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Abstract

DNA crosslinking agents make up a broad class of chemotherapy agents that target rapidly
dividing cancer cells by disrupting DNA synthesis. These drugs differ widely in both chemical
structure and biological effect. In cells, crosslinking agents can form multiple types of DNA
lesions with varying efficiencies. Inter-strand crosslinks (ICLs) are considered to be the most
cytotoxic lesion, creating a covalent roadblock to replication and transcription. Despite over 50
years in the clinic, the use of crosslinking agents that specialize in the formation of ICLs remains
limited, largely due to high toxicity in patients. Current ICL-based therapeutics have focused on
late-stage and drug-resistant tumors, or localized treatments that limit exposure. In this article, we
review the development of clinical crosslinking agents, our understanding of how cells respond to
different lesions, and the potential to improve ICL-based chemotherapeutics in the future.
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Introduction

Crosslinking agents are a chemically diverse group of molecules that contain two or more
reactive ends. In cells, the bi-functional nature of crosslinking agents can lead to covalent
coupling between functional groups on DNA and other molecules. Reactions with DNA may
involve one or both strands to form different types of lesions, including DNA mono-adducts,
DNA-protein crosslinks, intra-strand crosslinks, and /nter-strand crosslinks (ICLs) (Figure 1)
[11. Although crosslinking agents can produce a variety of DNA lesions in cells, cytotoxicity
is often attributed to the formation of ICLs. By covalently coupling complementary strands
of the DNA duplex, ICLs block strand separation that is required for fundamental cellular
processes like DNA replication and transcriptionl2]. Failure to remove ICLs from DNA can
block cell cycle progression and lead to cell death[3]. Defects in ICL repair can also lead to
catastrophic chromosomal aberrations that promote tumorigenesisl4l.
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Congenital defects in ICL repair are associated with two major cancer predisposition
syndromes, Fanconi anemia (FA) and hereditary breast and ovarian cancer susceptibility
(BRCA). Together, FA and BRCA proteins form an adaptive DNA damage signaling and
repair pathway that promotes removal of ICLs and restores the damaged DNAD: €1, The FA
and BRCA pathways are highly inter-connected and share extensive genetic overlapl: 8.
While FA-deficient cells are particularly sensitive to ICLs[®], BRCA mutants are sensitive to
a range of DNA lesions, including ICLs[®!.

The high cellular toxicity of ICLs has been exploited clinically by numerous anti-cancer
therapies. Cancer is typified by rapid, uncontrolled cell proliferation. Like many
chemotherapeutics, crosslinking agents selectively target cancer by interfering with DNA
synthesis[10l. Although some crosslinking agents are used extensively in the clinic, those
that form ICLs with high efficiency are typically reserved for late-stage and drug-resistant
tumors[!1], or localized treatments that reduce potential side effects[*2-15], In this review, we
provide an update on several studies that shed new light on how cells respond to different
ICL-inducing agents and their potential for future therapeutic application.

Diversity of Clinical Crosslinking Agents

There are four major subgroups of crosslinking agents that have been developed for clinical
use: nitrogen mustards, mitomycins, psoralens, and platinum-based compounds (Figure 2).
Differences in chemical structure affect how these drugs interact with DNA and the type of
lesions they create. The key features of each group are described below.

Nitrogen mustards

Mitomycins

Nitrogen mustards are among the oldest and most extensively studied crosslinking

agents(8: 161, Several derivatives of nitrogen mustard (mechlorethamine) are still used
regularly in the clinic, including melphalan and cyclophosphamide. Nitrogen mustards
contain an N,N-bis-(2-chloroethyl) amine as the defining component. In cells, nitrogen
mustards form mostly DNA mono-adducts and intra-strand crosslinks, with ICLs making up
5% or less of total lesions[¢]. Nitrogen mustard ICLs are generated at the N7 of guanine in
GpC (5’-G-phosphate-C-3) or GpNpC DNA sequences(16]. Nitrogen mustard ICLs cause
only limited DNA distortions, bending the duplex ~10 degrees and unwinding the helix by
~6 degrees(®l.

