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Deep neural network processing of DEER data
Steven G. Worswick1, James A. Spencer1, Gunnar Jeschke2, Ilya Kuprov1*

The established model-free methods for the processing of two-electron dipolar spectroscopy data [DEER (double
electron-electron resonance), PELDOR (pulsed electron double resonance), DQ-EPR (double-quantum electron para-
magnetic resonance), RIDME (relaxation-induced dipolar modulation enhancement), etc.] use regularized fitting. In
this communication, we describe an attempt to process DEER data using artificial neural networks trained on large
databases of simulated data. Accuracy and reliability of neural network outputs from real experimental data were
found to be unexpectedly high. The networks are also able to reject exchange interactions and to return a measure
of uncertainty in the resulting distance distributions. This paper describes the design of the training databases, dis-
cusses the training process, and rationalizes the observed performance. Neural networks produced in this work are
incorporated as options into Spinach and DeerAnalysis packages.
INTRODUCTION
Double electron-electron resonance (DEER), sometimes called pulsed
electron double resonance (PELDOR), is a magnetic resonance exper-
iment used to measure nanometer-scale distances between unpaired
electrons in naturally paramagnetic or paramagnetically tagged systems
(1, 2). Extraction of distance information is possible because interelec-
tron dipolar interaction energy is proportional to the inverse cube of the
distance. Unlike scattering and diffraction methods, DEER does not re-
quire long-range order in the sample; it can be applied to a variety of
systems that may not crystallize (3, 4)—from molecular conductors (5)
all the way to proteins and nucleic acids (6, 7). Relatedmethods, such as
double-quantum electron paramagnetic resonance (DQ-EPR) (8, 9)
or relaxation-induced dipolar modulation enhancement (RIDME)
(10, 11), provide similar information. From a theoretical standpoint,
DEER is quite straightforward: Its dipolar modulation signal factorizes
into spin pair contributions, dipolar interactions with remote spins are
the only significant signal decaymechanism, and the broadening caused
by that decay can be deconvolved because the decay function is available
from the unmodulated background (12).

DEER spectroscopy involves recording a dipolar modulation signal be-
tween two unpaired electrons and running regularized fitting to extract the
distance distribution (13, 14). The procedure works well in spin-½ systems
(15), but significant complications arise when (i) more than two electron
spins are present (16, 17), (ii) the total spin of any paramagnetic center ex-
ceeds ½ (18, 19), (iii) large interaction tensor anisotropies generate orien-
tation selection effects (20, 21), (iv) the system has microsecond-scale
internal dynamics, and (v) the systemhas significant interelectronexchange
coupling (22, 23). Some of these matters are exceedingly hard to resolve or
work around. It is also becoming clear that ab initiomodeling and fitting of
every possible complication are out of the question.

In this communication, we report an attempt to train deep neural
networks to convert DEER signals into spin label distance distributions.
DEER data processing is well suited for the application of supervised
learning techniques because it is a simple “vector-in, vector-out” regres-
sion problem (24). We used a large training database of synthetic DEER
traces computed using Spinach (25) from randomly generated realistic
distance distributions with a variable baseline and a variable amount of
noise. The objective is to train networks that would recognize and work
around all of the issues mentioned above; here, we address complicated
distance distributions, exchange coupling, baseline distortions, andnoise.

We found that neural networks successfully process previously un-
seen experimental data in the presence of exchange coupling, as well as
realistic amounts of noise and baseline signal. They are also able to pro-
vide a measure of confidence in the output. Once the training process is
finished, the networks have no adjustable parameters. In cases where a
stable or a regularizable solution exists in principle, we expect that neural
networks should eventually be able to solve most of the above problems
(i) to (v) when they are trained on a database of sufficient size and scope.

DEER data processing—State of the art
For an isolated electron pair, at a distance rwith isotropicmagnetogyric
ratios g1 and g2, the echomodulation signal has the following form (see
the Supplementary Materials for detailed derivations)

sðr; q; tÞ ¼ cos½ðD½1� 3cos2ðqÞ� þ JÞt�; D ¼ m0
4p

g1g2ℏ
r3

ð1Þ

where J is the exchange coupling (nuclear magnetic resonance conven-
tion) and q is the angle between the interelectron direction and the
magnet field. A typical experimental system is a frozen glass with all
orientations equally likely. Integrating Eq. 1 over all angles produces
a function known as the DEER kernel

gðr; tÞ ¼
ffiffiffiffiffiffiffiffi
p

6Dt

r "
cos½ðDþ JÞt�FrC

ffiffiffiffiffiffiffiffi
6Dt
p

r" #
þ

sin½ðDþ JÞt�FrS
ffiffiffiffiffiffiffiffi
6Dt
p

r #" #
ð2Þ

in which FrC and FrS are Fresnel’s cosine and sine functions. For an
ensemble of isolated spin-½ pairs, the experimentally observed DEER
trace is an integral of the kernel over the distance distribution

dðtÞ ¼ ∫
∞

0
pðrÞgðr; tÞdr ð3Þ

Even in this ideal case, the relationship between the distance distri-
bution p(r) and the experimental signal d(t) is not straightforward: It is
an integral whose inversion is an ill-posed problem.
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The most popular procedure for extracting distance distributions
fromDEER traces of real systems (13–15) rests on a number of significant
assumptions. The primary one is the dilute spin pair approximation—it is
assumed that the dipolar evolution function d(t) may be modeled as a
linear combination of DEER traces of systems involving point electrons
at specific distances (4). Equation 2 is strictly valid only for spin-½ para-
magnetic centers. For higher spin quantum numbers, this model only ap-
plies in the absence of level mixing and when overtone transitions during
the pump pulse can be neglected. Exchange coupling is also commonly
ignored, which often, but not always, provides a good approximation at
distances longer than 15 Å (22).

The next assumption deals with nonideal pulses and the inevitable
presence of external interactions. For dilute spin pairs, the experimental
DEER signal vexp(t) can be approximated as

vexpðtÞ ¼ ½1� lþ ldðtÞ�bðtÞ þ nðtÞ ð4Þ

where n(t) is the instrument noise, l is the spin-flip probability under
the action of the pump pulse (12, 26), and b(t) is the intermolecular
background function—usually a stretched exponential

bðtÞ ¼ exp½�ðktÞN=3� ð5Þ

that corresponds to a homogeneous distribution of distant spins in a
space with dimension N (27). Equation 5 is also a good approximation
for a homogeneous distribution in three dimensions with some ex-
cluded volume around the observer molecule (28). Along with relaxa-
tion, the background function limits the observation time and puts an
upper limit on the distances that can be measured (12, 29).

