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Abstract 

Background:  There exist several predictive risk models for cardiovascular disease (CVD), including some developed 
specifically for patients with type 2 diabetes mellitus (T2DM). However, the models developed for a diabetic popula‑
tion are based on information derived from medical records or laboratory results, which are not typically available 
to entities like payers or quality of care organizations. The objective of this study is to develop and validate models 
predicting the risk of cardiovascular events in patients with T2DM based on medical insurance claims data.

Methods:  Patients with T2DM aged 50 years or older were identified from the Optum™ Integrated Real World 
Evidence Electronic Health Records and Claims de-identified database (10/01/2006–09/30/2016). Risk factors were 
assessed over a 12-month baseline period and cardiovascular events were monitored from the end of the baseline 
period until end of data availability, continuous enrollment, or death. Risk models were developed using logistic 
regressions separately for patients with and without prior CVD, and for each outcome: (1) major adverse cardiovascu‑
lar events (MACE; i.e., non-fatal myocardial infarction, non-fatal stroke, CVD-related death); (2) any MACE, hospitaliza‑
tion for unstable angina, or hospitalization for congestive heart failure; (3) CVD-related death. Models were developed 
and validated on 70% and 30% of the sample, respectively. Model performance was assessed using C-statistics.

Results:  A total of 181,619 patients were identified, including 136,544 (75.2%) without prior CVD and 45,075 (24.8%) 
with a history of CVD. Age, diabetes-related hospitalizations, prior CVD diagnoses and chronic pulmonary disease 
were the most important predictors across all models. C-statistics ranged from 0.70 to 0.81, indicating that the models 
performed well. The additional inclusion of risk factors derived from pharmacy claims (e.g., use of antihypertensive, 
and use of antihyperglycemic) or from medical records and laboratory measures (e.g., hemoglobin A1c, urine albumin 
to creatinine ratio) only marginally improved the performance of the models.

Conclusion:  The claims-based models developed could reliably predict the risk of cardiovascular events in T2DM 
patients, without requiring pharmacy claims or laboratory measures. These models could be relevant for providers 
and payers and help implement approaches to prevent cardiovascular events in high-risk diabetic patients.
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Background
Type 2 diabetes may cause complications of microvas-
cular origin, including nephropathy, neuropathy, and 
retinopathy, or macrovascular origin, including periph-
eral artery disease and cardiovascular disease (CVD) 
[1, 2]. Although diabetes clinical practice guidelines are 
intended to reflect consensus and evidence-based best 
medical practices, different entities have some conflict-
ing recommendations, and providing high-quality and 
detailed guidelines for specific patient subgroups remains 
challenging [3]. For example, relative to non-diabetic 
patients, patients with type 2 diabetes have a two- to 
threefold higher risk of suffering from a CVD event, 
including a higher risk of myocardial infarction (MI), 
stroke, unstable angina, and congestive heart failure [4–
7], and a higher rate of CVD-related death [8]. Therefore, 
certain patients with type 2 diabetes could benefit from 
specialized care that both improve glycemic control and 
mitigate the risk of CVD.

Thus, having reliable tools making use of readily avail-
able data to predict the risk of cardiovascular events 
among patients with type 2 diabetes may allow healthcare 
resources to be directed towards patients at high risk, and 
help healthcare providers meet new quality standard of 
care. In fact, in 2016, the National Committee for Qual-
ity Assurance (NCQA) implemented a new Healthcare 
Effectiveness Data and Information Set (HEDIS) perfor-
mance measure based on the rates of hospitalization for 
potentially preventable complications [9]. More specifi-
cally, this measure, which is used by over 90% of health 
plans in the US [9], targets, among other complications, 
diabetes short- and long-term complications, including 
CVD events leading to hospitalization [10]. This means 
that higher rates of adverse cardiovascular events among 
patients with type 2 diabetes may negatively affect the 
NCQA ratings of healthcare providers. Moreover, given 
the high costs incurred by patients with both CVD and 
diabetes [11], using such tool efficiently may translate 
into significant cost savings.

Several of the predictive CVD risk models that have 
been developed for the general population include dia-
betes as a risk factor, with models derived from the 
Framingham Heart Study being among the most well-
known [12–14]. Scores based on the Framingham risk 
models assign weights to risk factors in order to predict 
cardiovascular events separately for men and women. 
Risk factors identified for CVD include older age, smok-
ing status, treated and untreated systolic blood pres-
sure, total cholesterol and high-density-lipoprotein 
cholesterol levels, and diabetes [12–14]. However, the 
Framingham risk models were not developed for patients 
with diabetes, and were shown to systematically under-
estimate CVD risk in this population [15]. In fact, the 

characteristics of patients enrolled in the Framing-
ham study may differ from real-world populations with 
diabetes in several ways, including the proportion of 
minorities, socioeconomic determinants of health, and 
comorbidity burden [16]. Thus, other risk models have 
been developed for this population, but all of them rely 
on data from medical records [17–23]. For example, 
risk models derived from the United Kingdom Prospec-
tive Diabetes Study (UKPDS) identified several risk fac-
tors that cannot be used as quantitative predictors using 
health insurance claims, such as duration of type 2 dia-
betes, glycated hemoglobin (HbA1c) levels, systolic blood 
pressure, and cholesterol/high-density lipoprotein ratio 
[21, 23]. Similarly, the ADVANCE study identified age 
at diabetes diagnosis, known duration of diabetes, pulse 
pressure, treated hypertension, HbA1c, urinary albu-
min/creatinine ratio, and non-HDL cholesterol among 
risk factors for CVD events; these risk factors cannot 
be assessed using health insurance claims [22]. Conse-
quently, these models cannot be used to predict CVD 
risk by entities, like payers, that do not have access to 
information derived from medical records or laboratory 
results.