Mitomycins are a family of natural products that were originally isolated from Streptomyces
caespitosis in the 1950s. Although several derivatives have been developed, Mitomycin C
(MMC) remains the most clinically active. In cells, MMC can form up to 15% ICLs, in
addition to a variety of DNA mono-adducts that make up over half of total lesions(® 171,
Mitomycin C itself is only mildly reactive. In cells, MMC is “activated” by the reduction of
its quinone moiety[1l. MMC ICLs are preferentially formed at CpG sequencesl® 11l and
cause minimal distortion to the DNA helix[6: 18, 19],
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Originally derived from plants, psoralen and derivatives like methoxypsoralen and
trimethylpsoralen are photosensitive and become reactive when exposed to ultraviolet (UV)
light[20], Psoralens are planar in structure and able to intercalate between adjacent base pairs
of duplex DNA. As a result, UV-activated psoralens readily form ICLs with high efficiency,
ranging from ~40% with methoxypsoralen[?1l to ~90% with trimethylpsoralen[®]. Psoralens
preferentially react with TpA sequences in DNA to form covalent mono-adducts and ICLs.
Psoralen ICLs do not bend the DNA duplex but do cause helical unwinding of ~25
degreesl®. 22. 23],

A wide variety of platinum-based compounds have been developed for clinical use,
including cisplatin, carboplatin, oxaliplatin, nedaplatin, and satraplatin. One of the most
widely studied is cisplatin, which forms approximately 90% intra-strand crosslinks[24: 251
and only 1-2% ICLs in genomic DNAI[261. Cisplatin ICLs form almost exclusively at GpC
sequences, reacting with the N7 of guaninel6]. Because cisplatin ICLs rest in the minor
groove of DNA and force cytosine extrusion, these lesions cause severe distortion of DNA,
bending the duplex ~47 degrees and unwinding the helix ~110 degrees(®].

Recognition and Repair of ICLs

The structure and position of an ICL play a major role in how the lesion is recognized and
repaired in cellsl2”]. Various factors from different DNA repair pathways cooperate to
recognize and remove ICLs from DNA, including those from nucleotide excision repair
(NER), base excision repair (BER), mismatch repair (MMR), homologous recombination
repair (HR), translesion synthesis (TLS), transcription coupled repair (TCR), and the FA/
BRCA cancer predisposition pathways®: 28], Together, these pathways form an adaptive,
non-linear stress response that coordinates removal of ICLs from DNA.

Replication-coupled repair

ICL repair occurs primarily during S phase after a replication fork collides with the
crosslink[2% 301 When replication forks are unable to bypass an ICL, a series of damage
signaling events coordinate removal of the ICL, repair of the damaged DNA, and completion
of DNA synthesis. For cisplatin ICLs, repair requires the convergence of two replication
forks on the lesion[29]. In cells, the firing of dormant origins likely facilitates fork
convergence when arrival of a neighboring fork is delayed[3l. Damage signaling pathways
then promote dismantling of the replication machinery by the ubiquitin-selective p97
segregase, allowing repair enzymes to access the obstructed crosslink[32: 331, Next, members
of the FA/BRCA pathway, including FANCI-FANCD2[34], promote DNA incision by XPF-
ERCC1 that “unhook” the ICL from one DNA strand[35: 361, The resulting DNA double-
strand break is repaired by homologous recombination[37] and the remaining ICL adduct is
likely removed by NER.
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ICL traverse

Replication forks have also been shown to “traverse” a trimethylpsoralen ICL, continuing
DNA synthesis past the crosslink without repairl38]. This process is supported by FANCM, a
DNA translocase that interacts with the replisome through the processivity factor PCNAL1,
Although the mechanism remains unclear, ICL traverse allows cells to complete DNA
synthesis and repair the ICL at a later time, likely using a replication-independent
mechanism described below.

Direct cleavage of psoralen ICLs

Unlike ICLs generated by other agents, psoralen crosslinks contain an N-glycosyl bond that
can be cleaved directly by NER DNA glycosylases like NEIL1[40: 41] and NEIL3[42. 43],
Cleavage of the glycosidic bond does not require displacement of the replicative helicase
and is not dependent on FANCI-FANCD?2 or the associated nucleases[34 421, Thus, psoralen
ICLs can be readily bypassed without the formation of a highly toxic DNA double-strand
break. As with replication-coupled repair, the remaining ICL adducts are likely removed by
NER.

Replication-independent repair

Outside of S phase, there are at least two distinct mechanisms for ICL recognition. First,
global genome surveillance proteins like XPC-HR23B and DDB1-DDB?2 are thought to
recognize helical distortions caused by some ICLs[® 44451 Second, transcription of cross-
linked DNA can lead to stalling of RNA polymerasel46: 471, In both cases, subsequent repair
is dependent on NER and TLS proteinsl44 46. 471 After incisions unhook the ICL from one
DNA strand, TLS polymerases fill in the single-stranded gap. The unhooked adduct is then
removed from the other DNA strand by a second round of incisions and gap filling.