Even after b(t) and l are obtained by fitting, the mapping back from
d(t) into p(r) is still unstable—an infinitesimally small variation in d(t)
can cause a finite variation in p(r). Tikhonov regularization is therefore
commonly used, inwhich the ambiguity is removedby requiring the sec-
ond derivative of the solution to have the minimum norm (13, 14, 30).
This requirement incorporates the physical wisdom that the solution
must be smooth and sparse. The combined fitting error functional is

W½pðrÞ� ¼ ‖dexpðtÞ � ∫
∞

0
pðrÞgðr; tÞdr‖

2
þ a‖

d2

dr2
pðrÞ‖

2
ð6Þ

where a is the regularization parameter, chosen using the L-curve
method (14, 31). Other regularization methods have also been tried
and generally found to be successful (32, 33).

Regularization makes the problem tractable, but some distortions
are inevitable: Narrow features are broadened, and broad features
are artificially split. The error minimization runs within a reasonable
length of time when an analytical expression for g(r, t) is available.When
that is not the case (for example, in high-spin systems), the process
becomes impractically slow, even on the latest computing hardware and
software (19).

When the experimental DEER trace and the associated distance
distribution are discretized on finite grids, Eq. 6 acquires a matrix-
vector form

W½p� ¼ ‖dexp � Gp‖
2 þ a‖D

2p‖
2 ð7Þ
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where G is the matrix form of the DEER kernel integral and D is a
derivative matrix—for example, a finite difference one. At this point,
we have a standard Tikhonov problem with a non-negativity con-
straint that is also encountered elsewhere in magnetic resonance
(34, 35). Bayesian methods exist for uncertainty estimation (36), and
the widely used DeerAnalysis package includes a validation tool (12).

The regularized fitting method, as illustrated in Fig. 1, works very
well for simple spin-½ systems (37, 38). Limited workarounds are avail-
able for situations when the core assumptions behind Eqs. 1 to 5 do not
hold. Formultispin systems, data closer to the isolated spin pair approx-
imation can be obtained by intentionally reducing modulation depth
(16), by power scaling (17), or by sparse spin labeling (39). For Gd(III)
with spin 7/2, researchers have demonstrated that distortions caused
by level mixing can be reduced by large frequency offsets between
pump and observe pulses (40) or by RIDME (41). The latter technique
introduces overtones of the dipolar frequency (42) that require a mod-
ified DEER kernel with overtone coefficients that must be calibrated
(43). Deviations from the isotropic distribution of the spin-spin vector
by orientation selection can be partially averaged by varying the
magnetic field at constant pump and observe frequencies (37, 44). In
some site-directed spin labeling applications, an experimental estimate
of the background can be obtained by measuring singly labeled
constructs (15). Significant progress was also recently made withMellin
transform techniques (45) that are likely to improve further once the
non-negativity constraint is introduced.

Connection to neural networks
The previous section describes a process that alternates matrix-vector
operations with nonlinear constraints—a good match to the algebraic
structure of a feedforward neural network (46)

xn ¼ gnðWnxn�1 þ ynÞ ð8Þ

where the nth neuron layer accepts an input vector xn − 1,multiplies it by
a weight matrixWn, adds a bias vector yn, and passes the result through
a nonlinear transfer function gn. This similarity is not strictly necessary—
McCulloch and Pitts (47) showed that neural networks can compute any
arithmetical or logical function. Multilayer feedforward networks are
known to be universal approximators (46), but the present case is partic-
ularly appealing because the required network is likely to be quite small.

DEER signals contain true dipolar oscillation, a background signal,
and a noise track that are statistically independent. The task of recon-
structing a distance distribution can therefore be broken down into
performing, in the least-squares sense, the following operations

½1� lþ ldi �⊙bj ¼ N�1ð½1� lþ ldi�⊙bj þ nkÞ ∀i; j; k

di ¼ B�1ð½1� lþ ldi�⊙bjÞ ∀i; j

pi ¼ G�1di ∀i ð9Þ

where⊙ denotes element-by-element multiplication, N−1 may be called
“denoising,” B−1 may be called “background rejection,” and G−1 may be
called “interpretation.” All three operations are not necessarily described
bymatrices, are ill-posed, and only exist in the least-squares sense over an
infinitely large number of instances of the true DEER signal vi, the
background signal bj, and the noise signal nk.
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All three operations are linearwith respect to the dipolarmodulation
signal and are nonlinear with respect to the background and the noise.
Theymapwell into Eq. 8 and the neural network training process. Large
databases of {pi, di, bj, nk} can be generated using Spinach (25), and the
networks performingN−1,B−1, and G−1 can be obtained using backpro-
pagation training (48, 49). These networks are calledmapping networks;
they are extensively researched (46, 47, 50).

At a more general level, neural network “surrogate” solutions to
Fredholm equations are well researched in their own right (51), with
rigorous accuracy bounds available (52, 53). In 2013, Jafarian and Nia
(54) proposed a two-layer feedback network built around a Taylor ex-
pansion of the solution; Effati and Buzhabadi (55) published a feed-
forward network proposition. Both groups considered a generic Fredholm
equation without any specific physical model or context. At that time,
neither group had the computing power to train a network of sufficient
width and depth to perform the tasks encountered in this work. How-
ever, both groups observed that, for such problems as they could handle,
neural networks provided very accurate solutions (54, 55). Promising
neural network results also exist for two-dimensional (2D) integral
equations (56, 57), meaning that processing triple electron resonance
spectroscopy (58) data with neural networks may also be possible.
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
MATERIALS AND METHODS
Training database generation
Neural network training requires a library of inputs and their corre-
sponding outputs covering a range that is representative of all possi-
bilities (48, 49, 59). Real distance distributions between spin labels are
rarely known exactly and, therefore, collating experimental data is not
an option. Fortunately, high-accuracy simulations, taking into account
most of the relevant effects, have recently become possible (19, 25, 60).
They can be time-consuming (19) but only need to be run once to gen-
erate multiple simulated DEER traces with different artificial noise and
background functions. These traces are then stored in a database
alongside the “true” distance distributions they were generated from.
An example is shown in Fig. 2.

