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Intra-individual alterations of 
serum markers routinely used in 
forensic pathology depending on 
increasing post-mortem interval
Lina Woydt1, Michael Bernhard2,3, Holger Kirsten4,5, Ralph Burkhardt   6, Niels Hammer7,8,9, 
André Gries2, Jan Dreßler1 & Benjamin Ondruschka1

Post-mortem biochemistry of serum markers has been the subject of numerous studies, but in-situ 
marker stability after death has not been sufficiently evaluated yet. Such laboratory analyses are 
especially necessary in the cases of functional deaths without morphological evidence of the death 
causes and also in cardiac death cases with only very short survival times. The aim of the study was to 
determine the post-mortem stability of commonly-used serum markers at predefined time points. In 20 
cases, peripheral venous samples were taken starting immediately after circulatory arrest and ending 
48 hours after death. Serum creatinine, urea, 3-β-hydroxybutyrate, tryptase, myoglobin, troponin 
T, creatin kinase and creatin kinase-MB have been included. For all markers, we observed increasing 
marker levels for longer post-mortem intervals. Significant marker level changes began two hours after 
death. Excessive increases were observed for cardiac and muscle markers. Marker levels showed high 
intra-assay precision. Furthermore, the markers were robust enough to withstand freeze-thaw cycles. 
Potential contamination of arteriovenous blood did not influence the post-mortem marker levels. 
Post-mortem blood should be sampled as soon as possible, as increased post-mortem intervals may 
heavily change marker levels in-situ in individual cases, whereas the markers are mostly unaffected by 
laboratory conditions.

Since the 1960’s, numerous articles and intermittent reviews considering post-mortem biochemistry have been 
published1–3, showing both an increasing number of authors occupying themselves with this sector of forensic 
science and the relevance of this topic in legal medicine. This research has compiled publications regarding the 
retrieval of new markers, which show different causes of organic or functional death circumstances and their 
relation and measurement methods in different body fluids. Also included are proposals considering threshold 
values (‘cut-offs’) of markers dependent on causes of death and establishment of advanced methodology, with the 
aim of creating fast and cheap next-to-dissection table-tests.

Nevertheless, the application of biochemical markers in post-mortem investigations of both disciplines, 
forensic and clinical pathology, is still not well-established and is not used routinely, although biochemistry is 
declared necessary to solve the ultimate causes of death in about 10% of natural deaths in forensic routine3, e.g. in 
cases of acute kidney failure, metabolic ketoacidosis, anaphylaxis and in cardiac death cases with only very short 
survival times. A lack of reliable data may be a problem leading to uncertainty about using clinical chemistry 
methods4,5. Additionally, an interpretation of post-mortem laboratory results of blood samples gets progressively 
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more difficult with proceeding hemolysis, which is why alternative body fluids such as cerebrospinal fluid, urine, 
pericardial fluid and especially vitreous humour are increasingly being used3,6,7.

However, there are, unrelated to the cause of death, hardly any published research attempts investigating the 
intra-individual stability of markers used in forensic medicine by serial peripheral venous blood measurements 
in the same body after the onset of death. Very few existing studies address the small number of biochemical 
markers of sepsis and anaphylaxis8–12, and myoglobin13 in post-mortem serum; there remain many organ systems 
whose characteristic markers have not been evaluated considering intra-individual changes after death.

This study involved a number of serum markers, which are well established for the clinical routine in living 
patients and are becoming increasingly important in the forensic setting as well. In this study, the biomarkers 
creatinine and urea are markers of renal insufficiency, 3-β-hydroxybutyrate (3HB) is the target marker for alco-
holic and diabetic ketoacidosis and tryptase is a parameter of mast cell degranulation and indicative for anaphy-
laxis and other allergic conditions. Myoglobin, troponin T (with a high-sensitive assay), creatin kinase (CK) and 
CK-MB are markers for cardiac and/or coronary diseases. All were measured repeatedly in blood samples of the 
bodies post-mortem to determine their intra-individual in-situ stability after death in predefined time intervals 
and are outlined briefly in the following paragraph.