As the face of healthcare provision changes and popu-
lation management evolves, entities such as public and 
private payers are moving toward a capitated system of 
reimbursement, with payments made based on value 
rather than volume of care. It is thus important for both 
payers and providers to be able to assess the risks in a 
given population. Therefore, a CVD risk assessment tool 
based solely on accessible medical data such as health 
insurance claims would be relevant for payers to help 
identify patients with type 2 diabetes at high risk of CVD 
events. In fact, rationally allocating resources towards 
these patients by, for example, including CVD risk mod-
els in a tool made available to healthcare providers may 
result in reduced morbidity, mortality, and cost savings. 
Thus, this study aimed to develop new predictive mod-
els and assess their performance in predicting the risk 
of cardiovascular events in patients with type 2 diabetes 
based solely on information available in medical health 
insurance claims. More specifically, models were devel-
oped for patients without prior CVD events (hereinafter 
referred to as the primary prevention population) and for 
patients with prior CVD events (hereinafter referred to 
as the secondary prevention population).

Methods
Study design
A retrospective observational study design was used to 
model the risk of CVD events in patients with type 2 dia-
betes (Additional file 1). The index date was defined as a 
randomly selected date among those with a diagnosis of 
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type 2 diabetes (International Classification of Diseases, 
9th Revision, Clinical Modification [ICD-9-CM]: 250.
x0 and 250.x2, International Classification of Diseases, 
10th Revision, Clinical Modification [ICD-10-CM]: E11.
xxx) followed by ≥ 13  months of continuous healthcare 
plan enrollment. The random selection enabled us to 
capture a representative sample of patients from a real-
world setting with various disease duration. Risk factors 
for cardiovascular events were assessed during the base-
line period, defined as the first 12 months following the 
index date. Cardiovascular events were monitored dur-
ing the subsequent at-risk period, which was required to 
last ≥ 1 month and spanned from the end of the baseline 
period until the earliest among (i) end of data availabil-
ity, (ii) end of continuous healthcare plan enrollment, or 
(iii) death. For each study outcome, the at-risk period was 
censored at the first occurrence of a given study outcome 
(see study outcomes section for more details).

Data source
The Optum™ Integrated Real-World Evidence Electronic 
Health Records and Claims database (Optum database), 
which combines de-identified electronic medical records 
and insurance claims, was used to develop and validate 
the risk models (October 1, 2006–September 30, 2016). 
This database comprises information on demographics, 
medical history, and diagnoses for all types of medical 
encounters (i.e., intensive care unit, emergency depart-
ment [ED], ward, etc.), in-hospital procedures and medi-
cation administrations, prescriptions, laboratory results, 
and date of death. The database is de-identified and fully 
compliant with the patient confidentiality requirements 
of the Health Insurance Portability and Accountability 
Act (HIPAA).

Study population
Patients ≥ 50  years with ≥ 1 recorded diagnosis for type 
2 diabetes (i.e., ICD-9-CM: 250.x0, and 250.x2; ICD-
10-CM: E11.xxx) were included in the study. Patients 
were required to have ≥ 13 months of continuous eligibil-
ity in their healthcare plan after the index date. Patients 
were excluded if they had ≥ 1 recorded diagnosis for type 
1 or gestational diabetes mellitus (i.e., ICD-9-CM: 250.x1, 
250.x3, and 648.8x; ICD-10-CM: E10.xxx, O24.4xx, and 
O99.81x). Moreover, given the growing evidence suggest-
ing that these medications may mitigate cardiovascular 
risk, to avoid potential confounding, patients were fur-
ther excluded if they had ≥ 1 prescription fill for a sodium 
glucose co-transporter 2 (SGLT2) inhibitor or a gluca-
gon-like peptide-1 (GLP-1) receptor agonist at any time 
during the study period [24–27].

The study population was further stratified into the 
primary and secondary prevention populations based on 

whether patients had ≥ 1 diagnosis for any cardiovascular 
events of interest (see below) in any setting (i.e., inpatient 
[IP], ED, or outpatient) prior to the at-risk period.

Study outcomes
Study outcomes included (1) any major adverse cardio-
vascular event (MACE), which comprised non-fatal MI, 
non-fatal stroke, and CVD-related death (defined below), 
(2) any MACE, hospitalization for unstable angina, or 
hospitalization for congestive heart failure; hereinaf-
ter referred to as MACE-plus, and (3) CVD-related 
death, defined as a death occurring within 30 days after 
a diagnosis for MI, stroke, unstable angina, heart failure, 
sudden cardiac arrest, cardiogenic shock, other cerebro-
vascular events, or other cardiovascular events recorded 
in a medical claim in any setting (Additional file  2 for 
ICD codes).

Of note, because it was not possible to determine 
whether diagnoses for MI or stroke recorded in outpa-
tient settings were actual cardiovascular events or follow-
up visits for which the diagnosis was recorded for billing 
purposes, only diagnoses recorded in an ED or IP set-
tings were considered in the risk models; diagnoses could 
be recorded in any position.

Statistical analyses
Distinct predictive risk models were developed for the 
primary and secondary prevention populations for each 
of the three study outcomes. A split sample approach was 
used: The primary and secondary prevention populations 
were each randomly split into a training (70% of the sam-
ple) and a validation (30% of the sample) set. The training 
sets were used to develop the predictive models, and the 
validation sets were used to assess the predictive accu-
racy of the models.

For the prediction of study outcomes, potential risk 
factors were derived from the published literature and 
included age, gender, race, ethnicity, year, region, insur-
ance type, prior cardiovascular events, time since first 
observed type 2 diabetes diagnosis, number of diabe-
tes-related medical visits, Charlson comorbidity index 
(CCI) [28], adapted diabetes complications severity index 
(aDCSI) [29], and recorded diagnosis for selected comor-
bidities such as hypertension, hyperlipidemia, infections, 
mental disorders, chronic pulmonary disease, and obe-
sity. Univariate associations between potential risk fac-
tors and outcomes were assessed; in order to develop 
more parsimonious models, risk factors were excluded 
if the standardized difference between patients with and 
without a given outcome was below 0.10, or if they were 
present in less than 0.5% of the sample.

