
Predicting myofiber size with electrical impedance myography: a 
study in immature mice

Kush Kapur, PhD1, Rebecca S. Taylor, BA2, Kristin Qi, MS2, Janice A. Nagy, PhD2, Jia Li, 
PhD2, Benjamin Sanchez, PhD2, and Seward B. Rutkove, MD2

1Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood 
Avenue, Boston, MA 02115

2Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, 
MA, 02215

Abstract

Introduction—Electrical impedance can be used to estimate cellular characteristics. We sought 

to determine whether it could be used to approximate myofiber size using standard prediction 

modeling approaches.

Methods—Forty-four C57BL/6J wild-type immature mice of varying ages underwent electrical 

impedance myography (EIM) using a needle electrode array placed in the gastrocnemius. Animals 

were then euthanized and muscle fixed, stained, and myofiber size quantified. Two different 

statistical prediction models were then applied.

Results—Impedance parameters showed major variation with increasing myofiber size. The 

prediction models based on EIM data alone were able to predict fiber size, with errors in the range 

of ±69.05–78.44 μm2 (16.19–18.40% with respect to the average myofiber size).

Discussion—Using well-established statistical models, EIM data alone can provide a 

satisfactory estimate of myofiber size. Further study of this approach for approximating myofiber 

size without the need to remove tissue for histological analysis is warranted.
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INTRODUCTION

Electrical impedance myography (EIM) is a neurophysiological technique in which a low-

intensity, high-frequency current is passed through tissue and the resulting voltages 

measured.1 From these values, the impedance of the tissue can be identified, including the 

major parameters of resistance, reactance, and phase angle. Changes in the impedance 

characteristics of tissue are altered in disease states. For example, muscle fiber loss, or an 

increase in fat or connective tissue in the muscle, will alter the impedance characteristics of 

the muscle. For this reason, the technology has been studied as a potential biomarker of 

disease status in a variety of disorders including amyotrophic lateral sclerosis,2 Duchenne 

muscular dystrophy,3 and disuse.4,5

Impedance techniques, however, can also be employed in more sophisticated ways then as 

simply “black box” measures of disease progression or response to therapy. In fact, 

impedance theory states that the major bioelectric outcomes are exquisitely sensitive to the 

cellular characteristics of the tissue.6 For example, cell size is related to the peak frequency 

of reactance values, with cell size being inversely related to the peak frequency value. 

Similarly, other measures, such as the ratio of the resistance values at very low and very high 

frequency, can provide information on cell density. Previous studies have also demonstrated 

significant correlations between impedance values and cell size and connective tissue 

deposition.7–9 To our knowledge, however, these impedance values have not been used to 

specifically predict such morphological features of muscle.

In this study, we attempt to address this question by studying a group of wild-type immature 

mice of different ages to determine with what accuracy we can predict cell size based on the 

impedance multifrequency spectra. This effort represents the most basic step toward 

applying EIM as a tool to quantify the histologic characteristics of muscle without the need 

to remove tissue for microscopic analysis.

METHODS

Mice

The Beth Israel Deaconess Medical Center Institutional Animal Care and Use Committee 

approved all procedures. Wild type C57BL/6 mice were bred from mating pairs. Forty-four 

animals underwent EIM measured at each of the following ages: Post-natal day PND 5 

(n=4), PND10 (n=7), PND15 (n=7), PND20 (n=7), PND25 (n=6), PND30 (n=7), PND35 

(n=6). Because no specific hypothesis was being tested, we could not perform a sample size 

estimation. Thus, our choice of sample size was based entirely on practical considerations, 

including cost and time. There were fewer animals in the youngest group because it proved 

challenging to collect any data in these animals given their very small size.