Typical renal markers in clinical and forensic settings are creatinine and urea. Creatinine is generated in skel-
etal muscle by dehydration of phosphocreatine. Creatinine is mainly eliminated from circulation by glomerular 
filtration and its blood concentration is an established marker of kidney function. Similarly, urea is considered an 
end product of protein metabolism, and is eliminated almost exclusively by the kidneys in urine. For both renal 
markers, elevated post-mortem blood levels can be found in cases of renal or skeletal muscle damage14–16, thereby 
forming an important marker in the forensic routine.

3HB together with acetone and acetoacetate forms the group of ketone bodies. It is synthesized hepatically and 
forms an important serum marker in the case of pathologic situations of carbohydrate deficiency. Here it provides 
an alternative energetic source for the organs17,18, especially for the brain. Common conditions of elevated ketone 
body levels in the clinical routine are alcoholic or diabetic ketoacidosis17,19,20. Equally, 3HB forms an important 
marker in the forensic routine for ketoacidosis.

Tryptase is a serine protease secreted by mast cells. The numerous functions of tryptase are not completely 
clear, but it is a highly specific marker for mast cell degranulation and therefore increases in conditions of imme-
diate allergic reactions21,22. In the context of forensic medicine, post-mortem serum tryptase has been established 
as an indicator of possible ante-mortem anaphylaxis22.

Myoglobin can be elevated due to several causes13,23. Myoglobin is an oxygen-binding protein found in the 
heart and in skeletal muscle and is consequently used most often to detect myocardial and skeletal muscle damage 
in clinical medicine. Troponin T is a regulatory protein found exclusively in heart muscle cells, and is released 
into the blood from injured cardiac myocytes about three hours after ischemic injury. Troponin T increases in 
many diseases24. CK is a kinase mainly situated in muscle tissue and plays an important role in cellular energy 
generation through a process of phosphorylation. The isoenzyme CK-MB exists notably in cardiac myocytes and 
is therefore a more specific cardiac marker25.

The aim of the present study was to show if a selection of widely known and used biochemical markers of renal 
insufficiency, ketoacidosis, anaphylaxis or ischemic heart damage could be declared as stable intra-individually in 
the early post-mortem interval to conclude their reliability in forensic application.

Results
Demographic and autopsy data.  The study included six females and fourteen males, whose ages at death 
varied between 29 to 98 years (median age 70.5 years, interquartile range (IQR) 23.5 years). 18 patients were 
resuscitated before the final declaration of death, and two patients were not. The duration of cardiopulmonary 
resuscitation (CPR), if performed, varied between 10 to 160 minutes (median 68.5 minutes, IQR 46.5 minutes).

The different time points of blood sampling for this study are illustrated in Fig. 1. We collected blood imme-
diately after death (=T0), after two hours (=T1), after one day (=T2) and after two days (=T3) post-mortem.

Autopsy was ordered by the public prosecutor’s office in half of all cases. In eight cases, autopsy revealed a 
cardiac cause of death (acute myocardial infarction, n = 6; congestive heart failure, n = 2). In two cases death was 
due to pulmonary causes (pulmonary thromboembolism, n = 1; aspiration of stomach content, n = 1). The ten 
cases, which were not ordered for autopsy, were classified as formally unknown, but none of them showed severe 
injuries during external examination.

Out of these 10 cases without final diagnosis, the emergency doctors raised suspicion of four cardiac causes of 
death (acute myocardial infarction, n = 1; congestive heart failure, n = 2; sudden cardiac death, n = 1), two pul-
monary causes (pulmonary thromboembolism, n = 2), aortic dissection type a (n = 1), hemorrhagic shock due 
to gastrointestinal bleeding (n = 1) and acute ischemia of the intestines (n = 1) as plausible causes of death, while 
one case remained completely uncertain.

Marker levels were checked for any confounding effects by age and gender of the deceased. The age did not 
show any significant interaction between the measured values (all p > 0.05). Urea levels were higher in females 
than males (p < 0.05). All other markers did not show gender-dependent distribution.

Sample indices.  The serum samples showed increasing grades of hemolysis and lipemia correlating with the 
length of the post-mortem interval (each p < 0.001), whereas the icterus index of the samples remained stable 
over the tested time period (p = 0.137) with the tendency to decline (please see Supplemental Figs. 1 and 2).