Pooled logistic regression models were developed 
to relate each candidate risk factor to outcomes at 
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pre-specified time points during the at-risk period. A 
logistic regression model was selected because it can 
estimate the probability of an event occurring in an inter-
val of time [30]. More specifically, for each patient, the 
at-risk period was stratified into windows of 6  months 
during which the outcomes were assessed. For example, 
the follow-up of a patient who had MACE 15  months 
after the beginning of the at-risk period was censored 
at the occurrence of this outcome and stratified in three 
windows in the regression model: (1) 0–6 months with-
out MACE, (2) 6–12  months without MACE, and (3) 
12–18 months with a MACE. For all windows, risk fac-
tors were evaluated at baseline, and indicator variables 
for each time interval were included in the regression 
models. The risk factors included in the final risk models 
were chosen using a stepwise variable selection approach 
based on Akaike’s Information Criterion, in conjunction 
with tenfold cross-validation methods within the training 
set. Further specifications of risk factors were tested and 
variance inflation factor analysis was used to assess the 
presence of multicollinearity between risk factors, which 
resulted in the final models.

The performance of the final risk models was evaluated 
based on discrimination (i.e., C-statistics) in the train-
ing and validation sets [31]. The C-statistic is a measure 
of the predictive accuracy of a logistic regression, which 
varies between 0.5 (random discrimination) and 1.0 (per-
fect discrimination). It corresponds to the area under the 
receiver operating characteristic (ROC) curve [32]. In 
order to provide a more comprehensive view of the per-
formance of models based on information derived from 
medical claims, other models that included risk factors 
derived from medical claims, pharmacy claims, and med-
ical records and laboratory results were developed.

Results
A total of 181,619 patients with type 2 diabetes were 
included in the study; 136,544 (75.2%) in the primary 
prevention population and 45,075 (24.8%) in the second-
ary prevention population (Fig. 1). Among patients in the 
training set and in the primary prevention population, 
the proportions of patients with MACE, MACE-plus, 
and CVD-related death during the at-risk period were 
4.7%, 6.5%, and 1.8%, respectively (Additional file  3). In 
the secondary prevention population, the same propor-
tions were 16.5%, 24.9%, and 8.2%, respectively (Addi-
tional file  3). The median duration of the at-risk period 
following the index date in the training set of the pri-
mary prevention population was 12  months (range 
1–109 months), with 5.4% of patients having a follow-up 
longer than 60  months. The median duration of the at-
risk period in the training set of the secondary preven-
tion population was 11  months (range 1–108  months), 

with 3.9% of patients having a follow-up longer than 
60 months.

Patients with a CVD event during the at-risk period 
were older and had higher aDCSI scores compared to 
patients without CVD events for both the primary and 
the secondary prevention populations (primary preven-
tion population: mean age = 72.7 vs. 66.4  years, mean 
aDCSI = 1.9 vs. 1.1, respectively; secondary preven-
tion population: mean age = 75.0 vs. 71.4  years, mean 
aDCSI = 4.1 vs. 3.2, respectively; Additional file 3). Most 
patients (> 75%) had a recorded diagnosis for hyperten-
sion and/or hyperlipidemia in both the primary and sec-
ondary prevention populations. Moreover, compared 
to patients without CVD events, patients with a CVD 
event during the at-risk period were more likely to have 
a recorded diagnosis for select baseline comorbidities—
such as infections (primary prevention population: 53.8% 
vs. 48.8%; secondary prevention population: 69.1% vs. 
61.5%, respectively) chronic pulmonary disease (primary 
prevention population: 22.7% vs. 15.6%; secondary pre-
vention population: 44.5% vs. 31.4%, respectively), and 
peripheral vascular disorders (primary prevention popu-
lation: 19.0% vs. 9.3%; secondary prevention population: 
34.3% vs. 26.1%, respectively) (Additional file 3).

Risk models
For the primary prevention population, a total of 12–17 
risk factors were included in the models, and most of 
them were significantly associated with the study out-
comes (Table 1). Across all study outcomes, age was the 
risk factor with the largest impact on the risk of having 
an event (Table  1). Other risk factors consistently asso-
ciated with a significantly higher risk of cardiovascular 
events were recorded diagnosis for other CVD-related 
conditions (i.e., conditions used to define CVD-related 
death), diabetes-related hospitalization, higher aDCSI 
score, recorded diagnosis for chronic pulmonary disease, 
cancer, fluid and electrolyte disorder, or coagulopathy, 
and having the baseline period prior to 2011 (Table  1). 
In addition, hypertension was associated with a higher 
risk of MACE-plus, while deficiency anemia and pulmo-
nary circulation disorders were associated with a higher 
risk of CVD-related death (Table 1). Being commercially 
insured was associated with a lower risk of CVD events 
for all outcomes, being a female was associated with a 
lower risk of MACE and CVD-related death, and being 
Hispanic or Asian was associated with a lower risk of 
CVD-related death (Table 1).

For the secondary prevention population, 15–20 risk 
factors were included in the models, and most of them 
were significantly associated with the study outcomes 
(Table  2). As for the primary prevention population, 
older age was the risk factor with the largest impact on 
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the risk of CVD (Table  2). Diabetes-related hospitaliza-
tion, higher aDCSI score, recorded diagnosis for chronic 
pulmonary disease or fluid and electrolyte disorders, and 
having the baseline period prior to 2011 were consistently 
associated with a significantly higher risk of CVD events 
(Table 2). In addition, payer type, time since last recorded 
CVD diagnosis, prior recorded diagnosis for congestive 
heart failure or iron-deficiency anemia, and ethnicity 
were identified as predictors of CVD events for all out-
comes (Table 2). Prior MI, stroke, and other CVD-related 
conditions were associated with a higher risk of MACE 
and MACE-plus, but not of CVD-related death (Table 2). 
Other risk factors identified for only certain outcomes 
included race, region, insurance type, recorded diagnosis 
for mental disorders, obesity, cancer, peripheral vascular 
disorders, erectile dysfunction, coagulopathy, and pulmo-
nary circulation disorders (Table  2). Interestingly, while 
being a female was associated with a lower risk of MACE 

and CVD-related death in the primary prevention popu-
lation, gender was not associated with an improved pre-
dictive accuracy in the secondary prevention population, 
and thus, was not included as a risk factor in these mod-
els (Table  2). Conversely, obesity was not selected as a 
risk factor in the primary prevention population, whereas 
it was associated with a lower risk of MACE and CVD-
related death in the secondary prevention population.

