integrative [49]

A. fumigatus U6-1/2/3 No U6 63% 43% Extrachromosomal (AMA1) [43]

A. oryzae U6 No U6 nd 10–20% Integrative [17]

N. crassa snr52 No sup4 nd nd Integrative [48]

Pyricularia oryzae U6-1/2
trpC

No

Yes

U6
trpC

36–84%

10–27%

nd

nd

Integrative [42]

T. reesei In vitro transcription 93–100% nd in vitro [53]

Ustilago maydis U6 No U6 nd 70–100% Extrachromosomal (ARS) [44]

Penicillium
chrysogenum

U6
tRNA

No

No

U6
tRNA

100%

nd

nd

nd

Extrachromosomal (AMA1) [45]

A. carbonarius gpdA Yes trpC 100% nd Extrachromosomal (AMA1) [54]

Coprinopsis cinerea U6 No U6 nd 21% Integrative [47]

Myceliophthora
thermophila

U6 No U6 95% nd Integrative [46]

M. heterothallica U6 No U6 90% nd Integrative [46]

�

The value of 42% and 93% were obtained from experiments in A. niger kusA- and kusA+ strains respectively using tRNAPro1 as gRNA cassette promoter.
†The 13–15% correspond to tRNAGln2 promoter, and the 82–97% correspond to the other ten tRNA promoters as described in this study.
‡nd: not determined.

https://doi.org/10.1371/journal.pone.0202868.t006
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growth was observed when transformed A. niger with ANEp8-Cas9 or ANEp8-Cas9-gRNA in

the present study, except the color phenotype (S1A and S1B Fig). This study provides a broad

list of highly efficient tRNA promoters for gRNA transcription.

In A. niger and other eukaryotes, DSB created in the genome is repaired by NHEJ or by

homologous recombination [55]. The NHEJ is the most dominant pathway in A. niger and the

frequency of homologous recombination increases with the deletion of the kusA gene, which is

involved in the NHEJ repair mechanism [56]. In this study, we tested CRISPR/Cas9 mediated

gene replacement by homologous recombination in both kusA- and kusA+ strains. By targeting

the glaA locus, we demonstrated that the CRISPR/Cas9 method can increase the frequency of

gene replacement in A. niger (Table 5). In gene replacement mediated by CRISPR/Cas9 activ-

ity, our results are comparable to the results obtained in filamentous fungi such as A. nidulans,
Trichoderma reesei andMyceliophthora thermophila, and show higher frequency comparing to

findings in A. aculeatus, A. fumigatus, Penicillium chrysogenum and A. carbonarius (Table 6).

In summary, the tRNA promoter-driven gRNA transcription system is very efficient to gener-

ate DNA double-strand break for gene mutation mediated by NHEJ and for gene replacement

by homologous recombination in kusA+ and kusA- strains. This powerful tool will facilitate

further improvement of the industrial fungus A. niger.

Material and methods

CRISPR design

tRNA gene prediction and selection. The tRNA gene and promoter sequences for this

study were retrieved from the genome sequence of A. niger NRRL3 (data not published, avail-

able at http://genome.fungalgenomics.ca). We used four tRNA gene electronic tools tRNAs-

can-SE version 1.3 [57], SPLITSX [58], ARAGORN [59] and tRNAfinder [60] to predict all

potential cytoplasmic tRNA genes in the nuclear genome of A. niger NRRL3. A total of 451

tRNA gene models were predicted by the four tools. We manually reviewed the predicted

models to ensure that they conform to the length and structure of tRNAs and that the termina-

tor contains a stretch of consecutive thymidines (poly-T) [61,62]. Where multiple non-identi-

cal models are detected in the same genomic region, we chose the consensus model predicted

by more than one program. Since no fungal tRNA gene has been found to have intron exceed-

ing 100 nucleotides [63], we removed 14 tRNA models predicted by ARAGORN to have

introns>100 nucleotides. The final set contains 284 tRNA gene models (S1 Table).

Identification of guide sequences. We used Geneious R9.1 software [64] to search 20 bp

guide sequences against the A. niger NRRL3 genome. S3 Table shows the guide sequences used

in this study, and none of them possesses off-target potential.

Construction of gRNA cassette. The gRNA cassettes were assembled by fusion PCR of

two DNA fragments, and the primers used were listed in S4 Table. The first fragment was the

tRNA promoter that was amplified from A. niger genomic DNA and the 20 bp guide sequence

was added at the 3’-end through PCR using as overlapping sequence. The second fragment

was amplified from the synthesized 80 bp tracRNA template [29] with the 20 bp guide and

tRNA terminator sequences (S3 Table) added at 5‘and 3‘ends respectively via PCR. In the

fusion PCR, 0.5μL of each unpurified PCR fragments were used as template in a 100 μL reac-

tion and performed with Phusion DNA polymerase (Thermo Scientific).