Table 1 shows overall comparisons between changes in sample indices and marker levels. The marker lev-
els depend on the severity of post-mortem blood changes related to altered hemolysis and lipemia content. 
Furthermore, the marker levels were independent to the icterus index of the samples.
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Serum levels of analytes according to post-mortem interval.  The development of every marker 
is visualized as box plot (see Fig. 2). The median values and their IQRs for all sampling times are shown in 
Table 2. In summary, median marker levels increased with longer post-mortem intervals starting at their lowest 
post-mortem measurement points with T0 and ending with their highest medians at T3 (p < 0.001). Whenever 
available, the T0 levels were approximately equivalent to the final laboratory measurement during the lifetime of 
the patients (ante-mortem data were archived for renal and cardiac markers). Quantification of marker levels at 
T3 showed significantly higher median values for all markers tested compared to T0. No significant changes were 
observed for any marker in the first hours after death (between T0 and T1). Tryptase, troponin T and CK-MB 
showed no relevant concentration changes in the first day after death (between T0 and T2).

There were single cases with slight decreases in marker levels over time. One case with acute myocardial 
infarction as cause of death showed the highest initial creatinine value (467 µmol/l) with mild post-mortem 
decrease to T3 (431 µmol/l). In only two cases, a mild post-mortem decrease from T0 to T3 was shown for 3HB 

Figure 1.  Distribution of single sampling over time after death, where T0 is defined as the moment of death. 
‘Pre’ means clinical sampling during resuscitation attempts by emergency doctors.

Marker

Hemolysis index Lipemia index Icterus index

Standard 
error P value

Standard 
error P value

Standard 
error P value

Creatinine 0.039 <0.001 0.044 <0.001 0.107 0.953

Urea 0.018 <0.001 0.020 <0.001 0.059 0.239

3HB 0.041 0.042 0.052 <0.001 0.115 0.283

Tryptase 0.039 <0.001 0.053 <0.001 0.135 0.820

Myoglobin 0.158 <0.001 0.269 <0.001 0.374 0.810

Troponin T 0.135 0.018 0.198 0.007 0.358 0.463

CK 0.209 <0.001 0.330 <0.001 0.511 0.743

CK-MB 0.144 <0.001 0.231 <0.001 0.372 0.888

Table 1.  Comparison between different sample indices and corresponding marker levels. Significance was 
tested with a linear mixed regression model by modelling individuals as random intercept term. P values were 
adjusted according to the Benjamini-Hochberg procedure. 3HB, 3-β-hydroxybutyrate; CK, creatin kinase.
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(136.7 to 115 µmol/l and 278.5 to 231.2 µmol/l). Further, two cases showed minute decreases of tryptase with 
longer post-mortem intervals (19.6 to 13.6 µg/l and 6.8 to 5.3 µg/l).

Cardiac markers showed controversial individual behavior. More than half of the cases (13/20 = 65.0%) 
showed myoglobin levels surpassing the upper measurement limit of 30,000 µg/l at T2, T3 or at both time points. 
However, there were three cases with decreasing myoglobin levels between T0 and T3. Troponin T reached its 
maximum detection limit of the test kit once at T3. Again, there were also five cases (5/20 = 25.0%) with decreas-
ing values. Both CK and CK-MB showed unidirectional increases over time only.

Marker concentrations and reference values.  All measurements were performed using in-vitro diag-
nostics certified assays. In laboratory diagnostics, established reference intervals are applied to identify abnormal 
results, allowing a differentiation between ‘case/ill’ or ‘control/healthy’ (see Supplemental Table 1). Almost all 
post-mortem values of creatinine, 3HB, myoglobin and troponin T as well as all T2 and T3 levels of CK and 
CK-MB were higher than clinical reference ranges. Most of the samples showed urea and tryptase levels within 
their clinical reference spectrum.

When using predefined post-mortem references, which were available for creatinine and urea26, 3HB27, 
tryptase28 and troponin T29, only single cases exceeded these cut-off values in the time course. All cases with at 
least one single measurement above these post-mortem thresholds are depicted in Fig. 3. Of interest, no single 
measurement exceeded the critical urea level (33.4 mmol/l; higher levels are indicative for a fatal acute kidney 
failure). The proposed cut-off values were not reached for creatinine (n = 18), 3HB (n = 18) and tryptase (n = 19) 
in almost all cases, showing that there is no passive shift with increasing post-mortem period above the thresholds 
in general. Whenever one measurement was above the post-mortem threshold, irrespective of being at T0, T1 or 
T2, then the marker level was at or above these cut-offs at T3.