The risk models performed well in predicting MACE, 
MACE-plus, and CVD-related death with C-statistics 
ranging between 0.70 and 0.81 when considering both 
the training and validation sets (Tables  1 and 2, Fig.  2). 
Notably, the highest predictive accuracy was observed 
for models predicting CVD-related death (Tables  1 and 
2; Fig.  2). In addition, the models were well calibrated, 
with differences between the median predicted risk and 
median observed risk that did not exceed 0.1% for each 

Fig. 1  Sample selection
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Table 1  Risk models for MACE in the primary prevention population

MACE MACE-plus CVD-related death

Validation

 C-statistic, training set 0.72 0.71 0.81

 C-statistic, validation set 0.72 0.72 0.81

Predictors OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Age group (reference: 50–54 years old)

 55–59 years old 1.25 (1.04, 1.51) 0.019* 1.19 (1.02, 1.38) 0.028* 1.02 (0.65, 1.59) 0.943

 60–64 years old 1.70 (1.43, 2.04) < 0.001* 1.59 (1.37, 1.83) < 0.001* 2.13 (1.43, 3.17) < 0.001*

 65–69 years old 1.70 (1.42, 2.04) < 0.001* 1.58 (1.36, 1.84) < 0.001* 2.35 (1.59, 3.49) < 0.001*

 70–74 years old 2.00 (1.66, 2.40) < 0.001* 1.85 (1.59, 2.16) < 0.001* 2.92 (1.96, 4.33) < 0.001*

 75–79 years old 2.49 (2.06, 3.00) < 0.001* 2.30 (1.97, 2.69) < 0.001* 4.12 (2.77, 6.13) < 0.001*

 80–84 years old 4.15 (3.45, 4.99) < 0.001* 3.48 (2.98, 4.05) < 0.001* 7.86 (5.31, 11.64) < 0.001*

 85 and above 4.48 (3.62, 5.55) < 0.001* 3.88 (3.24, 4.64) < 0.001* 7.96 (5.18, 12.23) < 0.001*

Female 0.73 (0.69, 0.78) < 0.001* 0.70 (0.63, 0.77) < 0.001*

Race (reference: Caucasian)

 African American 0.97 (0.81, 1.15) 0.708

 Asian 0.50 (0.31, 0.81) 0.005*

 Other/unknown 0.95 (0.83, 1.10) 0.514

Ethnicity (reference: non-Hispanic)

 Hispanic 0.52 (0.35, 0.78) 0.001*

 Unknown 1.29 (1.14, 1.47) < 0.001*

End of baseline period prior to 2011a 1.32 (1.23, 1.41) < 0.001* 1.35 (1.27, 1.43) < 0.001* 1.90 (1.71, 2.12) < 0.001*

Geographic region (reference: South)

 Midwest 0.84 (0.75, 0.95) 0.004*

 Northeast 0.57 (0.48, 0.68) < 0.001*

 West 0.77 (0.65, 0.91) 0.003*

 Other/unknown 0.89 (0.66, 1.21) 0.471

Insurance type (reference: health maintenance organization [HMO])

 Point-of-service (POS) 1.20 (1.03, 1.39) 0.020* 1.23 (1.09, 1.40) 0.001* 1.03 (0.75, 1.41) 0.841

 Preferred provider organization (PPO) 1.09 (0.95, 1.24) 0.210 1.17 (1.05, 1.31) 0.006* 1.09 (0.88, 1.35) 0.450

 Exclusive provider organization (EPO) 1.34 (1.06, 1.71) 0.015* 1.32 (1.08, 1.61) 0.007* 1.00 (0.59, 1.70) 0.996

 Indemnity (IND) 1.71 (1.38, 2.13) < 0.001* 1.78 (1.48, 2.13) < 0.001* 2.01 (1.40, 2.88) < 0.001*

 Other 0.90 (0.84, 0.97) 0.005* 0.94 (0.88, 1.00) 0.038* 0.95 (0.84, 1.07) 0.369

Payer type

 Commercial 0.53 (0.46, 0.61) < 0.001* 0.58 (0.51, 0.65) < 0.001* 0.46 (0.34, 0.60) < 0.001*

Other CVD-related conditions (i.e., conditions 
used to define CVD-related death)

1.19 (1.11, 1.28) < 0.001* 1.33 (1.26, 1.41) < 0.001* 1.10 (0.98, 1.23) 0.116

At least 1 diabetes-related hospitalization 1.36 (1.26, 1.46) < 0.001* 1.27 (1.19, 1.35) < 0.001* 1.42 (1.27, 1.59) < 0.001*

Adapted diabetes complications severity index 1.15 (1.13,1.17) < 0.001* 1.17 (1.15, 1.19) < 0.001* 1.19 (1.15, 1.23) < 0.001*

Recorded diagnoses (ref: no diagnosis)

 Hypertension 1.09 (1.01, 1.18) 0.024*

 Chronic pulmonary disease 1.31 (1.22, 1.41) < 0.001* 1.36 (1.27, 1.44) < 0.001* 1.52 (1.35, 1.70) < 0.001*

 Cancer 1.14 (1.05, 1.24) 0.003* 1.12 (1.04, 1.20) 0.003* 1.52 (1.35, 1.72) < 0.001*