The size and shape of the training database are entirely at the trainer’s
discretion—a wide variety of spin systems, parameter ranges, secondary
interactions, and instrumental artifacts may be included. This explor-
atory work uses the DEER kernel for a pair of spin-½ particles, but
the DEER simulation module in Spinach is not restricted in any way
(60)—training data setsmay be generated for any realistic combinations
of spins, interactions, and pulse frequencies. The following parameters
are relevant:
Fig. 1. Standard Tikhonov regularization processing, illustrated using site pair V96C/I143C in the lumenal loop of a double mutant of LHCII, with iodoacetamido-
PROXYL spin labels attached to the indicated cysteines (64). For the primary data (top left), the zero time (green vertical line) is determined using moment analysis in the
vicinity of the intensity maximum. The optimal starting time for background fitting (blue vertical line) is determined by minimizing probability density at the maximum
distance. Data have been cut by 400 ns at the end (red vertical line) to minimize the influence of the artifact arising from overlapping pump and observe pulse excitation
bands. The stretched exponential background fit is shown as a solid red line (where fitted) and as a dotted red line (where extrapolated). The background-corrected data
(form factor, black) are shown in the top right panel together with fits using the regularization parameter corresponding to the origin distance criterion (red) and maximum
curvature criterion (green). These two choices are also indicated in the L-curve (bottom left). The bottom right panel shows distance distributions computed with these two
regularization parameters in matching color. Pastel background shading indicates distance ranges where the shape of the distribution is expected to be reliable (green),
where mean distances and widths are expected to be reliable (yellow), where only mean distances are expected to be reliable (orange), and where data should not be
interpreted (red). These ranges are derived from the duration of the primary data (7).
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(1) Minimum and maximum distances in the distribution. Because
the dipolarmodulation frequency is a cubic function of distance, there is
a scaling relationship between the distance range and the signal duration

tA
r3A

¼ tB
r3B

ð10Þ

The salient parameter here is the “dynamic range”—the ratio of the lon-
gest distance and the shortest. Training signals must be long enough
and discretized well enough to reproduce all the frequencies present.

(2) Functions used to represent distance peaks and their number. A
random number of skew normal distribution functions (61) with ran-
dom positions within the distance interval and random full widths at
half magnitude were used in this work

pðxÞ ¼ 2

s
ffiffiffiffiffi
2p

p e�
ðx�x0Þ2

2s2 ∫
a x�x0

sð Þ
�∞

e�
t2
2 dt ð11Þ

where s is the SD of the underlying normal distribution, x0 is the loca-
tion of its peak, anda is the shape parameter regulating the extent of the
skew. Distance distributions were integrated with the DEER kernel in
Eq. 2 to obtain DEER form factors. We found that generating distance
distributions with up to three peaks was sufficient to ensure that the
networks could generalize to an arbitrary number of distances (see
the “Measures of uncertainty” section).

(3) Noise parameters and modulation depth. Because DEER traces
were recorded in the indirect dimension of a pseudo-2D experiment, the
noisewasnot expected to be colored—thiswas confirmedby experiments
(36). We used Gaussian white noise with the SD chosen randomly be-
tween zero and a user-specified fraction of the modulation depth, which
was also chosen randomly from within the user-specified ranges.
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
(4) Background function model and its parameters. We used Eq. 5
with the dimensionality parameter selected randomly from the user-
specified range.

(5) Discretization grids in the time and the distance domains. The
point count must be above the Nyquist condition for all frequencies
expected within the chosen ranges of other parameters. The number of
discretization points dictates the dimension of the transfermatrices and bias
vectors in Eq. 8, which, in turn, determine the minimum training set size.

(6) Training set size. A fully connected neural network with n layers
of width k has n(k2 + k) parameters. Each of the “experimental” DEER
traces is k points long, meaning that n(k + 1) is the absolute minimum
number of DEER traces in the training set. At least 100 times that
amount is in practice necessary to generate high-quality networks.

The parameter ranges entering the training data set are crucial for
the success of the resulting network ensemble—the training data set
must be representative of the range of distances, peak widths, noise am-
plitudes, and other attributes of the data sets being processed. The
parameters entering the current DEERNet training database generation
process are listed in Table 1.

Reliable neural network training requires signals in the database to be
consistently scaled and to fall within the dynamic range of the transfer
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Fig. 2. One of themillions of synthetic DEER data sets, generated using Spinach
(25) andused for neural network training in thiswork. (Left) Randomly generated
distance distribution. (Right) The corresponding DEER form factor (purple), a ran-
domly generated noise track (yellow), a randomly generated intermolecular
background signal (red, marked BG), and the resulting “experimental” DEER signal
(blue). a.u., arbitrary units.
Table 1. Training database generation parameters used in this work.
Where a maximum value and a minimum value are given, the parameter
is selected randomly within the interval indicated for each new entry in
the database. Ranges in the suggested values indicate recommended
intervals for the corresponding parameter.
Parameter
 Suggested values
Minimum distance in the distribution (Å)
 10–15
Maximum distance in the distribution (Å)
 50–80
DEER trace length (ms)
 2–5
Minimum number of distance peaks
 1–2
Maximum number of distance peaks
 2–3
Data vector size
 256–1024
RMS noise, fraction of the modulation depth
 0.05–0.10
Minimum exchange coupling (MHz)
 −5.0
Maximum exchange coupling (MHz)
 +5.0
Minimum background dimensionality
 2
Maximum background dimensionality
 3.5
Minimum full width at half magnitude for
distance peaks, fraction of the distance
0.05–0.10
Maximum full width at half magnitude for
distance peaks, fraction of the distance
0.20–0.50
Maximum shape parameter (Eq. 11)
 +3.0
Minimum shape parameter (Eq. 11)
 −3.0
Minimum modulation depth
 0.05–0.10
Maximum modulation depth
 0.50–0.60
Minimum background decay rate (MHz)
 0.0
Maximum background decay rate (MHz)
 0.5
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functions. The peak amplitude of each distance distribution was there-
fore brought by uniform scaling to 0.75, and all DEER traces were
uniformly scaled and shifted so as to have the first point equal to
1 and the last point equal to 0.

The training process requires vast computing resources, but using
the trained networks does not. For the networks and databases de-
scribed in this communication, the training process for a 100-network
ensemble takes about a week on a pair of NVidia Tesla K40 cards. Once
the training process is finished, the networks can be used without dif-
ficulty on any computer strong enough to run MATLAB.

Network topology and the training process
Three simple types of feedforward network topologies explored in this
work are shown in Fig. 3. Basic fixed width feedforward networks (top
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
diagram) do, in practice, suffice, but we have also explored variable
width networks (middle diagram) and networks based on the stage
separation discussed around Eq. 9. Specifically, it makes physical sense
to separate the form factor extraction stage from the DEER signal inter-
pretation stage (Fig. 3, bottom diagram).