Figure 2.  Box plot diagrams for the biochemical markers tested, listed by their time point of sampling (T0 
defined as moment of death). The outlines of the boxes indicate the 25% and 75% percentile, the solid black 
line the median. End of lines show the minima and maxima. Outliers (>1.5 times interquartile range) were 
presented as bold points. Values outside the measurement ranges (detected for tryptase, n = 2; myoglobin, 
n = 17; and troponin T, n = 2) were defined as maximum or minimum of the limits. For better visualization, 
troponin T values > 20,000 pg/ml (n = 2) were not illustrated in the diagram but were included in all statistical 
calculations. ‘Pre’ means clinical sampling during resuscitation attempts by emergency doctors. The dotted thin 
line in grey illustrate the clinical reference value, whereas the dashed thick line in black represents published 
post-mortem cut-off values (for references see text). *p < 0.05; **p < 0.001 using Friedman test followed by 
post-hoc Conover and Bonferroni adjustment. 3HB, 3-β-hydroxybutyrate; CK, creatin kinase.
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The single cases illustrated in Fig. 3 showed underlying cardiac causes of death for seven out of nine cases with 
exceeding troponin T values. A considerable passing of the troponin T threshold value seemed to mostly appear 
only when the marker levels during onset of death were already increased.

Quality control.  Freeze and thaw stability was tested to ascertain the possibility of repeated or delayed meas-
urement of biochemical markers from serum samples, which are stored at −80 °C. Therefore, three freeze-thaw 
cycles (numbered as 0; 1; 2) were performed for each marker and at each point in time (T0-T3) among different 
cases. Figure 4 shows the changes of marker levels depending on the number of freeze-thaw cycles. Most analytes 
were stable regardless of the number of thawing cycles. Most markers showed at least one single sample with an 
elevated level after the first thawing compared to the initial value but with a subsequent decline beneath the initial 
value or vice versa. No single measurement presented levels above the post-mortem references when the initial 
concentration of the untreated sample was below these thresholds. Referring to the initial value measured, the 
maximum ranges after repeated thawing are shown in Supplemental Table 2.

The intra-assay precision of the post-mortem substrates was high for all markers tested. The numerical devia-
tion of the investigated values never exceeded 10% (see Supplemental Table 2). When comparing the minute var-
iance within the measurements with maximum deviations +5.5% as upper and −7.3% as lower range (illustrated 
in Fig. 5) with the absolute changes of the markers tested over increasing post-mortem interval (Fig. 2, Table 2), 
the changes in precision were negligible and within the definitions of precision according to the quality standards 
for medical laboratories of the German Medical Association.

Finally, the values were checked for differences between the femoral arterial and venous samples. The relative 
deviation of the arterial value in relation to the venous value is presented in Supplemental Table 2, and was fluc-
tuating around 10% depending on the marker tested with mostly higher levels in venous blood. Using these data, 
we determined to which extent an unintended ‘mixture’ of arterial and venous blood might affect the accuracy of 
the measurements (e.g. if an artery is accidentally punctured). We found no relevant changes when comparing 
mixed with pure arterial and pure venous blood (see Fig. 6).

Discussion
The objective of this study was to determine the changes in different biochemical markers in blood serum after 
the onset of death. Our results indicate that the investigated markers underlie post-mortem changes with the 
tendency to rise proportionally to the post-mortem interval of 48 hours. However, creatinine, urea, 3HB and 
tryptase exceeded post-mortem cut-off values only in single cases and post-mortem urea and tryptase were even 
within clinical references ranges for most samples. All cardiac marker levels showed large increases post-mortem.