 Fluid and electrolyte disorders 1.20 (1.09, 1.32) < 0.001* 1.21 (1.11, 1.31) < 0.001* 1.22 (1.06, 1.40) 0.007*

 Deficiency anemia 1.22 (1.04, 1.43) 0.013*

 Coagulopathy 1.45 (1.25, 1.68) < 0.001* 1.37 (1.20, 1.56) < 0.001* 1.97 (1.60, 2.41) < 0.001*

 Pulmonary circulation disorders 1.32 (1.03, 1.69) 0.026*

Time interval (reference: 0–6 months)

 6–12 months 1.00 (0.91, 1.09) 0.980 0.97 (0.90, 1.05) 0.501 1.05 (0.90, 1.22) 0.527

 12–18 months 1.05 (0.95, 1.15) 0.363 1.02 (0.94, 1.11) 0.564 1.20 (1.02, 1.41) 0.025*
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of the study outcomes in both the primary and secondary 
prevention populations (data not shown).

In addition, to further assess the potential impact 
of using information exclusively derived from medi-
cal claims data on performance, predictive models that 
also included risk factors obtained from pharmacy 
claims, as well as from medical records and labora-
tory results were developed. These models included up 
to 11 additional risk factors, but only showed limited 
improvements in terms of predictive accuracy, with 
C-statistics increasing by no more than 0.01 in the 
training and validation sets for both the primary and 
secondary prevention populations (data not shown).

Examples
Notably, the risk models can be used to assess CVD 
risk at different time windows separated by intervals of 
6 months over a maximum of 5 years. For instance, the 
average patient in the primary prevention population—a 
67 year old female with an aDCSI score of 1 and recorded 
diagnosis for hypertension and hyperlipidemia—had a 
predicted risk of MACE of 1.4% after 1  year, 2.7% after 
2 years, and 6.8% after 5 years. The predicted 5-year risk 
for MACE-plus and CVD-related death were 10.6% and 
1.7%, respectively (Table  3: Case 1). For the secondary 
prevention population, the average patient was a 73 year 
old male diagnosed with prior congestive heart fail-
ure ≥ 12  months ago, other CVD-related conditions, an 
aDCSI score of 3, recorded diagnosis for hypertension, 
hyperlipidemia, and infection within the last year. The 
predicted risk of MACE for that patient were 5.8% after 
1 year, 10.5% after 2 years, and 21.8% after 5 years. The 
predicted 5-year risk for MACE-plus and CVD-related 
death were 35.2% and 9.9%, respectively (Table 3: Case 2).

Discussion
This study developed and validated models that predict 
the risk of adverse cardiovascular events in patients with 
type 2 diabetes using exclusively information derived 
from health insurance claims. The main risk factors iden-
tified in the primary prevention population included age, 
diabetes-related hospitalizations, and recorded diagnosis 
for coagulopathy and chronic pulmonary disease. In the 
secondary prevention population, age, prior CVD diag-
noses, diabetes-related hospitalizations, and recorded 
diagnosis for chronic pulmonary disease had the most 
important impact on the risk of having a CVD event. 
Overall, the models reliably predicted the cardiovascular 
events for the primary and secondary prevention popu-
lations, as illustrated by the C-statistics ranging between 
0.70 and 0.81.

The finding that age was one of the most important risk 
factor in predicting cardiovascular events is consistent 
with findings in previous studies that primarily focused 
on a diabetes population, such as the UKPDS risk engine 
[21, 23] and studies that focused on a general popula-
tion, such as the Framingham Heart Study [12]. How-
ever, a major difference between the models developed 
in the current study and previous ones is that the latter 
included risk factors derived from laboratory results and 
medical records [12, 17, 18, 20–22], which are often not 
available to national quality of care organizations and 
payers. In contrast, the current study used only informa-
tion that is readily available from medical claims data.

Nonetheless, claims-based information can be used as 
a proxy for risk factors derived from laboratory results 
and medical records. For example, blood pressure meas-
urements were not available in claims data, but hyper-
tension-identified based on a recorded diagnosis in a 
medical claim—was included in the models. Similarly, 

CVD cardiovascular disease, MACE major adverse cardiovascular events, OR odds ratio, CI confidence interval

* Indicates statistical significance at the 5% level
a  A glycated hemoglobin threshold (i.e., < 8%) was added to Healthcare Effectiveness Data and Information Set (HEDIS) measure for Comprehensive Diabetes Care in 
2009 and to the Diabetes Recognition Program of the National Committee for Quality Assurance in 2010, which may have impacted CVD risk in patients with diabetes 
(See [43])

Table 1  (continued)

MACE MACE-plus CVD-related death

Predictors OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

 18–24 months 0.96 (0.86, 1.08) 0.528 0.97 (0.88, 1.07) 0.531 1.15 (0.96, 1.38) 0.132

 24–30 months 1.06 (0.94, 1.20) 0.361 0.98 (0.88, 1.09) 0.664 1.20 (0.99, 1.47) 0.068

 30–36 months 1.02 (0.89, 1.17) 0.785 0.99 (0.88, 1.11) 0.826 1.27 (1.03, 1.57) 0.028*

 36–42 months 1.12 (0.96, 1.30) 0.141 1.06 (0.93, 1.21) 0.380 1.29 (1.02, 1.63) 0.035*

 42–48 months 0.98 (0.82, 1.17) 0.820 1.00 (0.86, 1.16) 0.970 1.02 (0.77, 1.35) 0.904

 48–54 months 1.07 (0.88, 1.29) 0.511 1.00 (0.84, 1.18) 0.971 1.39 (1.06, 1.83) 0.018*

 54–60 months 1.17 (0.95, 1.43) 0.138 1.00 (0.83, 1.21) 0.979 1.18 (0.85, 1.63) 0.328

 Over 60 months 1.02 (0.88, 1.18) 0.828 0.97 (0.86, 1.11) 0.693 0.93 (0.74, 1.18) 0.570
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Table 2  Risk models for MACE in the secondary prevention population