EIM measurements

Measurements were performed with the mView System (Myolex, Inc., San Francisco, 

California, USA) to obtain multi-frequency data between 1 kHz and 10 MHz (a total of 41 

logarithmically-spaced frequencies are measured to obtain a clear picture of the overall 

spectral characteristics of the tissue impedance). A 4-electrode needle array was created by 
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employing 4 insulated monopolar needle electrodes (Natus, Inc., cat# 902-DMG50-S, 

Middleton, Wisconsin). The needle electrode spacing was approximately 1 mm (Figure 1A). 

The back ends of the needle electrodes were stripped off their connectors and soldered to 

wires that connected to a cradle device that connected directly to the mView system. The 

electrode array was placed in the right gastrocnemius as previously described (Figure 1A).10 

The array was held in place using alligator clips secured to an iron base (Helping Hands by 

RadioShack, Fort Worth, TX). Data were collected twice to ensure stability of 

measurements.

Animals were euthanized shortly after the measurements were completed and the 

contralateral gastrocnemius muscle was removed for histological analysis as described 

below (so as to avoid areas injured by the needle electrodes in the muscle studied).

Histological analysis—The gastrocnemius was fixed in 10% formalin. The tissue was 

then embedded in paraffin and sectioned into 10 μm slices. Sections were stained with 

collagen VI antibodies (Abcam #6588) to identify the cell membranes and 4′, 6-

diamidino-2-phenylindole (DAPI) to stain nuclei. Individual sections were viewed and 

photographed using a Zeiss Axioimager M1 Epifluorescence Microscope. Using Volocity® 

Software, myofiber area was identified using the automated algorithms that identify the fiber 

membranes (see Figure 1B) and counts completed. On average, approximately 125 fibers 

were counted per muscle.

Data analysis

We were specifically interested in evaluating how different sets of impedance data predicted 

cell size. There were four sets of impedance data that we chose to evaluate separately: the 

single 50 kHz phase, resistance, and reactance values; the four Cole parameters (described 

below) that have been classically used to assess cellular/tissue characteristics; all the 

impedance data gathered across the 41 frequencies measured; and the impedance data 

gathered across all frequencies up to 1 MHz, the standard upper limit of most impedance 

measuring systems. In addition to evaluating each of these impedance data sets in isolation, 

we also evaluated how the addition of the animals’ age influenced prediction accuracy.

Cole impedance outputs—Multi-frequency resistance and reactance data were reduced 

to a set of four standard modeled parameters (the Cole parameters) using the standard 

impedance model described elsewhere.6,11,12 The first parameter is R0, the highest 

resistance value, if it were possible to measure at 0 Hz frequency. The second parameter is 

Rinf, which is the lowest resistance value if it were possible to measure at infinite frequency. 

The physiological interpretation of both R0 and Rinf together (R0/Rinf) is that they provide a 

measure of opposition to current flow through the extracellular and intracellular 

compartments of the tissue and hence an index of cell density. The third parameter is the 

characteristic frequency, fc and is the frequency at which the electrical current is evenly split 

between the extra- and intracellular compartments (the cells’ membranes become permeable 

to the electrical current at higher frequency). Finally, the fourth parameter is alpha, α, which 

is a measure of cell size variation. Theoretically, α =1 in a perfectly homogenous tissue with 

equally sized cells; in contrast, α = 0 in an entirely heterogeneous tissue.
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Statistical analysis and prediction models—We developed two different prediction 

models: (1.) A stepwise selection with Akaike Information Criterion (AIC) using a 

multivariable linear regression modeling framework (for 50 kHz values and Cole 

parameters);13 (2.) A penalized linear regression approach using least absolute shrinkage 

and selection operator (LASSO) for assessing the entire multifrequency set (up to 10 MHz) 

and the set up to 1 MHz.14–16 “Shrinkage” refers to reducing a parameter’s coefficient in the 

regression equation if that parameter plays a very little or non-significant role in predicting 

the expected outcome. This is important in a multi-frequency prediction model, such as 

those studied here, in which the number of predictors is very large in comparison to the 

sample size. In these models, it is assumed that very few components of the multi-frequency 

set contribute to the prediction and that the remainder of the predictors’ effects is close to 

zero. There are several reasons for choosing the LASSO based estimate of model 

parameters, a) the least-squares estimate often has low bias but large variance, and 

prediction accuracy can be improved by shrinking the values of the regression coefficients. 