Marker
Pre
(pre-final)

T0
(death)

T1
(2 hpm)

T2
(24 hpm)

T3
(49 hpm)

Creatinine (µmol/l)

Median 100.0 125.0 135.5 199.5 211.0

IQR 73.3 80.8 47.8 65.3 48.5

Urea (mmol/l)

Median 5.4 7.2 7.0 8.6 9.2

IQR 8.9 7.5 6.7 7.7 9.5

3HB (µmol/l)

Median n.m. 135.9 153.5 172.1 185.9

IQR n.m. 99.8 87.0 146.2 139.0

Tryptase (µg/l)

Median n.m. 6.0 6.0 8.3 8.8

IQR n.m. 4.7 3.9 5.3 5.4

Myoglobin (µg/l)

Median 323.5 640.1 1,206 13,775 30,000

IQR 714.8 2,216 1,971 27,351 25,579

Troponin T (pg/ml)

Median 53.4 90.5 113.4 134.6 213.5

IQR 110.6 305.6 471.9 400.6 622.3

CK (µkat/l)

Median 2.5 2.6 3.3 64.1 535.8

IQR 1.7 4.0 5.7 250.9 922.0

CK-MB (µkat/l)

Median 1.3 1.3 0.9 5.7 28.0

IQR 0.8 1.7 1.0 6.5 46.1

Table 2.  Median values and interquartile ranges (IQR) of the eight different markers for all sampling times 
(in hours post-mortem, hpm). ‘Pre’ means clinical sampling during final minutes ante-mortem. 3HB, 
3-β-hydroxybutyrate; CK, creatin kinase; n.m., no measurement.
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No marker had shown significant changes in the first two hours after death, therefore, the authors recommend 
that the collection of post-mortem blood samples as part of the external post-mortem examination should be 
done in this early time interval if the puncture of a blood vessel is legally possible. This offers the opportunity 
to significantly reduce the described influence of post-mortem changes within the blood samples. As a rule of 
thumb, the collection of blood should be carried out as soon as possible after death. The serum levels of all selected 
markers should ideally reflect functional or organic causes of death irrespective of the post-mortem interval. In 
forensic research, some other markers, especially electrolytes, were investigated to estimate the post-mortem 
interval biochemically, but reliable death time estimations are impossible in most cases using laboratory kits30.

Some authors described a slight increase in creatinine14, which is also shown in a mouse experiment31, and 
in urea14,26,32 after death, in line with our results. Nevertheless, both markers have been presented in literature 
as reliable post-mortem markers1,3,14,31 and post-mortem cut-offs are used for diagnosing lethal acute kidney 
failure26. These cut-offs seem to be sufficient, since no single value of urea was above its threshold, and only one 
single creatinine level increased above it during the post-mortem interval.

In previous studies, no correlation between ketone body concentration and the post-mortem interval was 
observed27,33. As 3HB is declared to be more stable than acetoacetate, especially regarding delayed measurement 
after storage, this is the marker of choice to determine the ketone status of a body34 and is used in daily forensic 
routine. Iten and Maier27 proposed a 3HB cut-off of 500 µmol/l and constituted that all levels under this should be 
assessed as ‘normal’ in post-mortem settings. Again, this cut-off was elevated only in two cases, and seemed to be 
useful in post-mortem biochemistry for investigating unselected cases.

In numerous existing publications it has been shown that the clinical reference value for tryptase cannot be 
used post-mortem, as tryptase levels after death are sometimes increased compared to samples of living patients 
even without underlying anaphylactic reactions22,28,35–37. Systematic development of this parameter enables 
the definition of a post-mortem cut-off value. Currently, the most common value is proposed to be 44.3 µg/l28. 
Further studies confirmed this limit35 or suggested similar reference values22,37. Only one T3 value of our cohort 
exceeded this post-mortem limit; the person had died from a cardiac cause of death as autopsy result without 
signs for any anaphylactic trigger.

Figure 3.  Measurement results for single cases with marker values above post-mortem cut-off values for 
creatinine, 3-β-hydroxybutyrate (3HB), tryptase and troponin T.
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Interestingly, evidence regarding tryptase development relative to the post-mortem interval is inconsistent. 
While some authors36,37 declared no tendency of increasing tryptase with post-mortem interval, others35 showed 
such dependency. The presented results indicate that there is indeed an increase with longer post-mortem inter-
val, but almost all without consequences for the post-mortem cut-off promised. As there were no anaphylaxis 

Figure 4.  Laboratory results for three repeated freeze-thaw cycles, tested in the same four samples for all 
markers. 3HB, 3-β-hydroxybutyrate; CK, creatin kinase.