MACE MACE-plus CVD-related death

Validation

 C-statistic, training set 0.70 0.72 0.78

 C-statistic, validation set 0.70 0.72 0.77

Predictors OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Age group (reference: 50–54 years old)

 55–59 years old 1.08 (0.86, 1.36) 0.513 1.01 (0.85, 1.21) 0.883 1.33 (0.84, 2.11) 0.230

 60–64 years old 1.24 (1.00, 1.54) 0.049* 1.12 (0.95, 1.33) 0.168 1.72 (1.11, 2.66) 0.014*

 65–69 years old 1.35 (1.10, 1.67) 0.005* 1.20 (1.01, 1.41) 0.033* 2.15 (1.41, 3.28) < 0.001*

 70–74 years old 1.52 (1.24, 1.88) < 0.001* 1.30 (1.11, 1.54) 0.001* 2.67 (1.76, 4.06) < 0.001*

 75–79 years old 1.72 (1.40, 2.12) < 0.001* 1.43 (1.21, 1.68) < 0.001* 3.13 (2.06, 4.75) < 0.001*

 80–84 years old 2.20 (1.79, 2.70) < 0.001* 1.82 (1.55, 2.14) < 0.001* 4.60 (3.04, 6.97) < 0.001*

 85 and above 2.23 (1.79, 2.77) < 0.001* 1.81 (1.52, 2.15) < 0.001* 4.82 (3.14, 7.39) < 0.001*

Race (reference: Caucasian)

 African American 0.81 (0.70, 0.93) 0.003*

 Asian 0.58 (0.37, 0.92) 0.021*

 Other/unknown 1.04 (0.93, 1.17) 0.474

Ethnicity (reference: non-Hispanic)

 Hispanic 0.98 (0.82, 1.17) 0.830 0.92 (0.79, 1.08) 0.315 0.69 (0.51, 0.93) 0.016*

 Unknown 1.16 (1.10, 1.24) < 0.001* 1.14 (1.09, 1.20) < 0.001* 1.14 (1.03, 1.27) 0.013*

End of baseline period prior to 2011a 1.43 (1.34, 1.53) < 0.001* 1.39 (1.32, 1.48) < 0.001* 1.83 (1.67, 2.01) < 0.001*

Geographic region (reference: South)

 Midwest 0.83 (0.75, 0.91) < 0.001*

 Northeast 0.73 (0.63, 0.83) < 0.001*

 West 0.84 (0.73, 0.97) 0.014*

 Other/unknown 1.07 (0.85, 1.33) 0.570

Insurance type (reference: health maintenance organization [HMO])

 Point-of-service (POS) 1.11 (0.97, 1.27) 0.142 0.79 (0.60, 1.05) 0.105

 Preferred provider organization (PPO) 1.21 (1.08, 1.34) < 0.001* 0.84 (0.69, 1.03) 0.092

 Exclusive provider organization (EPO) 1.08 (0.86, 1.36) 0.483 0.58 (0.34, 0.98) 0.043*

 Indemnity (IND) 1.29 (1.07, 1.55) 0.007* 1.23 (0.91, 1.66) 0.183

 Other 1.01 (0.96, 1.07) 0.631 0.89 (0.81, 0.98) 0.018*

Payer type

 Commercial 0.81 (0.75, 0.89) < 0.001* 0.77 (0.68, 0.87) < 0.001* 0.84 (0.67, 1.06) 0.135

Prior CVD diagnoses (ref: no diagnosis)

 Myocardial infarction 1.24 (1.16, 1.33) < 0.001* 1.13 (1.07, 1.20) < 0.001*

 Stroke 1.34 (1.26, 1.43) < 0.001* 1.13 (1.06, 1.19) < 0.001*

 Congestive heart failure 1.39 (1.30, 1.49) < 0.001* 1.91 (1.80, 2.03) < 0.001* 1.97 (1.78, 2.18) < 0.001*

Time from last observed CVD diagnosis to end of baseline period, months (reference: less than 1 month)

 1–3 months 0.80 (0.73, 0.87) < 0.001* 0.76 (0.70, 0.82) < 0.001* 0.83 (0.74, 0.93) 0.002*

 3–6 months 0.66 (0.60, 0.73) < 0.001* 0.62 (0.57, 0.67) < 0.001* 0.63 (0.56, 0.72) < 0.001*

 6–12 months 0.58 (0.53, 0.63) < 0.001* 0.52 (0.48, 0.56) < 0.001* 0.51 (0.45, 0.58) < 0.001*

 12 months and above 0.56 (0.51, 0.61) < 0.001* 0.48 (0.45, 0.52) < 0.001* 0.48 (0.42, 0.54) < 0.001*

Other CVD-related conditions (i.e., Conditions 
used to define CVD-related death)

1.10 (1.00, 1.20) 0.043* 1.18 (1.09, 1.27) < 0.001*

At least 1 diabetes-related hospitalization 1.30 (1.23, 1.39) < 0.001* 1.27 (1.20, 1.33) < 0.001* 1.36 (1.25, 1.49) < 0.001*

Adapted diabetes complications severity index 1.10 (1.08, 1.11) < 0.001* 1.09 (1.07, 1.11) < 0.001* 1.11 (1.09, 1.13) < 0.001*

Recorded diagnoses (ref: no diagnosis)

 Mental disorders 1.14 (1.05, 1.24) 0.002*

 Chronic pulmonary disease 1.18 (1.11, 1.25) < 0.001* 1.27 (1.21, 1.34) < 0.001* 1.28 (1.18, 1.40) < 0.001*
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recorded diagnosis for hyperlipidemia was used as a 
proxy for high-density lipoprotein cholesterol and low-
density lipoprotein cholesterol levels, although it was not 
included in any models. Yet, certain risk factors identi-
fied in the Framingham and UKPDS models tend to be 
underreported in medical claims, and thus, may have 
limited predictive accuracy in claims-based models. For 
example, although diagnosis codes for smoking do exist, 
this condition is typically underreported in medical 
claims. Therefore, smoking was not included in any of the 
claims-based models. However because our study was 
limited to risk factors available in insurance claims data, 
certain risk factors identified in other studies were not 
available for selection in the models. In particular, several 
studies pointed to a link between glycemic markers and 
CVD [33–37], but given that HbA1c measures are not 
available in insurance claims data, this potential risk fac-
tor could not be included in the models.