By doing so, we tend to introduce some bias but also reduce the variance of the predicted 

values; hence, often improving the overall predictive performance of the model, and b) 

secondly, we often are interested to identify a smaller subset of these predictors, just like in 

our current problem, that are strongly related to the outcome. Therefore, the underlying 

assumption of sparsity (i.e., using fewer values) for predictive model building allows for 

estimation of the parameters effectively, (using the LASSO and/or related approaches) even 

without having the knowledge of which unique set of parameters out of the entire set are 

actually nonzero. The tuning parameter, which controls the strength of the “penalty” in each 

LASSO model, which can further help simplify the model, was selected using the leave-one-

out cross-validation (LOOCV) approach. In this procedure, we first choose a value of 

penalty and estimate model parameters using LASSO by leaving out one observation. The 

fitted model is then tested on the left out observation in terms of its predictive performance 

(to obtain an estimate of residual and hence mean square error for the left out observation). 

To obtain an estimate of mean squared error for the specified penalty, the above procedure of 

leaving out one observation and training on the remaining set is repeated on the entire set of 

observations. As a next step, the above LOOCV procedure is repeated for the specified range 

of penalty. The final penalty value is chosen to be one that provides an average minimum 

mean square error on the range of penalty terms using the LOOCV procedure. By taking this 

approach, it becomes possible to perform model selection while preventing over-fitting. 

Prior to modeling, the mean muscle fiber size and the impedance parameters were 

standardized to unit normal scale to provide equal weights to each predictor during cross-

validation and to remove the effect of the underlying unit of measurement. In each case of 

the penalized linear regression approach, the estimates of parameters are generally biased 

but they perform extremely well in terms of providing prediction as they attain the minimum 

root mean square error (RMSE) on the training set while balancing the overall bias and 

variance trade-off.16

As a final step in assessing the effectiveness of each of these models, we then translated the 

scaled predicted muscle fiber size back into original scale of measurement by multiplying it 

by the standard deviation and adding the overall mean of the true fiber size in our training 
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set. Similarly, we assessed the performance of prediction by multiplying the RMSE by the 

standard deviation of the true muscle fiber to estimate it in micrometers for each model.

RESULTS

Animal histology and raw impedance values

Figure 1B shows three representative images (each on the same scale) of gastrocnemius 

muscle stained with anti-Collagen VI antibodies (red, cell membranes) and DAPI (blue, 

nuclei) at selected time points to provide a general sense as to how the muscle fiber 

characteristics change with increasing age. An increase in muscle fiber cross-sectional area 

(i.e., muscle cell size) is apparent as the pups increase in age from PND5 (upper panel) to 

PND15 (middle panel) to PND35 (lower panel). Figure 1C shows the variation in the cell 

size, in terms of mean cross-sectional area, for each age cohort. Note that over the course of 

one month, the cross sectional area increases seven-fold from a mean of 97.6 μm2 at p5, to 

363 μm2 at p15, to 737 μm2 at p35. Figure 1D shows the coefficient of variation in the cell 

size at each age, confirming that all the cells are essentially enlarging to a similar extent, in 

agreement with the uniformity of the size of the muscle fibers shown in each of the images 

in Figure 1B.

Figure 2A shows the complete multi-frequency data sets with increasing age, for all the 

animals averaged across each age group. As can be seen, the impedance spectra (phase, 

reactance, resistance) gradually shift as the animals grow, with the peak frequency 

decreasing in value and the whole curve increasing in value and shifting to the left. Figure 

2B shows an example of the 50 kHz phase, reactance and resistance data. Whereas the 

reactance shows a general increase, resistance remains relatively unchanged; however, the 

phase shows the greatest relationship to age, although it plateaus at P25, despite increasing 

myofiber size (as seen in Figure 2A).