Figure 5.  Results of triplicate measurement for all markers of the four samples selected (one sample 
representing one sampling time) to test the post-mortem intra-assay precision of the used kits. 3HB, 
3-β-hydroxybutyrate; CK, creatin kinase.
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cases in our cohort, we could not assess if there was a different post-mortem development in such special cases. 
Interestingly, Tse et al.11 presented a case of an anaphylactic death with initially increased values which subse-
quently decreased; another similar case was reported by Sravan et al.12. This may have been due to a degradation 
of the released hormones12 or just reflected the clinical development after anaphylaxis38.

Most troponin T studies showed a post-mortem increase, dependent on the post-mortem interval, at least 
after 48 h39,40. To the best of our knowledge, only one publication reported the post-mortem results of the same 
highly-sensitive troponin T assay from Roche Diagnostics and these authors have shown a general post-mortem 
increase in serum without relation to the underlying causes of death29. They tried to describe a post-mortem 
troponin T cut-off of 250 pg/ml29. A recent study showed comparable results when investigating cardiac causes 
of death39. Interestingly, the values of our given study often exceeded this previous threshold, but in most of the 
cases this was already true for the first post-mortem sample. This might be due to a heavy surge of troponin T 
from damaged cardiomyocytes or by prolonged CPR with secondary cardiac damage41. These attempts could 
have changed the initial values and distribution of biologic fluids, as it was stated that CPR disturbs agonal values 
deeply42 and shifts from central to peripheral blood43. Since 90% of our cohort got final chest compressions via 
CPR, we were not able to check for the influence of such rescue attempts by statistical methods. However, other 
authors stated no influence of CPR on post-mortem troponin T levels39,44.

There were a few attempts to measure post-mortem serum myoglobin and CK as well as CK-MB, for exam-
ple with reference to electrical fatalities13,23. An increase in the values with the passage of post-mortem time 
was obvious for these (heart) muscle markers23 and a practically applicable cut-off value could have been deter-
mined for none of them13,45. An unspecified post-mortem increase of myoglobin dependent on the PMI could be 
determined decades ago, but without resulting recommendations46. These reports are in line with the presented 
results describing severe post-mortem alterations. Therefore, myoglobin, CK and CK-MB seem to be not useful 
in post-mortem biochemistry.

Costa et al.25 tried to reconstruct the development of 46 different markers (including creatinine, urea, CK and 
CK-MB) by simulating the exact post-mortem drop in temperature until reaching room temperature and meas-
uring all parameters at 16 defined time points with the aim of establishing a formula to calculate the post-mortem 
interval. They found an increase in urea and CK and a stabilization of creatinine levels after 24 hours. However, 
their experiments were performed in-vitro with the serum of living patients. This may show the dependence on 
hemolysis of blood and change of temperatures after death. However, uncritical transmission on post-mortem 
samples has to be considered critically as many in-situ influences could not get captured in-vitro, such as pas-
sive diffusion, functional loss of tissue and advanced autolytic processes. The present results systematically show 
increasing rates of hemolysis and lipemia with longer post-mortem interval.

All tested markers are equipped with very high intra-assay precisions even for post-mortem samples. This 
allows economic laboratory processes (single measurement per sample) for every marker. The freeze-thaw sta-
bility of the marker appears to be acceptable in light of the overall changes along the post-mortem interval. 

Figure 6.  Differences of the marker levels when measured in arterial and venous blood samples. While some 
post-mortem sampling might be difficult and goes along with accidental arterial puncture, a mixture type 
(defined as 90% venous and 10% arterial) was illustrated also.
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This allows a centralization of post-mortem biochemical trials in experienced labors on the one hand and a 
freeze-storage shipping of serum samples, if that should become necessary.

In some cases, femoral blood samples are only collected by scratching the legs to the groins during autopsy in 
daily routine and not by puncture of vessels, as was done here. We could show that a potential mixture of arterial 
and venous blood does not relevantly affect the post-mortem biochemical measurements.

Further studies should investigate the post-mortem in-situ behavior of other biochemical markers which are 
used in forensic research and routine, for example biomarkers of traumatic cerebral damage47,48 or acute inflam-
mation49 and sepsis1,2,9,10.

