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Abstract

DNA crosslinking agents make up a broad class of chemotherapy agents that target rapidly 

dividing cancer cells by disrupting DNA synthesis. These drugs differ widely in both chemical 

structure and biological effect. In cells, crosslinking agents can form multiple types of DNA 

lesions with varying efficiencies. Inter-strand crosslinks (ICLs) are considered to be the most 

cytotoxic lesion, creating a covalent roadblock to replication and transcription. Despite over 50 

years in the clinic, the use of crosslinking agents that specialize in the formation of ICLs remains 

limited, largely due to high toxicity in patients. Current ICL-based therapeutics have focused on 

late-stage and drug-resistant tumors, or localized treatments that limit exposure. In this article, we 

review the development of clinical crosslinking agents, our understanding of how cells respond to 

different lesions, and the potential to improve ICL-based chemotherapeutics in the future.
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Introduction

Crosslinking agents are a chemically diverse group of molecules that contain two or more 

reactive ends. In cells, the bi-functional nature of crosslinking agents can lead to covalent 

coupling between functional groups on DNA and other molecules. Reactions with DNA may 

involve one or both strands to form different types of lesions, including DNA mono-adducts, 

DNA-protein crosslinks, intra-strand crosslinks, and inter-strand crosslinks (ICLs) (Figure 1)
[1]. Although crosslinking agents can produce a variety of DNA lesions in cells, cytotoxicity 

is often attributed to the formation of ICLs. By covalently coupling complementary strands 

of the DNA duplex, ICLs block strand separation that is required for fundamental cellular 

processes like DNA replication and transcription[2]. Failure to remove ICLs from DNA can 

block cell cycle progression and lead to cell death[3]. Defects in ICL repair can also lead to 

catastrophic chromosomal aberrations that promote tumorigenesis[4].
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Congenital defects in ICL repair are associated with two major cancer predisposition 

syndromes, Fanconi anemia (FA) and hereditary breast and ovarian cancer susceptibility 

(BRCA). Together, FA and BRCA proteins form an adaptive DNA damage signaling and 

repair pathway that promotes removal of ICLs and restores the damaged DNA[5, 6]. The FA 

and BRCA pathways are highly inter-connected and share extensive genetic overlap[7, 8]. 

While FA-deficient cells are particularly sensitive to ICLs[5], BRCA mutants are sensitive to 

a range of DNA lesions, including ICLs[9].

The high cellular toxicity of ICLs has been exploited clinically by numerous anti-cancer 

therapies. Cancer is typified by rapid, uncontrolled cell proliferation. Like many 

chemotherapeutics, crosslinking agents selectively target cancer by interfering with DNA 

synthesis[10]. Although some crosslinking agents are used extensively in the clinic, those 

that form ICLs with high efficiency are typically reserved for late-stage and drug-resistant 

tumors[11], or localized treatments that reduce potential side effects[12–15]. In this review, we 

provide an update on several studies that shed new light on how cells respond to different 

ICL-inducing agents and their potential for future therapeutic application.

Diversity of Clinical Crosslinking Agents

There are four major subgroups of crosslinking agents that have been developed for clinical 

use: nitrogen mustards, mitomycins, psoralens, and platinum-based compounds (Figure 2). 

Differences in chemical structure affect how these drugs interact with DNA and the type of 

lesions they create. The key features of each group are described below.

Nitrogen mustards

Nitrogen mustards are among the oldest and most extensively studied crosslinking 

agents[6, 16]. Several derivatives of nitrogen mustard (mechlorethamine) are still used 

regularly in the clinic, including melphalan and cyclophosphamide. Nitrogen mustards 

contain an N,N-bis-(2-chloroethyl) amine as the defining component. In cells, nitrogen 

mustards form mostly DNA mono-adducts and intra-strand crosslinks, with ICLs making up 

5% or less of total lesions[16]. Nitrogen mustard ICLs are generated at the N7 of guanine in 

GpC (5’-G-phosphate-C-3’) or GpNpC DNA sequences[16]. Nitrogen mustard ICLs cause 

only limited DNA distortions, bending the duplex ~10 degrees and unwinding the helix by 

~6 degrees[6].

Mitomycins

Mitomycins are a family of natural products that were originally isolated from Streptomyces 
caespitosis in the 1950s. Although several derivatives have been developed, Mitomycin C 

(MMC) remains the most clinically active. In cells, MMC can form up to 15% ICLs, in 

addition to a variety of DNA mono-adducts that make up over half of total lesions[6, 17]. 