The most common transfer functions in Eq. 8 are sigmoidal, map-
ping [−∞, ∞] into [−1, 1]. However, distance distribution is a non-
negative function, and we observed that including this fact at the
network level improves performance. Using the strictly positive logistic
sigmoid function

gðxÞ ¼ 1
1þ e�x

ð12Þ
Fig. 3. Schematic diagrams (produced by MATLAB) of the three types of neural network topologies explored in this work, using four-layer networks as an
example. W block indicates multiplication by the weight matrix and b block indicates the addition of a bias vector. (Top) Fully connected full-width network. (Middle) Fully
connected network with choke points. (Bottom) Functionally separated network with some layers explicitly dedicated to background rejection and others to interpretation—
during the training process, the first output is the DEER form factor, and the second output is the distance probability density function.
Table 2. Performance statistics for a family of feedforward networks set up as a simple sequence of fully connected layers of the same width as the
input vector. A schematic of the network topology is given in the top diagram of Fig. 3.
Task
 Network
 Mean relative error
 Relative error SD
 Iteration time*, Tesla K40 (s)
Distance distribution recovery
 In-(256)2-Out
 0.090
 0.231
 0.32
In-(256)3-Out
 0.077
 0.208
 0.44
In-(256)4-Out
 0.070
 0.195
 0.74
In-(256)5-Out
 0.069
 0.194
 0.99
In-(256)6-Out
 0.069
 0.192
 1.19
Form factor recovery
 In-(256)2-Out
 0.0065
 0.0143
 0.31
In-(256)3-Out
 0.0042
 0.0094
 0.51
In-(256)4-Out
 0.0037
 0.0084
 0.75
In-(256)5-Out
 0.0034
 0.0080
 0.98
In-(256)6-Out
 0.0034
 0.0080
 1.18
*Using a database with 100,000 DEER traces generated as described under “Training database generation” section.
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at the last layer instead of the hyperbolic tangent function used by the
inner layers

gðxÞ ¼ ex � e�x

ex þ e�x
ð13Þ

decreases both the final error and the training time (table S1).
The training of all neural networks was carried out on NVidia Tesla

K20 and K40 coprocessor cards using MATLAB R2018a Neural
Network Toolbox andDistributed Computing Toolbox. Resilient back-
propagation (49) and scaled conjugate gradient (48) errorminimization
methodswereusedwith the least-squares errormetric. Trainingdatabases
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
were partitioned into a 70% training set (with respect to which the min-
imization was carried out), a 15% validation set (that was monitored to
prevent overfitting), and a 15% testing set with respect to which the
performance figures were compiled; this is in line with standard practice.

Uniform feedforward networks
The simplest strategy for training a generic “vector-in, vector-out” neu-
ral network is to set up a number of fully connected layers of the same
size as the input vector, resulting in the topology shown in the top di-
agram of Fig. 3. The performance metrics for a family of such networks
are given in Table 2 and illustrated graphically in Figs. 4 and 5. The “re-
lative error” metric is defined as the 2-norm of the difference between
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Fig. 4. Distance distribution recovery performance illustration for a five-layer feedforward neural network, fully connected, with 256 neurons per layer. All
inner layers have hyperbolic tangent transfer functions; the last layer has the strictly positive logistic sigmoid transfer function.
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have hyperbolic tangent transfer functions.
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the network output and the true answer divided by the 2-norm of the
true answer.

It is clear from the performance statistics that, for a single neural
network, the average norm of the deviation drops below 10% of the total
signal normand stops improving once the network is five to six layers deep.
Training iteration time depends linearly on the depth of the network.

The data for the visual performance illustrations (Figs. 4 and 5) were
selected from the training database in the following way: the “easy case”
was sampled from the relative error histogram region located between
0 and 1 SD; the “tough” case was sampled from the region between
1 and 2 SDs; the “bad case” was sampled from 100 worst fits in the
entire 100,000-trace training database. Performance illustrations for
the rest of the networks reported in Table 2 are given in figs. S1 to
S3. Given that the bad cases are the worst 0.1% of the training data
set, the performance is rather impressive. Similar sequential improve-
ments are observed for the networks tasked with the recovery of the
DEER form factor (Fig. 5).

For the vast majority of DEER traces in the training database, the
recovery of the form factor is close to perfect. Performance illustrations
for the rest of the form factor recovery networks reported in Table 2 are
given in figs. S4 to S6.
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
Feedforward networks with choke points
Excellent as the performance of the neural networks in Table 2 and
Fig. 4 may appear, deeper inspection still indicates that having 256
neurons in the inner layers may not be necessary, and this dimension
can potentially be reduced. This is most obvious from the analysis of
singular value decompositions (SVDs) of the weight matrices in Eq. 8.
The general form of the SVD of a matrix W is

W ¼ ∑
k

skjuk〉〈vkj ð14Þ

where the right singular vectors 〈vk| may be viewed as a library of distinct
input signals, the left singular vectors |uk〉may be viewed as the library of
distinct output signals, and the singular values sk may be viewed as the
amplification coefficients applied when an input is mapped into an
output. If some singular values are zero, then the corresponding pathways
are unimportant and may be dropped. Mathematically, this means that
the rank of the matrix is smaller than its dimension.

Singular values of all transfer matrices in a six-layer distance
distribution recovery network are plotted in Fig. 6. It is clear that none
of the weight matrices are full rank, and the matrices occurring later in
the network have fewer large-amplitude singular values. This suggests
that intermediate layers could require fewer than 256 neurons. Because
the corresponding singular values are small or zero, reducing the num-
ber of neurons in intermediate layers is not expected to affect accuracy.
However, the reduction in the training time could be considerable: A
fully connected N-neuron layer has N2 + N adjustable parameters, and
so thebenefit of goingdown from256neurons to 64or fewer is significant.

This is explored in detail in Table 3. Although the intuition provided
by Eq. 14 and Fig. 6 suggests that reducing the number of neurons in the
intermediate layers might be a good idea, this is not corroborated by the
practical performance figures. Any reduction in the dimension of
intermediate layers results in performance degradation. The position
of the choke point (table S2) does not appear to have any influence
on the performance.

Another architectural observation is that bias vectors do not appear
to be necessary in Eq. 8—networks trained without bias vectors have
identical performance (table S2). An examination of the optimal bias
vectors does not yield any interpretable patterns. This is likely because
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Fig. 6. Singular values of the weight matrices in a six-layer feedforward neural
network, fully connected, with 256neurons per layer, and trained as described in
themain text. All inner layers have hyperbolic tangent transfer functions; the last
layer has the strictly positive logistic sigmoid transfer function.
Table 3. Performance statistics for a family of feedforward networks set up as a simple sequence of fully connected layers with a choke point in the
middle. A schematic of the network topology is given in the middle diagram of Fig. 3.
Network
 Mean relative error
 Relative error SD
 Iteration time*, Tesla K40 (s)
In-256-32-256-Out
 0.095
 0.230
 0.25
In-256-64-256-Out
 0.086
 0.217
 0.29
In-256-128-256-Out
 0.084
 0.217
 0.39
In-256-256-256-Out
 0.077
 0.208
 0.51
In-(256)2-32-(256)2-Out
 0.090
 0.210
 0.61
In-(256)2-64-(256)2-Out
 0.074
 0.201
 0.65
In-(256)2-128-(256)2-Out
 0.073
 0.200
 0.83
In-(256)2-256-(256)2-Out
 0.069
 0.194
 0.99
*Using a database with 100,000 DEER traces generated as described under “Training database generation” section.
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the input and the output data are already well scaled (see “Training
database generation” section) and fit into the dynamic window of the
transfer functions without the need for any shifts. Still, the variational
freedom afforded by the bias vectors appears to accelerate the training
process, and we have kept them for that reason.