In this prospective study, a relatively small cohort of 20 cases was included given the multiple numbers of 
samples taken from each of the deceased. This limited number was accepted to avoid long-term freeze storage of 
single samples as little is known about marker changes after longer storing periods in forensic50 as well as clinical 
samples51. Though intra-individual post-mortem changes could be presented, this number was not acceptable to 
make a sufficient point in new cut-off values after death or reliable regression analysis for mathematical deter-
mination of initial values, therefore further data is required. Additionally, further studies should investigate the 
problem of long-term freeze storage in different conditions.

No declaration regarding usefulness of the markers as surrogate of different causes of death can be given thor-
oughly due to the small number of cases and the heterogeneity of the individual cases, as we did not investigate 
any case or control subgroup. Previous studies showed the dependence of markers on different sampling sites – 
this is why the presented values only apply to serum measurements from femoral venous blood52–54. According 
to Uemura et al.52, the femoral venous blood should be regarded as gold standard for post-mortem biochemical 
trials.

Time dependency plays the most important role in reliable post-mortem biochemistry in our view. Therefore, 
the results of intra-individual stability presented can only represent the early post-mortem period within two days 
of death. An influence of temperature on the markers has already been shown before25. The bodies examined in 
this study were stored in a cold storage cell at 4 °C. As most of the corpses in forensic medicine succumb different 
changes in different temperatures, the change of the markers in forensic practice might slightly deviate. It was 
stated that relevant hemolysis may take 48 hours if the bodies were sufficiently cooled32, so hemolytic processes 
were slowed down in this study as much as possible.

Notwithstanding the illustrated limitations, we could document systematic post-mortem changes in-situ of 
all investigated markers in different intensities. We conclude that an uncritical interpretation of post-mortem 
values may lead to false positive results and that it is essential to know the post-mortem interval until the blood 
sampling. Post-mortem biochemistry can never be the only instrument of a forensic pathologist in a post-mortem 
examination but has great potential for daily routine in investigating sudden unexpected deaths with no or min-
ute ante-mortem data.

Methods
Sample collection.  This research study has been approved by the ethics committee of the medical faculty 
of the University of Leipzig, Germany (local number 388/15-ek) and in any individual case, the next of kin of the 
deceased granted informed and written consent. All methods were carried out in accordance with the relevant 
guidelines and regulations.

In this prospective monocentric study covering a 12 months period, post-mortem blood samples were col-
lected serially from 20 deceased (sampled over a period of ten months between first and last individual included) 
and measurements of carefully selected biomarkers were performed.

Blood samples were collected at four predetermined post-mortem time points with two filled serum tubes 
each, whereas the first sample was taken directly after occurrence of death (=T0). To receive the possibility of 
getting a blood sample exactly after a patient died, we only included patients that arrived with ongoing CPR in 
the Emergency Department (ED) of the University Hospital of Leipzig or who died suddenly in the resuscitation 
room without final CPR because of known patient’s provision.

The definite time of death was defined through termination of CPR at the hands of the responsible emergency 
physician or through the observation of circulatory arrest in patients who refused CPR. Instantly, the ED phy-
sician performed the first blood sample collection by a sterile puncture of peripheral vessels. The blood samples 
were immediately cooled in a refrigerator at 4 °C.

The second sample (=T1) from the femoral veins was aseptically collected with sterile syringes by a forensic 
pathologist during the external examination of the corpse using the typical post-mortem puncture technique55 
(supported by ultrasound assistance in one case). Without delay, the cooled T0 and T1 samples were centri-
fuged for 10 minutes at 5,000 rpm with subsequent separation of the supernatant and the aliquots were stored 
deep-frozen at −80 °C.

The third (=T2) and fourth (=T3) blood samples were taken in the Institute of Legal Medicine through exter-
nal femoral venous puncture as described above (for all T2, supported by ultrasound assistance in three cases and 
for n = 17 of T3 samples) respectively during autopsy (only T3, n = 3) and immediately centrifuged, separated 
and stored as already described.

For some of the markers, one additional sample was available due to ante-mortem blood sampling during 
CPR by the emergency physician. When existent, the changes between this pre-sample and the first post-mortem 
sample (=T0) were also evaluated.

Exemplarily, blood samples of the cohort were used to test thawing stability by performing three repeated 
freeze-thaw procedures. The chosen example tubes (n = 4 individuals) were thawed to room temperature for four 
hours with a subsequent freezing cycle of 24 hours.