Prediction models

We took several approaches for applying these prediction models. Because our main interest 

was in predicting muscle fiber size based on impedance parameters alone, we studied both 

prediction algorithms described above (stepwise and LASSO) without including age, 

focusing on 50 kHz values alone, the Cole parameters alone, the entire multifrequency set up 

to 10 MHz, and a more limited multifrequency set up to 1 MHz, the standard upper limit of 

most impedance measuring systems. Of note, for the 50 kHz parameters, only phase 

contributed to the model and thus is included here. Table 1 provides details as to the 

predicted error for each of the prediction models both in terms of raw scaled values and in 

terms of the final variation in area in μm2. Table 1 also shows the effect of adding age to the 

prediction, demonstrating how much this one additional factor improves the prediction. 

Table 2 shows the relative contribution of the 50 kHz phase values and each of the Cole 

impedance parameters in the various prediction models, both with and without age. Table 3 

provides the relative contribution of each of the frequencies to the various multifrequency 

models, with and without age included, and the associated coefficients for each value that 

would need to be used in the regression equation for each of the models. Only frequencies 

that contribute to the various multifrequency models are included in Table 3. As can be seen, 
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a variety of frequencies/impedance parameters become important in the LASSO approach, 

their relevance not being intuitively obvious. Data from several frequencies between 1 and 

10 MHz are also included in this model.

Figure 3 shows the resulting actual and predicted cell size for each animal based on the 

regression analyses without age included. Figures 3A and 3B show the results using the 50 

kHz phase and the Cole parameters, respectively. Figures 3C and 3D show the results 

obtained using the entire frequency spectrum as compared to using values of the frequency 

spectrum up to 1 MHz. As can be seen, the 50 kHz phase (Fig. 3A) somewhat surprisingly 

outperformed the Cole parameters (Fig. 3B), though both fared considerably worse than 

those analyses performed using all frequencies up to either 10 or 1 MHz (Figs. 3C and 3D).

DISCUSSION

The results of this study confirm the very strong relationship between impedance values and 

mean myofiber cross-sectional area, supporting general impedance theory. More specifically, 

the multifrequency model developed (using the data set up to 10 MHz) can predict muscle 

fiber size with a RMSE of 0.346, translating into an error of ~78.44 μm2, in an “average” 

muscle fiber size of 426.25μm2 in the combined group of immature and young mature 

animals, (representing an error of 18%). By adding age, that prediction becomes still 

stronger, with the RMSE dropping to 0.304, which translates into an error of 69.05 μm2 

(representing an error of 16%). However, using the Cole parameters or the 50 kHz phase 

values alone result in far less accurate predictions, as shown in Table 1. Although the 

penalized regression based models were built using LOOCV, further validation using a 

separate test would add more weight to this basic concept. Importantly, the LASSO based 

coefficients (Table 3) define the optimal weights needed for the multiplication with the 

standardized frequency components to perform prediction of muscle fiber size for future 

data sets.

This work represents only an initial attempt to refine EIM as a “virtual biopsy” technique in 

which impedance parameters along with proper modeling can be used to help provide 

histological information on muscle without the need to actually obtain tissue. Naturally, the 

complexity of muscle pathology makes our actually replacing biopsy impossible. However, 

the work described here represents a basic first step toward quantifying certain aspects of 

muscle histology without the need for actual tissue removal. While an error in prediction of 