Mitomycin C itself is only mildly reactive. In cells, MMC is “activated” by the reduction of 

its quinone moiety[11]. MMC ICLs are preferentially formed at CpG sequences[6, 11] and 

cause minimal distortion to the DNA helix[6, 18, 19].
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Psoralens

Originally derived from plants, psoralen and derivatives like methoxypsoralen and 

trimethylpsoralen are photosensitive and become reactive when exposed to ultraviolet (UV) 

light[20]. Psoralens are planar in structure and able to intercalate between adjacent base pairs 

of duplex DNA. As a result, UV-activated psoralens readily form ICLs with high efficiency, 

ranging from ~40% with methoxypsoralen[21] to ~90% with trimethylpsoralen[6]. Psoralens 

preferentially react with TpA sequences in DNA to form covalent mono-adducts and ICLs. 

Psoralen ICLs do not bend the DNA duplex but do cause helical unwinding of ~25 

degrees[6, 22, 23].

Platinums

A wide variety of platinum-based compounds have been developed for clinical use, 

including cisplatin, carboplatin, oxaliplatin, nedaplatin, and satraplatin. One of the most 

widely studied is cisplatin, which forms approximately 90% intra-strand crosslinks[24, 25] 

and only 1–2% ICLs in genomic DNA[26]. Cisplatin ICLs form almost exclusively at GpC 

sequences, reacting with the N7 of guanine[6]. Because cisplatin ICLs rest in the minor 

groove of DNA and force cytosine extrusion, these lesions cause severe distortion of DNA, 

bending the duplex ~47 degrees and unwinding the helix ~110 degrees[6].

Recognition and Repair of ICLs

The structure and position of an ICL play a major role in how the lesion is recognized and 

repaired in cells[27]. Various factors from different DNA repair pathways cooperate to 

recognize and remove ICLs from DNA, including those from nucleotide excision repair 

(NER), base excision repair (BER), mismatch repair (MMR), homologous recombination 

repair (HR), translesion synthesis (TLS), transcription coupled repair (TCR), and the FA/

BRCA cancer predisposition pathways[6, 28]. Together, these pathways form an adaptive, 

non-linear stress response that coordinates removal of ICLs from DNA.

Replication-coupled repair

ICL repair occurs primarily during S phase after a replication fork collides with the 

crosslink[29, 30]. When replication forks are unable to bypass an ICL, a series of damage 

signaling events coordinate removal of the ICL, repair of the damaged DNA, and completion 

of DNA synthesis. For cisplatin ICLs, repair requires the convergence of two replication 

forks on the lesion[29]. In cells, the firing of dormant origins likely facilitates fork 

convergence when arrival of a neighboring fork is delayed[31]. Damage signaling pathways 

then promote dismantling of the replication machinery by the ubiquitin-selective p97 

segregase, allowing repair enzymes to access the obstructed crosslink[32, 33]. Next, members 

of the FA/BRCA pathway, including FANCI-FANCD2[34], promote DNA incision by XPF-

ERCC1 that “unhook” the ICL from one DNA strand[35, 36]. The resulting DNA double-

strand break is repaired by homologous recombination[37] and the remaining ICL adduct is 

likely removed by NER.
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ICL traverse

Replication forks have also been shown to “traverse” a trimethylpsoralen ICL, continuing 

DNA synthesis past the crosslink without repair[38]. This process is supported by FANCM, a 

DNA translocase that interacts with the replisome through the processivity factor PCNA[39]. 

Although the mechanism remains unclear, ICL traverse allows cells to complete DNA 

synthesis and repair the ICL at a later time, likely using a replication-independent 

mechanism described below.

Direct cleavage of psoralen ICLs

Unlike ICLs generated by other agents, psoralen crosslinks contain an N-glycosyl bond that 

can be cleaved directly by NER DNA glycosylases like NEIL1[40, 41] and NEIL3[42, 43]. 

Cleavage of the glycosidic bond does not require displacement of the replicative helicase 

and is not dependent on FANCI-FANCD2 or the associated nucleases[34, 42]. Thus, psoralen 

ICLs can be readily bypassed without the formation of a highly toxic DNA double-strand 

break. As with replication-coupled repair, the remaining ICL adducts are likely removed by 

NER.

Replication-independent repair

Outside of S phase, there are at least two distinct mechanisms for ICL recognition. First, 

global genome surveillance proteins like XPC-HR23B and DDB1-DDB2 are thought to 

recognize helical distortions caused by some ICLs[6, 44, 45]. Second, transcription of cross-

linked DNA can lead to stalling of RNA polymerase[46, 47]. In both cases, subsequent repair 

is dependent on NER and TLS proteins[44, 46, 47]. After incisions unhook the ICL from one 

DNA strand, TLS polymerases fill in the single-stranded gap. The unhooked adduct is then 

removed from the other DNA strand by a second round of incisions and gap filling.

Targeting cancer with ICL therapeutics

Because of their potent anti-cancer properties, DNA crosslinking agents have remained at 

the frontline of chemotherapy for more than 50 years. There are currently over 4,400 open 

clinical trials that utilize crosslinking agents (Table 1). About a quarter of these are late-

phase trials (phase III or IV) that have proven to be effective in early studies and show the 

most potential to improve the standard of care. Over half of all open crosslink trials utilize 

either cisplatin (~23%) or the nitrogen mustard derivative cyclophosphamide (~28%). 