Targeting cancer with ICL therapeutics

Because of their potent anti-cancer properties, DNA crosslinking agents have remained at
the frontline of chemotherapy for more than 50 years. There are currently over 4,400 open
clinical trials that utilize crosslinking agents (Table 1). About a quarter of these are late-
phase trials (phase I11 or IV) that have proven to be effective in early studies and show the
most potential to improve the standard of care. Over half of all open crosslink trials utilize
either cisplatin (~23%) or the nitrogen mustard derivative cyclophosphamide (~28%).
However, clinical use of crosslinking agents that create ICLs with high efficiency remains
limited due to high toxicity associated with treatment[48]. Together, MMC and psoralen
compounds make up only 2% of open clinical trials, with the number of new registrations
relatively unchanged over the last 12 years (Figure 3C). Thus, most crosslink-based
treatments are not currently designed to create ICLs, but instead heavily favor the formation
of other types of DNA lesions.

In the clinic, crosslinking agents are frequently used to induce cellular stress and enhance
the cytotoxicity of other agents. In late-phase trials, over 95% of crosslink-based therapies
involve combinations with other chemotherapeutic agents (Table 1). Combinational

treatments typically administer drugs at lower doses than single-drug therapies, which can
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reduce toxic side effects associated with treatment. Combining drugs that act through
different mechanisms is also an established strategy for preventing the development of drug
resistance, which remains one of the primary challenges for anti-cancer chemotherapies.
Although many tumors are initially sensitive to treatment, cancer genomes are inherently
unstable and can develop tolerance through several mechanisms. Cells can acquire both
genetic and epigenetic changes that disrupt drug-target interactions, increase drug efflux
from cells, and alter cellular signaling pathways that control the DNA damage response and
cell death[49 501, On average, less than 12% of late-phase trials that utilize crosslinking
agents target unresponsive, relapsed, or recurrent cancers, emphasizing the need to develop
additional therapies that can treat drug-resistant tumors.

To combat both innate tolerance and acquired resistance to chemotherapeutics, many
treatment strategies seek to exploit changes in cancer physiology. For example, cancer cells
frequently acquire defects in DNA repair during both the development and progression of
cancer[33l. Consequently, many tumors are highly sensitive to different types of DNA
damage. In order to predict which tumors will be sensitive to treatment, a variety of
biomarkers from different DNA repair pathways have been identified, including BRCAL,
BRCA2, ATM, ATR, CHK1/2, and FANCD2[>4-561, Using patient-derived tumor samples,
changes in gene sequence, protein expression, and post-translational modification have been
shown to strongly correlate with cellular sensitivity to specific DNA damaging agents[>7].
However, the impact that many biomarkers have in the clinic is limited by high analytical
costs and a lack of viable treatment options. As a result, many treatments are administered
without stratifying patients based on DNA repair capabilities.

Going forward, additional therapeutic strategies are needed to harness the potent cytotoxic
effects of ICLs. Recent studies have revealed a diverse range of repair mechanisms utilized
by cells in response to different ICL lesions. New roles have been identified for proteins like
NEIL1/3, p97, and FANCM during ICL repair, highlighting these factors and their respective
pathways as valuable targets for combinational therapy with crosslinking agents. With the
advent of tumor profiling, novel molecular inhibitors, and a growing list of DNA damage
response biomarkers, there is immense potential to exploit these mechanistic observations
clinically. Establishing highly selective and targeted therapies will not only improve the
efficacy of current ICL-based treatments, but also allow them to be applied more broadly by
reducing the toxic side effects that serve as a barrier to widespread use.
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. DNA crosslinking agents have been widely used in the clinic for over 50

years.
. Crosslinking agents can generate different DNA lesions with varying

efficiencies.
. Due to high toxicity, most crosslink-based therapies avoid formation of ICLs.
. New mechanistic observations highlight promise for exploiting the potent

effects of ICLs.
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Figure 1. DNA lesions formed by crosslinking agents
Crosslinking agents are highly reactive molecules that can form multiple types of DNA

lesions in cells.
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Figure 2. Diversity of ICL lesions

There are four major subgroups of DNA crosslinking agents. The ICLs produced by each
group can vary widely in chemical structure and their effect on DNA topology. Nitrogen
Mustard ICLs cause mild DNA bending and unwinding. Mitomycin C ICLs cause minimal
distortion to DNA. Psoralen ICLs cause moderate DNA unwinding. Cisplatin ICLs cause
severe DNA bending and unwinding.
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Figure 3. Clinical use of DNA crosslinking agents over time
The number of clinical trials registered each year with ClinicalTrials.gov is graphed for the

most commonly used crosslinking agents from each major subgroup. ClinicalTrials.gov
consists of privately and publicly funded clinical studies conducted around the world. The
database was established by the Food and Drug Administration Modernization Act of 1997
(FDAMA) and is maintained by the National Library of Medicine (NLM) at the National
Institutes of Health (NIH).
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