16–18% suggests a satisfactory estimate between histology and EIM for an early stage 

comparison, additional improvements will be required to reduce the error in prediction of 

fiber size to something more acceptable, perhaps to less than 5%. Achieving such a low error 

would help ensure greater success of the technique, especially as we begin to seek to identify 

more complex pathologies. Nevertheless, the wealth of potential impedance parameters, 

including frequency dependencies, anisotropic (i.e., direction dependent) characteristics, and 

the different impedance parameters themselves may help characterize other aspects of the 

tissue, including extracellular connective tissue and fat, the presence of inflammatory cells, 

or intracellular vacuolization. Performing these impedance measurements on tissue with 

needle electrodes in a very well controlled model represents a simpler paradigm as 

compared to the use of surface electrodes, in which the skin and subcutaneous fat may 
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impact the data. Still, the model we developed here could be used in future animal studies or 

human work using needle electrodes for impedance measurements.

Clearly, it would be helpful if such a model could provide additional information beyond 

simply mean fiber diameter, such as a sense of the distribution of fiber size. This is 

theoretically possible, but the data set analyzed here did not readily allow for that possibility 

since these were all normal mice with consistent muscle fiber distributions. Stated another 

way, although the standard deviation in fiber sizes increased with age and increasing fiber 

area (see error bars in Figure 1C), the actual coefficient of variation (i.e., the standard 

deviation/mean) in fiber size remained virtually unchanged across all the groups of animals 

(see Figure 1D). Hence it would not be possible to predict the relative variation in fiber size 

in these animals since there was essentially nothing to predict (all animals had similar 

coefficients of variation in fiber size). Future studies can certainly seek to address assessing 

tissue with mixed fiber sizes.

Our main interest was in predicting muscle fiber size based entirely on the impedance data 

alone. The value of looking at animals of different ages was merely to provide a well-

differentiated set of data so that we could create such a predictive model. As Table 3 shows, 

by adding in age as a predictor to either the entire multifrequency spectrum analysis or to 

analysis using the multifrequency spectrum up to 1 MHz, the predictions improve even 

further to yield a RMSE of 69.05 and 73.21 μm2, respectively. There are two relevant points 

here. First, adding in the age, a clearly important and very informative predictor, as 

suggested by Figure 1C, only improves the prediction modestly for the two multifrequency 

models (i.e., RMSE decreased from 78.44 to 69.05 μm2 for the 10MHz multifrequency data 

set, and from 84.33 to 73.21 μm2, for the 1MHz multifrequency data set). Second, while 

small, this result does illustrate the fact that such non-impedance data could certainly be 

used to further improve the predictive capabilities of this EIM-based approach. However, it 

should be noted that the impact of a parameter such as age would likely be far less important 

in fully mature animals, where it would be unlikely to play as significant a role.

Another interesting fact about adding age to the prediction model is that it altered the 

frequency parameters used in the model, as shown in Table 3. This seems to be especially 

true when including the full frequency data set. As age itself was such a strong predictor—

its presence tends to remove those frequencies that are strongly related with muscle fiber 

size and itself. To summarize, the LASSO approach is known to select only one variable 

from a group of highly correlated variables and it ends up selecting a set of frequency 

parameters in the presence of age that are not as strongly related to the age.

We also note that the increasing volume of the overall muscle would not be anticipated to 

have any impact on the spectral characteristics of the impedance that we evaluate here. In 

other words, we are not simply measuring gross muscle size. Changes in size could alter the 

actual values at a given frequency, but not the overall spectral characteristics.6

We evaluated two multifrequency sets: one going as high as the instrument could measure—

10 MHz—and the other up to only up to 1 MHz. Although the system can obtain data 

between 1 and 10 MHz, there is likely considerable distortion in the impedance data at these 
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higher frequencies due to a variety of unavoidable problems, including inductive effects 

from the wires and parasitic capacitances within the hardware. Despite this, several 

frequencies above 1 MHz did seem to improve the model fit, as shown in Table 3. If it were 

simple noise, it would not be expected to improve the model. Further investigations will be 

needed to clarify this issue.