This study also found that obesity was associated with 
a lower risk of MACE and CVD-related death in the sec-
ondary prevention population. Several previous stud-
ies found obesity to be associated with better survival in 
patients with chronic or cardiac diseases, hence the term 

“obesity paradox” to describe this counterintuitive phe-
nomenon [38]. Several explanations have been proposed, 
including the advantages of fat reserves during illness, 
biases or confounding in observational studies (e.g., more 
intensive management), or weight loss due to illness in 
the reference group [39]. However, due to the observa-
tional nature of the current study, no causal relationship 
can be inferred.

Regardless of the aforementioned differences in the 
risk factors identified in the current study versus pre-
viously published models, the models developed here 
performed well in predicting the risk of cardiovascular 
events in a population with two well-defined risk fac-
tors, namely patients with type 2 diabetes and above 
50 years of age. Overall, the predictive accuracies of the 
models presented in the current study are comparable to 
those of previously published models. For example, the 
Framingham risk score, which included diabetes as a pre-
dictor, yielded C-statistics of 0.76 and 0.79 for men and 
women in the general population, respectively [12]. How-
ever, when evaluated in an older diabetic cohort and in 
patients without prior CVD, the Framingham risk score 
had a C-statistic of 0.65 [19]. The performances of the 

CVD cardiovascular disease, MACE major adverse cardiovascular events, OR odds ratio, CI confidence interval

* Indicates statistical significance at the 5% level
a  A glycated hemoglobin threshold (i.e., < 8%) was added to Healthcare Effectiveness Data and Information Set (HEDIS) measure for Comprehensive Diabetes Care in 
2009 and to the Diabetes Recognition Program of the National Committee for Quality Assurance in 2010, which may have impacted CVD risk in patients with diabetes 
(See [43])

Table 2  (continued)

MACE MACE-plus CVD-related death

Predictors OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

 Obesity 0.81 (0.74, 0.89) < 0.001* 0.78 (0.68, 0.88) < 0.001*

 Cancer 1.16 (1.05, 1.29) 0.005*

 Peripheral vascular disorders 1.07 (1.01, 1.13) 0.017*

 Fluid and electrolyte disorders 1.16 (1.09, 1.24) < 0.001* 1.14 (1.08, 1.21) < 0.001* 1.15 (1.05, 1.26) 0.002*

 Deficiency anemia 1.19 (1.10, 1.28) < 0.001* 1.15 (1.08, 1.23) < 0.001* 1.22 (1.10, 1.35) < 0.001*

 Erectile dysfunction, organic origin 0.60 (0.43, 0.84) 0.003*

 Coagulopathy 1.14 (1.05, 1.24) 0.003* 1.17 (1.02, 1.33) 0.024*

 Pulmonary circulation disorders 1.21 (1.12, 1.30) < 0.001* 1.33 (1.18, 1.49) < 0.001*

Time interval (reference: 0–6 months)

 6–12 months 0.82 (0.76, 0.89) < 0.001* 0.78 (0.73, 0.83) < 0.001* 0.89 (0.79, 0.99) 0.030*

 12–18 months 0.77 (0.70, 0.84) < 0.001* 0.74 (0.69, 0.80) < 0.001* 0.81 (0.72, 0.93) 0.002*

 18–24 months 0.80 (0.72, 0.89) < 0.001* 0.70 (0.64, 0.77) < 0.001* 0.82 (0.71, 0.95) 0.009*

 24–30 months 0.71 (0.62, 0.80) < 0.001* 0.58 (0.52, 0.66) < 0.001* 0.78 (0.65, 0.92) 0.004*

 30–36 months 0.67 (0.58, 0.78) < 0.001* 0.57 (0.50, 0.66) < 0.001* 0.79 (0.65, 0.96) 0.019*

 36–42 months 0.71 (0.59, 0.84) < 0.001* 0.63 (0.54, 0.74) < 0.001* 0.73 (0.58, 0.93) 0.009*

 42–48 months 0.77 (0.63, 0.93) 0.007* 0.70 (0.59, 0.83) < 0.001* 0.77 (0.59, 1.00) 0.052

 48–54 months 0.61 (0.47, 0.78) < 0.001* 0.50 (0.39, 0.63) < 0.001* 0.66 (0.48, 0.90) 0.010*

 54–60 months 0.69 (0.53, 0.91) 0.007* 0.63 (0.49, 0.81) < 0.001* 0.75 (0.53, 1.05) 0.097

 Over 60 months 0.56 (0.46, 0.69) < 0.001* 0.50 (0.41, 0.61) < 0.001* 0.51 (0.38, 0.67) < 0.001*
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claims-based models presented here were also compara-
ble to those of previously developed risk models specific 
to the diabetic population, such as the UKPDS risk engine 
[21, 40]. Although C-statistics were not reported in the 
UKPDS original publications, subsequent validations in 
other diabetic cohorts yielded C-statistics ranging from 
0.61 to 0.73 [19, 41]. The ADVANCE model, developed 
in a population of diabetic patients at risk of cardiovascu-
lar events similar to the secondary prevention population 
in this study, also presented comparable C-statistics of 
0.69-0.70 [22]. Moreover, several other multivariate risk 
models were published and reported C-statistics rang-
ing between 0.64 and 0.70 [17, 18, 20]. A comprehensive 
external validation study would be needed to evaluate the 
performance of the different models on the same cohort 
of patients [42].