Plasmid construction

Escherichia coli DH5α was used as the host strain for maintenance and production of plasmid

DNA.

tRNA promoter and gRNA expression
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Construction of plasmid ANEp8-Cas9. The coding sequence of S. pyogenes cas9 (Uni-

prot Q99ZW2) was codon optimized for translation in A. niger. A nucleotide sequence encod-

ing a nuclear localization signal (NLS) peptide SRADPKKKRKV was fused to the carboxy

terminus of cas9. The DNA sequence of Cas9-NLS was synthesized by IDT Inc. (IA, USA),

and amplified by primers Cas9-F and Cas9-R (S4 and S5 Tables) to add PacI and FseI restric-

tion sites at the 5’ and 3’ ends, respectively. Restriction enzyme digests by PacI and FseI were

used to clone cas9-NLS downstream of the pkiA promoter in the expression vector ANEp8

[31]. The resulting cas9-containing plasmid was designated as ANEp8-Cas9 (S5 Table).

Construction of plasmid ANEp8-Cas9-gRNA. A 38-bp ligation independent cloning

(LIC) site centered with SwaI restriction site (S5 Fig) was introduced into ANEp8-Cas9 plas-

mid via PCR amplification. The resulting plasmid was used as host vector to harbor the gRNA

cassette by using the LIC method [65]. The gRNA cassette used for plasmid construction was

amplified with a pair of end primers to link with LIC sequence sites at the both sides as illus-

trated in S5 Fig, to generate complementary single-strand overhangs between ANEp8-Cas9

vector and gRNA cassette insert. The linearized ANEp8-Cas9 and the gRNA cassette DNA

(ending with LIC tails) were treated by T4 DNA polymerase in the presence of dGTP and

dCTP, respectively. The 20 μL reaction mixture contained 0.2 pmol of DNA, 0.8 μL of 100 mM

dithiothreitol, 2 μL of 25 mM dGTP or dCTP, and 3 U of T4 DNA polymerase in NEB buffer

2.1. The reaction was carried out at 22˚C for 30 minutes followed by enzyme inactivation by

heating at 75˚C for 20 minutes. The insert and vector were mixed in a 3:1 molar ratio. To

achieve annealing, the mixture was first heated at 60˚C for 5 minutes and then gradually

decreased to 4˚C (reduce 0.1˚C per second). The annealed products were transformed into E.

coli DH5α competent cells to generate plasmid ANEp8-Cas9-gRNA. All plasmids are available

upon request.

Construction of adaR cassette for gene replacement at the glaA locus

The linear adaR (gene ID: NRRL3_09545) cassette with glaA flanking regions was constructed

as shown in S2 Fig and S5 Table. Using genomic DNA of the A. niger strain NRRL2270 as tem-

plate, 600 bp of 5’and 3’ regions flanking the coding region of the glaA gene as well as the adaR
gene were amplified by primers with complementary ends (S4 Table). Based on their terminal

overlaps, the three fragments were joined through fusion PCR amplification, resulting in an

adaR cassette that was used for gene replacement at the glaA locus. A total of 5 μg of purified

linear adaR cassettes were used in transformation. The PCR screening for targeted integration

was carried out by using primers Fw_glaA-ext and Rv_glaA-ext (S2 Fig and S4 Table).

CRISPR/Cas9 genome editing in A. niger
Strain, media and growth conditions. Table 2 lists the A. niger strains used in this study.

The uridine auxotrophic A. niger strain N593 was used for gene editing and to test tRNA pro-

moter efficiency by CRISPR/Cas9. The strains NRRL2270ΔpyrG and NRRL2270ΔpyrGΔkusA
were used for testing gene replacement by CRISPR/Cas9. All A. niger strains were grown on

minimal medium [66] or on complete medium (minimal medium supplemented with 5 g/L of

yeast extract and 1 g/L of casamino acids). As required, a final concentration of 1.3 mg/mL of

5-fluoroorotic acid (5-FOA) and/or 10 mM of uridine were added. The liquid media were sup-

plemented with 15% D-maltose. The transformants were cultured at 30˚C for 4 days.

Transformation, mutant purification and screening. Transformation and genomic

DNA isolation of A. niger strains were performed as described previously [3]. All transforma-

tions were carried out using 1 μg of plasmid DNA together with 5 μg of linear cassette DNA

when needed. Triplicate transformations were performed for each tRNA promoter tested, and

tRNA promoter and gRNA expression
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duplicate transformations were carried out for the gene replacement of glaA. Mutant clones

were visually identified according to conidia color. The CRISPR efficiency was calculated by

dividing the number of mutant colonies by the total number of transformants. Three mutant

colonies were randomly selected from the transformation plate and streak-purified twice on

new minimal medium plates without uridine. Mutation patterns were analyzed by PCR ampli-

fication of albA (1.8 kb) and olvA (2.2 kb) sequences surrounding the CRISPR/Cas9 cut site

using primers listed in S4 Table. Amplified DNA bands were visualized on agarose gel.