Structured networks
Table 2 indicates that plain feedforward networks with more than six
layers do not produce any further improvements in the performance. If
those improvements are even possible, then more sophisticated topol-
ogies must be used. One possibility is shown in the bottom diagram of
Fig. 3—the first group of layers was trained against the form factor and
therefore eliminated noise and background. That form factor was then
fed into the second group of layers, making the probability density ex-
traction easier for those layers. In principle, structured networksmay be
assembled from pretrained pieces. In the case of the bottom diagram of
Fig. 3, the pieces would come from one of the form factor extraction
networks in Table 1 and a separate network trained to interpret
background-free form factors. Performance figures for networks of this
type are given in Table 4.

Unfortunately, it does not appear that tailoring carries any advan-
tages relative to the data reported for the simple feedforward networks
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
in Table 2. Training a 12-layer network against two sets of outputs is
also exceedingly expensive. We therefore used uniform feedforward
networks (Fig. 3, top) for all production calculations discussed below.
The networks were trained on a data set where raw experimental data
without any preprocessing go in, and the distance distribution is
expected at the output.

Still, the networks evaluated inTable 4 could potentially be beneficial
as a safety catch: Humans can easily recognize incorrect form factors
visually and thus detect cases of neural networks failing, for example,
if they encounter a situation not covered by the training set.

Measures of uncertainty
When applied correctly, the standard Tikhonov regularized DEER data
analysis (12–14) produces clear results and easily interpretable distance
distributions.However, when applied naively to corrupted or featureless
data sets, it can result in overinterpretation of the data (12, 36, 38). In
particular, less experienced practitioners may have difficulty dis-
tinguishing genuine distance peaks from artifacts (62). Feedback from
the EPR community has led to the concept of a validation tool that
would be able to identify corrupted or featureless DEER traces. These
tools exist within the Tikhonov framework (12, 36), although they can
be computationally demanding. A similar tool is therefore required for
neural networks.

A {“good”, “bad”} classification network would be the obvious solu-
tion, but the amount of experimental DEER data in the world is rather
small—polling the community for examples of bad DEER traces is un-
likely to return a data set of sufficient size.We therefore decided to pur-
sue another common alternative: to train an ensemble of neural
networks using different synthetic databases and to use the variation
in their outputs as a measure of uncertainty in the distance distribution
(63). Such a measure is useful in any case, and a large variation would
indicate uninterpretable input data.

To investigate the performance of this approach in estimating dis-
tance distribution uncertainties and detecting corrupted data, we
trained 100 five-layer networks on different databases (generated as de-
scribed under “Training database generation” section) and evaluated
their performance against a previously unseen database.

The results are shown in Fig. 7. The relative errormetric is the ratio
of the 2-norm of the difference between the output and the true
answer divided by the 2-norm of the true answer. The “worst relative
error” refers to the worst-case performance in the entire database.
Performance metrics for all networks in the ensemble are plotted as
Table 4. Performance statistics for a family of tailored networks composed of a group of form factor extraction layers that form the input of the
interpretation layers. A schematic of the network topology is given in the bottom diagram of Fig. 3. FF, form factor; Int, interpretation.
Network topology
 Interpretation
 Form factor extraction
Mean relative error
 Relative error SD
 Mean relative error
 Relative error SD
In-FF[(256)1]-Int[(256)1]-Out
 0.276
 0.467
 0.355
 0.383
In-FF[(256)2]-Int[(256)2]-Out
 0.103
 0.236
 0.040
 0.083
In-FF[(256)3]-Int[(256)3]-Out
 0.094
 0.225
 0.021
 0.046
In-FF[(256)4]-Int[(256)4]-Out
 0.087
 0.216
 0.015
 0.028
In-FF[(256)5]-Int[(256)5]-Out
 0.081
 0.196
 0.012
 0.023
In-FF[(256)6]-Int[(256)6]-Out
 0.080
 0.192
 0.012
 0.022
0.018 0.02 0.022 0.024 0.026 0.028 0.03
Mean relative error
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Fig. 7. Performance of an ensemble of 100 five-layer neural networks on a pre-
viously unseen database. Each of the networks was started from a different random
initial guess and trained in a different randomly generated database. Red dots indicate
the good networks that are better than themedian on both themean relative error
and theworst relative error. The blue asterisk is the performance of the average output
of the good networks.
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red circles. The networks that scored better than the median on both
characteristics are labeled good and additionally marked with a dot.
The performance of the arithmetical mean of the outputs of good
networks is shown as a blue asterisk. The SD of the mean across the
good network ensemble is ameasure of uncertainty in the output (Fig. 8).

In practice, themean output signal and the SD are computed for each
point and plotted in the form of 95% confidence bounds, as shown in the
figures presented in the next section. Amore detailed investigation of the
effect of the noise in the input data on the reconstruction quality and the
confidence intervals is given in section S5.

An important practical test of correctness, intended to distinguish a
neural network that merely fits a few Gaussians to the data set from a
network that is a Fredholm solver, would be to present a DEER trace
with four distances to a network that was trained on a database with at
most three. A network that has learned to be a Fredholm solver in the
sense discussed in (51, 52, 54, 55, 57) should still return the right answer.
As Fig. 9 illustrates, our networks pass that test.
RESULTS AND DISCUSSION
This section contains a demonstration of the practical performance of
neural network ensembles for distance distribution reconstruction and
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
uncertainty analysis. The results from the best current Tikhonov
method implementation (15) are provided as a reference.