Further, we tested the intra-assay precision for the post-mortem substrates by triplicate measurement of exem-
plar samples (n = 4) of all four time points of sampling.
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Finally, one blood sample was collected per ultrasound-assisted arterial groin puncture to compare the 
biochemical results of arterial blood with the ones out of the venous blood system post-mortem to check for 
arterial-venous differences in post-mortem marker levels.

Laboratory analyses.  The serum samples were measured in batch at the Leipzig University Hospital’s cen-
tral laboratory for diagnostics (Institute of Laboratory Medicine). The laboratory is accredited by ISO 15189 and 
all analyzes were performed based on routine calibration according to the quality standards for medical laborato-
ries of the German Medical Association. All measurements were performed on standard automated clinical chem-
istry analyzers (Cobas 8000, Roche Diagnostics, Mannheim, Germany) using in-vitro diagnostics certified assays 
for creatinine (Roche, ref. 05168589190; photometry, enzymatic reaction; measuring range 5–2,700 μmol/l), urea 
(Roche, ref. 05171873190; photometry, kinetic assay; measuring range 0.5–40 mmol/l), 3HB (Wako Chemicals, 
Neuss, Germany, ref. 417–73501; photometry, cyclic enzymatic method; measuring range 3–1,000 μmol/l), mast 
cell tryptase (Phadia, Uppsala, Sweden, ref. CAP250, fluorimetric enzyme-linked immunoassay; measuring range 
1–200 μg/l), myoglobin (Roche, ref. 07027538190, ElectroChemiLuminescence immunoassay; measuring range 
21–3,000 μg/l), highly-sensitive troponin T (Roche, ref. 07028075190, ElectroChemiLuminescence immunoassay; 
measuring range 3–10,000 pg/ml), CK (Roche, ref. 07190794190, photometry, UV test; measuring range 0.12–
33.4 μkat/l) and CK-MB (Roche, ref. 07190808190, immunologic UV test; measuring range 0.05–33.4 μkat/l).

If test results exceeded the measuring range (defined by the manufacturer), serum samples were diluted 
according to the manufacturers maximally allowed dilution factor (1:10) and re-measured. Test results still 
exceeding the measuring range after dilution were assigned the maximum quantitative value. This was applied 
to 17 samples of myoglobin measurement (30,000 μg/l) and one sample of troponin T measurement (100,000 pg/
ml). Only three single measurements of the whole batch were below the limits of detection according to the man-
ufacturer and were assigned to this specific minimum value (tryptase, n = 2; troponin T, n = 1).

Laboratory analysis also included the automated measurements of three serum interference indices using a 
Cobas c701 analyzer (Roche) to check for quality purposes (hemolysis index, lipemia index, icterus index). These 
indices are calculated by absorbance measurements with different bichromatic wavelength pairs of saline diluted 
samples as semi-quantitative representation of levels of hemolysis (measured at 600/570 nm; correlating with the 
hemoglobin concentration in the sample), lipemia (measured at 700/660 nm; as estimation of sample turbidity) 
or icterus (measured at 505/480 nm; correlating with the bilirubin level in the sample).

All investigators were entirely blinded to all patients’ data while carrying out the assays.

Statistical analyses.  Data analysis was conducted using the statistical software R (version 3.4.0, 2017; open 
source) and Microsoft Excel (2016; Redmond, WA, USA).

First, we checked the data for normality using Shapiro-Wilk tests and quantile-quantile plots and transformed 
the data, applying the natural logarithm if necessary. Then, the correlation between different sample indices 
and marker levels was tested within a linear mixed regression model thereby modelling individuals as random 
intercept term. Resulting p values were corrected for multiple testing using the Benjamin-Hochberg procedure. 
Afterwards, the different time intervals were tested per marker for statistically significant differences using 
non-parametric Friedman tests. Again, multiple testing for the markers was done using the Benjamini-Hochberg 
procedure. For statistically significant results, post-hoc tests investigating significance of time intervals according 
to Conover’s test were done. Thereby, post-hoc tests were corrected by a Bonferroni adjustment to avoid type I 
error accumulation. Adjusted p values of 0.05 or less were considered as statistically significant.

Data availability.  All data generated or analyzed during this study are included in this published article and 
its supplementary information files.
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