The Framingham and UKPDS models were not devel-
oped and tested for patients with a prior history of 
CVD (i.e., the secondary prevention population), mean-
ing that their predictive accuracy may be lower in this 
subpopulation [12, 21]. Therefore, another advantage 

of the models developed in the current study over sev-
eral previous ones is their ability to predict CVD risk 
in patients with prior history of CVD, who represented 
almost a quarter of the sample population. More gen-
erally, the reliability of this claims-based approach is 
perhaps best illustrated by the limited incremental pre-
dictive accuracy conferred by the additional inclusion 
of variables derived from medical records or laboratory 
results.

In light of the HEDIS performance measure that targets 
hospitalization for potentially preventable complications, 
rationally allocating healthcare resources to patients with 
type 2 diabetes at higher risk of cardiovascular compli-
cations may help healthcare providers meet quality of 
care standards, and lead to reductions in morbidity, 
mortality, and cost savings. With growing evidence sug-
gesting that certain types of diabetes treatments—such 
as SGLT2 inhibitors or GLP-1 receptor agonists—may 
mitigate cardiovascular risk in addition to improving 
glycemic control, the potential dual purpose of these 
diabetes medications could be considered-despite their 
higher cost—to optimize treatment decisions in patients 
with type 2 diabetes at high risk of CVD [24–27]. Patients 
receiving these game-changing treatments were excluded 
from the present study due to the potential for indica-
tion bias: the use of SGLT2 inhibitors or GLP1 receptor 
agonists could effectively reduce the risk of CVD, but 
may appear as risk factors associated with a higher risk 
of CVD if these agents are preferentially prescribed to 
higher-risk patients. Such counterintuitive phenomena 
are common in observational studies. Another potential 
clinical application of the models developed here would 
be to identify patients at high risk of CVD events within 
a certain time window in order to provide preventive 
care. The threshold used for this high-risk group could be 
rationally determined using the risk that maximizes the 
sum of the model sensitivity and specificity. For example, 
using this method, the high-risk threshold in the primary 
prevention population would be 2.5%, 3.5%, and 1.0% for 
MACE, MACE-plus, and CVD-related death, respec-
tively (sensitivity ranging from 67 to 73%, and specificity 
ranging from 67 to 76%). In the sample population used 
in the current study, applying these thresholds would 
result in approximately one out of three patients classi-
fied at high-risk of having MACE or MACE-plus within a 
1-year window, and one out of four patients at high-risk 
of CVD-related death. In the secondary prevention pop-
ulation, the same thresholds would be 12.5%, 18.0%, and 
5.0% for MACE, MACE-plus, and CVD-related death, 
respectively (sensitivity ranging from 62 to 78%, and 
specificity ranging from 66 to 72%), resulting in approxi-
mately one out of three patients with a high-risk of hav-
ing any cardiovascular event within a 1-year window.
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Fig. 2  Receiver operating characteristic curves for the risk models. a 
Primary prevention population, testing set. b Secondary prevention 
population, testing set
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Limitations
The current study is subject to a few limitations. First, 
the identification of study outcomes was based on defi-
nitional algorithms using health insurance claims data 
that have not been fully validated, which could lead to 
the misclassification of outcomes. Second, patients may 
have experienced cardiovascular events prior to the start 
of data availability, and may have been misclassified in 
the primary prevention population. Third, a recorded 
diagnosis code on a medical claim is not an attesta-
tion that the patient has the condition, because the code 
may represent a rule-out diagnosis or may be recorded 
incorrectly. Fourth, risk predictions beyond 60  months 
post-index should be interpreted with caution as a lim-
ited number of patients had an at-risk period of such 
duration. Moreover, risk predictions over longer periods 
may be confounded by changes in therapeutic strate-
gies. Despite these limitations, healthcare claims are a 
valuable resource to develop such models. Indeed, the 
large sample size typically available in claims database 
prevents over-fitting the models to a specific data set, 
thereby increasing their external validity, as illustrated by 
the negligible decrease in predictive accuracy observed 
within the validation set compared to the training set. 
Future studies are needed to externally validate the model 
in a distinct population or database. Finally, it should be 
noted that the risk models developed aimed at identifying 

patients at risk of CVD events, no causal inference can be 
drawn from this model based on observational data.

Conclusions
In summary, this study developed risk models that could 
reliably identify patients with type 2 diabetes at risk of 
MACE, MACE-plus, and CVD-related death based on 
information available in health insurance claims. Ulti-
mately, stakeholders—such as quality of care organi-
zations and payers—may use these models to identify 
diabetic patients at high risk of cardiovascular events and 
potentially improve their clinical management, thereby 
preventing a significant part of the disease burden and 
associated costs.
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aDCSI: adapted diabetes complications severity index; CCI: Charlson comor‑
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Table 3  Predicted risk for the average patient in primary and secondary prevention population

aDCSI adapted diabetes complications severity index, CHF congestive heart failure, CVD cardiovascular disease, MACE major adverse cardiovascular event, CI 
confidence interval
a  Predicted risk for a hypothetical patient based on listed characteristics

Patient characteristics Case 1 Case 2

Age 67 73

Gender Female Male

Type of insurance Medicare, other Medicare, other

Race/ethnicity White, non-Hispanic White, non-Hispanic

Region Mid-West South

Prior CVD diagnoses None CHF (≥ 12 months ago), Other CVD-related condition

aDCSI 1 3

Diabetes-related hospitaliza‑
tions

No No

Other recorded diagnoses Hypertension, hyperlipidemia Hypertension, hyperlipidemia, infection

Predicted riska MACE (%) MACE-plus (%) CVD-related  
death (%)

MACE (%) MACE-plus (%) CVD-related 
death (%)

At 6 month 0.7 1.1 0.2 3.2 6.1 1.3

At 1 year 1.4 2.2 0.3 5.8 10.6 2.4

At 2 years 2.7 4.3 0.7 10.5 18.5 4.5

At 3 years 4.1 6.4 1.0 14.4 24.3 6.4

At 5 years 6.8 10.6 1.7 21.8 35.2 9.9
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