Test case library
DEER is used most widely in structural biology on doubly spin-labeled
proteins, nucleic acids, and their complexes. In some cases, distance dis-
tributions are narrow and give rise to time-domain data with several
observable oscillations. As an example, we use DEER data for site
pair 96/143 in the monomeric plant light-harvesting complex II
(LHCII; sample I) (64). When intrinsically disordered domains are
present, distance distributions can be very broad. This applies to site
pair 3/34 in LHCII (sample II) (64). Even narrower and broader distri-
butions are found in polymer science. We encountered the smallest
width-to-distance ratio in a short oligo-phenyleneethynylene end-labeled
with a rigid nitroxide label (sample III) (37). One of the broadest dis-
tributions for which we have high-quality DEER data was observed
in a [2]catenane spin-labeled on both of the intertwinedmacrocycles
(sample IV) (65). As an example, where a narrow and a broad dis-
tance distribution peak are simultaneously present, we use decorated
gold nanoparticles (sample V) (66). As a typical example for the distri-
butions encountered in large rigid organic molecules, we use a doubly
labeled phenyleneethynylene molecule (sample VI) (16).
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0 0.5 1 1.5 2

0.8

0.6

1.0
Input data

20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Right answer Ensemble statistics

20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6

Distance (Å) Distance (Å)Time (µs)

A
m

pl
itu

de
 (a

.u
.)

Mean
95%

0.4

0.2

0.0

Fig. 9. A demonstration that deep neural networks learn to be Fredholm solvers rather than model fitters. Presenting a data set with four distances to networks
trained on the database with at most three distances yields the right answer with high confidence. All networks in the ensemble return four peaks.
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Fig. 10. Distance distributions obtained by Tikhonov regularization (blue lines) and uncertainties estimated by the DeerAnalysis validation tool (pink areas)
for the six experimental test cases. (A) Site pair V96C/I143C in the lumenal loop of a double mutant of LHCII, with iodoacetamido-PROXYL spin labels attached to the
indicated cysteines (64); (B) site pair S3C/S34C in the N-terminal domain of a double mutant of the LHCII monomers, with iodoacetamido-PROXYL spin labels attached
to the indicated cysteines (64); (C) end-labeled oligo(para-phenyleneethynylene)—a rigid linear molecule described as compound 3a in (37); (D) [2]catenane (a pair of
large interlocked rings) with a nitroxide spin label on each ring described as sample II in (65); (E) pairs of nitroxide radicals tethered to the surface of gold nanoparticles,
with the thiol tether attachment points diffusing on the surface of the nanoparticle, sample Au3 after solvolysis and heating in (66); (F) rigid molecular triangle labeled
with nitroxide radicals on two corners out of three, sample B11inv in (16).
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Fig. 11. DEERNet performance on sample I: A site pair V96C/I143C in the lumenal loop of a doublemutant of LHCII, with iodocateamido-PROXYL spin labels attached
to the indicated cysteines (64). Residue 96 is located in the lumenal loop, and residue 143 is a structurally rigid “anchor” position in the protein core. In agreement with
the results reported in the original paper, a bimodal distance distribution is measured—indicating flexibility in the lumenal loop. The low-confidence peak around 57 Å
likely results from protein aggregation.
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Experimental data preprocessing
We preprocessed all primary data in DeerAnalysis (12). We accepted
the zero time of the dipolar oscillation and signal phase determined auto-
matically by DeerAnalysis. We cut off the last 400 ns of each trace to re-
move the “2 + 1” end artifact that arises from excitation band overlap
of pump and observe pulses (7). For sample III, a part of the end artifact
was still visible, and the last 800 ns had to be cut off. These data were
supplied to DEERNet, which expects a column vector containing the
time axis (from 0 to tmax) in microseconds and a column vector of the
corresponding DEER signal amplitudes. Internally, the signal is shifted
and scaled to match the dynamic range of the network, and down-
sampled with a matched quadratic Savitzky-Golay filter to make the
number of points equal to the number of neurons in the input layer.
The trace length tmax is used in Eq. 10 to determine the distance axis.

For comparison, we also fully processed the data usingDeerAnalysis
(Fig. 10). We applied default background fitting, assuming a homoge-
neous spatial distribution (n = 3), except for sample III, where n was
fitted. This exception was required because we averaged the data for
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
sample III over 37 different observer fields to reduce orientation selec-
tion effects; this averaging causes nonexponential background decay.
We found n = 3.40 for that sample. We then computed the L-curve
in all cases. The default choice of the optimum regularization parameter
(minimum distance to the origin) was accepted unless it differed clearly
from themaximum curvature point and the back-predicted DEER data
were clearly overdamped compared to the experimental curve. In this
case, whichwas encountered for Sample I (see Fig. 1) and III, we selected
the maximum curvature point.

We performed Monte Carlo validation by varying the noise (twice
the original noise level, 11 instances) and the starting time of the
background fit (from 240 ns to half the maximum time, 11 instances),
giving a total of 121 Monte Carlo instances. For Sample III, we also
varied the background dimension from 2.6 to 3.6 (11 instances) and re-
duced the number of noise instances to two per background starting
time/dimension pair, giving a total of 242 instances. We pruned valida-
tion data at the default level of 1.15,meaning that all solutionswith a root
mean square deviation (RMSD) of the fit from the background-corrected
0 2 4 6

0

0.5

1

30 40 50 60 70

0.1

0.2

0.3

0.4

0.5

0.6

Network ensemble Ensemble statistics

0.1

0.2

0.3

0.4

0.5

0.6

Distance (Å) Distance (Å)Time (µs)

A
m

pl
itu

de
 (a

.u
.)

Mean
95%

Experimental data

30 40 50 60 70

Fig. 12. DEERNet performance on sample II: A site pair S3C/S34C in the N-terminal domain of a double mutant of the LHCII, with iodoacetamido-PROXYL spin
labels attached to the indicated cysteines (64). The data stem from LHCIII monomers. Residue 3 is located in the very flexible N-terminal region, while residue 34 is
located in the structured part of the N-terminal domain.
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Fig. 13. DEERNet performance on sample III: End-labeled oligo(para-phenyleneethynylene)—a rigid linear molecule described as compound 3a in (37). The
maximum and the width of the distance distribution are in close agreement with the Tikhonov regularization results, whereas the expected skew of the distribution is
not reproduced. Notably, there are no low-intensity artifacts that the Tikhonov method produces around the baseline.
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data exceeding 1.15 times the minimum RMSD were excluded. In all
cases, this pruning led to only a slight reduction of the uncertainty
estimate. For Sample V, we also fitted the model of biradicals distributed
on the surface of spherical particles with a Gaussian distribution of the
particle radius (model Chechik2 in DeerAnalysis) (16). We found a bi-
radical distance of 1.87 nm with an SD of 0.22 nm and a fraction of
0.72 for the biradical distance contribution. The particle mean radius
was 4.24 nm, and its SD was 0.49 nm.

Neural network performance
The DEERNet result for Sample I is shown in Fig. 11. Apart from the
more generous confidence intervals reported by the neural network en-
semble, there is essentially no difference from theTikhonov result—both
major distances are discovered and there is some uncertainty around the
baseline. In this particular case, the performance of the two methods is
identical up to the SD quoted.