Detailed information on the mutations was determined by DNA sequencing of the PCR

products.

Supporting information

S1 Fig. An example of transformation plates for gene mutations and growth of purified

transformants. A) From left to right are the transformation plates of A. niger N593 cells trans-

formed with ANEp8-Cas9 plasmid (only expressed cas9), and ANEp8-Cas9-gRNA plasmid

bearing tRNAPro1-driven gRNA to disrupt albA (98% efficiency) and olvA (95% efficiency)

respectively. B) Growth phenotype of purified colonies of A. niger transformed with ANEp8-

Cas9 and ANEp8-Cas9-gRNAolvA.

(PDF)

S2 Fig. Gene replacement of glaA gene. (A) Schematic illustration of targeted replacement

by homologous recombination. (B) PCR screening for CRISPR/Cas9-mediated homologous

integration among the nine-selected orange transformants from kusA+ (left) and kusA-

(right) strains. The PCR was performed using their genomic DNA as template with primers

outside of glaA locus. Replacement of glaA by adaR gave a 4.2 kb PCR fragment. Random

integration of adaR cassette would leave the glaA locus intact, resulting in a 3.8 kb PCR frag-

ment.

(PDF)

S3 Fig. Construction of kusA deletion cassette and strategy to generate NRRL2270ΔkusAΔ-
pyrG strain. (A) Fusions PCR to construct the kusA deletion cassette by including 500 bps

repeat of the 3’ UTR in 5’ of the pyrG selection marker to facilitate the loop out of the selection

marker. (B) Loop out strategy of the pyrG selection marker to generate ΔkusAΔpyrG strain for

subsequent transformation with the same selection marker: (1) Homologous integration of the

kusA deletion cassette to remove the kusA gene in A. niger; (2) Generation of ΔkusAΔpyrG
genotype in presence of 5-FOA plus uridine to facilitate pyrG loop out (3).

(PDF)

S4 Fig. PCR screening of transformants of ΔkusApyrG+ and ΔkusAΔpyrG genotypes respec-

tively and the growth comparison with parental strain. (A) Screening of transformants for

ΔkusApyrG+ genotype with primers binding externally to the kusA locus and primers binding

within the pyrG selection marker. Two PCR bands with size of 3 kb and 2.5 kb respectively are

expected by using primer pairs P1_ext/P6_int and P5_int/P8_ext. Transformants 3, 6, 9 and

13 have the deletion cassette integrated in the kusA locus and have ΔkusApyrG+ genotype,

when transformants 4, 5, 7, 8, 10, 11, 12 and 14 have partial integration of the deletion cassette.

For transformants lacking pyrG, the primers are not able to bind and amplify the gDNA of the

parental strain (PS) NRRL2270pyrG-. (B) Screening for transformants with pyrG loop out.

Spores of transformant 3 (NRRL2270ΔkusApyrG+) have been plated on minimal medium con-

taining 5-FOA and uridine for 5 days. Colonies growing on 5-FOA are selected for screening

pyrG selection marker loop out phenotype by PCR. A correct loop out of the pyrGmarker is

characterized by a PCR giving a band size of 2.2 kb, while a strain failed in pyrG loop out will
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display a band of 4 kb. Transformant 3’ with the correct loop out of the pyrG selection marker

is NRRL2270ΔkusAΔpyrG and has been selected for further work. (C) Growth comparison of

NRRL2270ΔpyrG and NRRL2270ΔkusAΔpyrG. One million spores of strains NRRL2270Δku-
sAΔpyrG and NRRL2270ΔpyrGwere plated on the uridine-contained minimal or complete

medium, and incubated at 30˚C for 3 days.

(PDF)

S5 Fig. The construction of ANEp8-Cas9-gRNA plasmid using LIC method. In ANEp8--

Cas9 linearized vector, the single-strand 5’ overhangs for LIC cloning were achieved by 3’!5’

exonuclease activity of T4 DNA polymerase in the presence of dGTP. For gRNA cassette, the

LIC tails were added to the ends via PCR, and the reverse complementing overhangs were gen-

erated by the same T4 DNA polymerase treatment process with dCTP. Through base pairing,

plasmid ANEp8-Cas9-gRNA was assembled by annealing the complementary sequences

between gRNA insert and plasmid vector. The complementary LIC sequences in the gRNA

insert and ANEp8-Cas9 vector are shown in the figure.

(PDF)

S1 Table. The 284 predicted tRNA genes from A. niger NRRL3 genome.

(XLSX)

S2 Table. DNA sequence of the 37 tRNA promoters and terminators used in the functional

test.

(XLSX)

S3 Table. The guide sequences used in this study.

(DOCX)

S4 Table. Primers used in this study.

(XLSX)

S5 Table. DNA sequences of plasmids ANEp8-Cas9 and ANEp8-Cas9-gRNAglaA, and lin-

ear construct of adaR.

(PDF)
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