However, clinical use of crosslinking agents that create ICLs with high efficiency remains 

limited due to high toxicity associated with treatment[48]. Together, MMC and psoralen 

compounds make up only 2% of open clinical trials, with the number of new registrations 

relatively unchanged over the last 12 years (Figure 3C). Thus, most crosslink-based 

treatments are not currently designed to create ICLs, but instead heavily favor the formation 

of other types of DNA lesions.

In the clinic, crosslinking agents are frequently used to induce cellular stress and enhance 

the cytotoxicity of other agents. In late-phase trials, over 95% of crosslink-based therapies 

involve combinations with other chemotherapeutic agents (Table 1). Combinational 

treatments typically administer drugs at lower doses than single-drug therapies, which can 
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reduce toxic side effects associated with treatment. Combining drugs that act through 

different mechanisms is also an established strategy for preventing the development of drug 

resistance, which remains one of the primary challenges for anti-cancer chemotherapies. 

Although many tumors are initially sensitive to treatment, cancer genomes are inherently 

unstable and can develop tolerance through several mechanisms. Cells can acquire both 

genetic and epigenetic changes that disrupt drug-target interactions, increase drug efflux 

from cells, and alter cellular signaling pathways that control the DNA damage response and 

cell death[49, 50]. On average, less than 12% of late-phase trials that utilize crosslinking 

agents target unresponsive, relapsed, or recurrent cancers, emphasizing the need to develop 

additional therapies that can treat drug-resistant tumors.

To combat both innate tolerance and acquired resistance to chemotherapeutics, many 

treatment strategies seek to exploit changes in cancer physiology. For example, cancer cells 

frequently acquire defects in DNA repair during both the development and progression of 

cancer[53]. Consequently, many tumors are highly sensitive to different types of DNA 

damage. In order to predict which tumors will be sensitive to treatment, a variety of 

biomarkers from different DNA repair pathways have been identified, including BRCA1, 

BRCA2, ATM, ATR, CHK1/2, and FANCD2[54–56]. Using patient-derived tumor samples, 

changes in gene sequence, protein expression, and post-translational modification have been 

shown to strongly correlate with cellular sensitivity to specific DNA damaging agents[57]. 

However, the impact that many biomarkers have in the clinic is limited by high analytical 

costs and a lack of viable treatment options. As a result, many treatments are administered 

without stratifying patients based on DNA repair capabilities.

Going forward, additional therapeutic strategies are needed to harness the potent cytotoxic 

effects of ICLs. Recent studies have revealed a diverse range of repair mechanisms utilized 

by cells in response to different ICL lesions. New roles have been identified for proteins like 

NEIL1/3, p97, and FANCM during ICL repair, highlighting these factors and their respective 

pathways as valuable targets for combinational therapy with crosslinking agents. With the 

advent of tumor profiling, novel molecular inhibitors, and a growing list of DNA damage 

response biomarkers, there is immense potential to exploit these mechanistic observations 

clinically. Establishing highly selective and targeted therapies will not only improve the 

efficacy of current ICL-based treatments, but also allow them to be applied more broadly by 

reducing the toxic side effects that serve as a barrier to widespread use.
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Highlights

• DNA crosslinking agents have been widely used in the clinic for over 50 

years.

• Crosslinking agents can generate different DNA lesions with varying 

efficiencies.

• Due to high toxicity, most crosslink-based therapies avoid formation of ICLs.

• New mechanistic observations highlight promise for exploiting the potent 

effects of ICLs.
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Figure 1. DNA lesions formed by crosslinking agents
Crosslinking agents are highly reactive molecules that can form multiple types of DNA 

lesions in cells.
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Figure 2. Diversity of ICL lesions
There are four major subgroups of DNA crosslinking agents. The ICLs produced by each 

group can vary widely in chemical structure and their effect on DNA topology. Nitrogen 

Mustard ICLs cause mild DNA bending and unwinding. Mitomycin C ICLs cause minimal 

distortion to DNA. Psoralen ICLs cause moderate DNA unwinding. Cisplatin ICLs cause 

severe DNA bending and unwinding.
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Figure 3. Clinical use of DNA crosslinking agents over time
The number of clinical trials registered each year with ClinicalTrials.gov is graphed for the 

most commonly used crosslinking agents from each major subgroup. ClinicalTrials.gov 

consists of privately and publicly funded clinical studies conducted around the world. The 

database was established by the Food and Drug Administration Modernization Act of 1997 

(FDAMA) and is maintained by the National Library of Medicine (NLM) at the National 

Institutes of Health (NIH).
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