In Sample II, one label is situated in the structured part of the
N-terminal domain of LHCII (residue 34), whereas the other one is
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
situated near the N terminus (residue 3) in a disordered region that ex-
tends at least to residue 12. A broad distance distribution, as it was found
bybothTikhonovregularization (Fig. 10B)and theneuralnetworks (Fig. 12),
is expected. A bimodal distribution produced by DEERNet cannot be
excluded a priori because the “correct” answer is not known in this case.

The Tikhonovmethod performs better than neural networks for the
very narrow and skewed distribution case seen in sample III (Fig. 13).
Although skewed distributions are present in the training database, neu-
ral networks still predict a symmetric peak (at the right distance),
whereas the Tikhonov output is correctly skewed, as expected for the
rigid linker between the two labels that behaves as a worm-like chain
(Fig. 10C). The likely reason for the loss of skew by the neural networks
is insufficient point count: Our networks are only 256 neuronswide, but
more points are required to reproduce the sharp features seen in Fig.
10C. Networks that are 512 or 1024 neurons wide would likely get
the skew right, but training these networks would require 10 times
the processing power—this will have to wait until Tesla V100 cards ar-
rive at our local supercomputing center.
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Fig. 14. DEERNet performance on Sample IV: [2]catenane (a pair of large interlocked rings) with a nitroxide spin label on each ring. The distance distribution is
in line with rough statistical estimates [Figure 5 in (65)], but there are fewer clumping artifacts compared to the output of the automatic Tikhonov regularization
procedure. Within the Tikhonov framework, a manual regularization coefficient adjustment away from the corner of the L-curve is necessary to produce a distribution
free of clumping artifacts.
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Fig. 15. DEERNet performance on sample V: Pairs of nitroxide radicals tethered to the surface of gold nanoparticles, with the thiol tether attachment points
diffusing on the surface of the nanoparticle (66). Note the markedly better performance relative to the Tikhonov method: The complete absence of clumping
artifacts and the remarkable match to the analytical model—down to the maximum exhibited by the broad feature around 35 Å.
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Returning tobroaddistancedistributions, the two interlocked rings in
[2]catenane (Fig. 14) do perhaps push the limit of how broad a distance
distribution between a pair of nitroxide radicals can bewithout any com-
plications associated with exchange couplings. The original paper (65)
reports statistical estimates of the distance distribution, but the one re-
ported in that paper was based on the approximate Pake transformation
and therefore plagued by the subjective choice of distance-domain
smoothing—a fairer comparison is to the present-day Tikhonov result
with the regularization parameter determined by the L-curve, as shown
in Fig. 10D.Within the SDs quoted by bothmethods, the neural network
output is not in any obvious way different from the Tikhonov regulariza-
tion result. For sample IV, both approaches perform equally well within
the uncertainty expected for the true distribution.

Here, some discussion is in order about the choice of the regulariza-
tion parameter within the Tikhonov method. Although the L-curve
criterion, on either the maximum curvature or the minimum distance
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
to the origin, looks reassuringly algebraic, its only real justification is
philosophical—a balance must be struck between the quality of fit
and the regularization signal, and some humans have at some point
decided that a few specific special points on the L-curve look like they
strike a kind of balance. An element of human discretion is therefore
always present in Tikhonov methods, as is evident from Fig. 1. Op-
timal choice of the regularization parameter by different approaches
has recently been studied for a large set of test data, and better options
than L-curve–based criteria appear to exist (67). On the other hand, the
performance of neural networks heavily depends on the quality and the
scope of the training set, which is also subject to human discretion. It
would not, therefore, be fair to say that neural network results are entirely
free of the human factor, but it is a human factor of a different kind.

The most impressive performance of neural networks in our test set
is shown in Fig. 15—the relatively narrow peak sitting directly on top of
a broad (but very real) pedestal. Tikhonov regularization has proven
Fig. 16. Tikhonov distance distribution analysis for pairs of nitroxide radicals tethered to the surface of gold nanoparticles, with the thiol tether attachment
points diffusing on the surface of the nanoparticle [sample Au3 after solvolysis and heating in (66)]. Green lines correspond to a model fit assuming a Gaussian
distribution of distances and a homogeneous distribution of the biradicals on spherical nanoparticles with a Gaussian distribution of radii. Blue lines correspond to
Tikhonov regularization with the regularization parameter in the L-curve corner as suggested by DeerAnalysis. Red lines correspond to Tikhonov regularization with a
larger regularization parameter corresponding to the second L-curve corner. (A) Fits of the background-corrected DEER data (black). (B) Distance distributions. (C) L-curve and
the two points selected for Tikhonov distance distribution analysis.
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Fig. 17. DEERNet performance on sample VI: A rigid molecular triangle labeled with nitroxide radicals on two out of three corners (16).
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incapable of handling such cases [further examples may be found in
(68)], and neither of the two corners of the L-curve (or any point any-
where else, for that matter) produces the right answer, which we know
from fitting a parameterized model that agrees with known parameters
of the gold nanoparticles (Fig. 16B, green curve). When a broad peak
overlaps with a narrow one, the Tikhonov regularization parameter can
only shift the solution between artificial broadening of the narrow peak
and artificial splitting in the broad peak. Neural networks confidently
produce the right answer.
Worswick et al., Sci. Adv. 2018;4 : eaat5218 24 August 2018
Finally, for sample VI, the results of Tikhonov regularization and
DEERNet agree rather nicely, except for a noise-related peak near 54 Å
and a minor peak near 30 Å that appear only in the Tikhonov-derived
distribution. Width and shape of the main peak are rather similar. The
significance of the minor peak near 30 Å cannot be established, since
molecular dynamics simulations performed for an isolated molecule at
298 K were not conclusive. Hence, the quality of the distance distribu-
tions generated by Tikhonov regularization and by the neural network
should, in this case, be judged as similar.
0

0.5

1
Input data

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Right answer Ensemble statistics

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

m
pl

itu
de

 (a
.u

.)
Mean
95%

0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
m

pl
itu

de
 (a

.u
.)

Mean
95%

0 0.5 1 1.5 2

0

0.5

1

20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20 30 40 50

0.1

0.2

0.3

0.4

Distance (Å) Distance (Å)Time (µs)

A
m

pl
itu

de
 (a

.u
.)