There are several fine points and limitations that should also be highlighted. First, we also 

studied a second prediction model in the multifrequency set, called elastic net, which allows 

for selection of correlated predictors.17 This performed similarly to the approach shown, 

including identifying the same frequencies and impedance parameters that were identified as 

predicting cell size here; hence, for clarity, we decided not to show that data here. Second, 

we included phase as a separate parameter in all of these models. Phase is actually derived 

from reactance and resistance, (specifically via the equation phase = arctan (reactance/

resistance)). While including this value in addition to reactance and resistance may seem 

duplicative, it is actually not. As can be seen, the phase contributes substantially to the final 

models presented in Table 2. Nevertheless, to see its effect, we re-ran the analysis, this time 

keeping reactance and resistance at all frequencies but omitting phase (data not shown). This 

weakened the predictive model, increasing the RMSE up to 74.87 μm2 (from 69.05 μm2). In 

addition, we obtained the RMSE of 72.12 μm2 in a model containing only phase, implying 

that all three components: resistance, reactance and phase, included in a single model 

improve prediction. A final limitation of the analysis performed is that it does not include 

any measurement of anisotropy.1 Anisotropy, or the directional dependence of electrical 

current flow in muscle, plays a substantial role in muscle given the cylindrical shape of 

muscle fibers. However, given the very small size of each of these animals, it would have 

been challenging in the extreme to obtain two-directional data with any accuracy.

Having completed this initial work, the goal of future studies will be to begin to evaluate 

disease models using surface electrode arrays rather than the needle electrode arrays we 

utilized here. This approach may require the addition of a factor for the thickness of the skin/

subcutaneous fat. Also, while we have achieved a satisfactory result, we believe we can still 

improve on these initial efforts and predict myofiber size more accurately. Moreover, we 

have, in fact, previously identified high-frequency impedance features that may allow the 

differentiation of slow-twitch from fast-twitch fibers.18 Thus it may be possible to predict 

relative proportions of these fiber types more accurately within a given muscle, in part by 

using the Cole alpha parameter, described above, which provides a measure of myofiber 

heterogeneity. In addition, we can begin to use such predictive methods to begin to assess 

more complex disease pathologies, including the endomysial deposition of fat and 

connective tissue and intracellular abnormalities, such as abnormal glycogen accumulation 

or vacuolization. Only by pursuing a varied group of neuromuscular pathologies will we be 

able to better understand both the possibilities and limitations of this approach to performing 

a “virtual biopsy.”
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ABBREVIATIONS

AIC Akaike information criterion

Arctan arctangent

CIs confidence intervals

EIM electrical impedance myography

DAPI 4′, 6-diamidino-2-phenylindole

Hz Hertz

kHz kilohertz

LASSO Least absolute shrinkage and selection operator

LOOCV Leave one out cross validation

MHz megahertz

PND Post-natal day

RMSE root mean square error

μm2 micrometer squared
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Figure 1. 
A. Electrical impedance myography (EIM) measurement technique in a P5 mouse. B. 
Example images of gastrocnemius muscle stained with antibodies to collagen VI (red, cell 

membranes) and DAPI (blue, nuclei) in PND 5, PND 15, and PND 35 mice showing a 

uniform increase in muscle fiber size as mice age from PND 5 to PND 35; bar = 20 μm. C. 
Mean (± standard deviation) fiber size of each mouse group age. D. Coefficient of variation 

of fiber size (standard deviation/mean), demonstrating relative consistency of variation 

across all ages.
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Figure 2. 
Multifrequency (A) and single frequency (50 kHz) (B) impedance data in each group of 

mice aged PND 5 through PND 35.

Kapur et al. Page 12

Muscle Nerve. Author manuscript; available in PMC 2019 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Comparison between actual and predicted muscle fiber sizes. A. 50 kHz phase impedance 

values alone using stepwise regression. B. Cole impedance parameters alone using stepwise 

regression. C. Full multifrequency impedance data set using LASSO. D. Up to 1 MHz 

multifrequency data set using LASSO.
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