Mean
95%

Fig. 18. A demonstration of exchange coupling resilience. The networks were trained on the database where each DEER trace has an exchange coupling randomly
selected within the ±5-MHz interval (top row, J = –1.9 MHz; middle row, J = +2.9 MHz; bottom row, J = –3.6 MHz) and all other parameters as described in the “Training
database generation” section. More than 99% of the training data set (including distributions with multiple distance peaks) produces the results of the kind shown in
the top and middle panels—fast exchange oscillations are rejected and correct distance distributions are produced. With very noisy data (bottom), the networks duly
report being highly uncertain.
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On the basis of this small but very diverse set of test cases, we can
conclude that the performance of a neural network ensemble matches
the performance of a software package developedover a decade. Tikhonov
regularization is better at reproducing the shape of very narrow dis-
tributions and possibly also for the broadest distribution encountered,
but neural networks show much better performance for distributions
that feature both narrow and broad components—a case that is likely
to occur in the context of order-disorder equilibria of proteins. Neural
networks also appear to have an advantage in rejection of small, noise-
related peaks. These features are particularly impressive when consid-
ering that the networks can be trained in a matter of hours by an
unattended process. Given the close algebraicmatch described in Intro-
duction, this is perhaps to be expected. Still, this begs the question of
what wider and deeper networks with more sophisticated structure
could accomplish. We do not, at the moment, have the computing
power to explore thismatter, but the “noisy” appearance of some neural
network outputs in Figs. 11 to 17 suggests that further improvements
are possible if the networks are trained longer and on larger data sets
that are currently beyond the capacity of our Tesla cards.

Exchange-resilient neural networks
Neural networks successfully process cases that are completely out of
design specifications of Tikhonov regularization methods—in this sec-
tion, we present the results of training an ensemble of networks on data
sets that include random interelectron exchange couplings selected
from the user-specified range (we have used ±5.0 MHz). Typical out-
comes from previously unseen synthetic data sets are shown in the top
andmiddle rows of Fig. 18. Exchange-type distortions are prominent in
the input DEER traces, but the answers produced by the networks are
not perturbed.

Tikhonov regularization with a dipolar kernel returns incorrect dis-
tance distributions (fig. S7), and this failure cannot be recognized by the
validation approach currently implemented in DeerAnalysis because
the fit to the form factor can still appear to be good. Tikhonov methods
that would account for the exchange coupling do not exist andwould be
exceedingly hard to create because the exchange coupling effectively
adds the second dimension to the solution space.

In contrast, only the correct distances are returned by the neural
networks. The rapid and slowly decaying modulation in the middle
panel should have produced a short distance with a sharp peak, yet
the broad peak at a large distance is correctly identified. The networks
appear to learn the difference between sine/cosine and Fresnel mod-
ulations in Eq. 2, and are able to demodulate the exchange component,
leaving only the dipolar part that is consistent between the sine/cosine
and the Fresnel parts.

This is an impressive feat that makes DEER distance determination
applicable to exchange-coupled systems that are not accessible toTikhonov
methods. Even when the networks cannot make sense of the data due
to a combination of noise, exchange, and low modulation depth (Fig.
18, bottom), they still fail gracefully and report that none of the gen-
erated curve is certain. This being a clear extension of the available
DEER analysis functionality, exchange-resilient neural networks will
be implemented into DeerAnalysis as an option in the near future.

Including exchange resilience into the training data set costs nothing
and introduces no extra work or adjustable parameters. The confidence
bounds on the distance distributions coming out of exchange-resilient
networks are wider, but that is to be expected because the uncertainty is
increased. Another pertinent matter is that the exchange coupling can
itself be distance-dependent—our current training set assumes that it is
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fixed. As long as the SD of the distribution is much smaller than its
mean, this is a reasonable assumption.
CONCLUSIONS AND OUTLOOK
There is a straightforward map between the algebraic structure of the
two-electron dipolar spectroscopy analysis problem and the operations
performed by artificial neural networks.When applied to the extraction
of distance distributions from DEER traces, this produces remarkably
good performance that is on par with state-of-the-art tools.We strongly
recommend neural networks for cases where narrow and broad features
are simultaneously present in the distance distribution. These cases can
be identified by the inconclusive L-curve, such as the one in Fig. 16C.
Neural networks can also return a measure of uncertainty and learn
patterns of systematic distortions: A good example is the difference be-
tween an exchange coupling (pure sinusoidal pattern) and adipolar cou-
pling (sinusoidal + Fresnel pattern). A sufficiently deep network trained
on a representative data set is able to distinguish the two and return the
correct distance distribution even for exchange-coupled electrons.

At a more abstract and speculative level, the procedure described in
this work effectively converts the ability to simulate a physical process
into the ability to interpret experimental data. In particular, a trained
neural network may be viewed as a Fredholm solver with a very general
kind of regularization. Where the Tikhonov method only incorporates
one of the many physical insights that humans have about the solution
(namely, that it should be smooth and sparse), a perfectly trained neural
network learns the entire class of admissible output patterns and only
looks for solutions in that class. The challenge is rather to construct
training sets that completely cover both the solution space and the dis-
tortion space that one would encounter in practice.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaat5218/DC1
Section S1. DEER kernel derivation
Section S2. Performance illustrations for networks of different depth
Section S3. Effects of transfer functions, choke points, and bias vectors
Section S4. Behavior of Tikhonov regularization for exchange-coupled systems
Section S5. Behavior of neural networks with the increasing level of noise
Fig. S1. DEERNet performance illustration, distance distribution recovery: two-layer
feedforward network, fully connected, with 256 neurons per layer.
Fig. S2. DEERNet performance illustration, distance distribution recovery: three-layer
feedforward network, fully connected, with 256 neurons per layer.
Fig. S3. DEERNet performance illustration, distance distribution recovery: four-layer
feedforward network, fully connected, with 256 neurons per layer.
Fig. S4. DEERNet performance illustration, form factor recovery: two-layer feedforward
network, fully connected, with 256 neurons per layer.

Fig. S5. DEERNet performance illustration, form factor recovery: three-layer feedforward
network, fully connected, with 256 neurons per layer.

Fig. S6. DEERNet performance illustration, form factor recovery: four-layer feedforward
network, fully connected, with 256 neurons per layer.

Fig. S7. Tikhonov analysis of synthetic data produced as described in the main text and featuring a
unimodal distance distribution in the presence of a fixed exchange coupling (cf. Fig. 17).

Fig. S8. A randomly generated DEER data set with the noise SD set at 2.5% of the modulation
depth and the resulting distance distribution reconstruction by DEERNet.
Fig. S9. A randomly generated DEER data set with the noise SD set at 10% of the modulation
depth and the resulting distance distribution reconstruction by DEERNet.
Fig. S10. A randomly generated DEER data set with the noise SD set at 30% of the modulation
depth and the resulting distance distribution reconstruction by DEERNet.
Table S1. Distance distribution recovery performance statistics for feedforward networks with
hyperbolic tangent sigmoid (tansig) and logistic sigmoid (logsig) transfer function at the last layer.
Table S2. Performance statistics for a family of feedforward networks set up as a sequence of
fully connected layers with a choke point in the position indicated.
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