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ABSTRACT

Equine Herpesviruses (EHV) are common and often latent pathogens of equids which
can cause fatalities when transmitted to non-equids. Stress and elevated glucocorticoids
have been associated with EHV reactivation in domestic horses, but little is known about
the correlation between stress and viral reactivation in wild equids. We investigated the
effect of an environmental stressor (social group restructuring following a translocation
event) on EHV reactivation in captive Grévy’s zebras (Equus grevyi). A mare was
translocated by road transport from Zoo Mulhouse, France, to join a resident group
of three mares in Tierpark Berlin, Germany. We used an indirect sampling method to
assess the frequency of EHV shedding for 14 days immediately after the translocation
event (termed the ‘experimental period’). The results were compared with those from
two control periods, one preceding and one subsequent to the experimental period. In
addition, we measured fecal glucocorticoid metabolite (fGCM) concentrations daily in
all individuals from 6 days before, to 14 days after translocation. We found significantly
higher EHV shedding frequencies during the experimental period, compared to
each of the two control periods. All animals showed significantly elevated f{GCM
concentrations, compared to f{GCM levels before translocation. Finally, we found that
an increase in f{GCM concentration was significantly associated with an increased
likelihood of EHV shedding. Although the small number of animals in the study limits
the conclusions that can be drawn from the study, taken together, our results support
the hypothesis that environmental stressors induce viral reactivation in wild equids. Our
results suggest that potentials stressors such as group restructuring and translocation
should be considered in the management of zoological collections to reduce the risk
of fatal EHV infections in novel hosts. Moreover, environmental stressors may play an
important role in EHV reactivation and spread in wild equid populations.
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INTRODUCTION

Equine Herpesviruses (EHV) are common pathogens in equid populations and are
responsible for considerable economic losses (Lunn et al., 2009; Dunowska, 2014a). EHVs
can be subdivided into two subfamilies within the family of Herpesviridae, alpha- and
gamma-herpesviridae (Davison, 2010). There is a wide spectrum of clinical manifestation
with pathogenicity differing substantially between and among virus strains (Chowdhury,
Kubin & Ludwig, 1986; Van de Walle et al., 2009; Azab & Osterrieder, 2012). In equids,
acute EHV infection can manifest as fever, nasal discharge, inflammation of the upper
respiratory tract, degenerative neurological disease, lymphadenopathy, conjunctivitis,
coital exanthema, multinodular pneumonia, and abortion (Patel ¢ Heldens, 2005; Fortier
et al., 2010; Dunowska, 2014b; Marenzoni et al., 2015).

EHVs can infect a wide range of host species other than equids, with novel hosts
including Thomson’s gazelle (Eudorcas thmomsonii; Fukushi et al., 1997), girafte (Giraffa
camelopardalis; Schrenzel et al., 2008), llamas and alpacas (Lama glama, Vicugna pacos
respectively, Rebhun et al., 1988), polar bears (Ursus maritimus; Greenwood et al., 2012),
brown bears (Ursus americanus; Wohlsein et al., 2011), and guinea pigs (Cavia porcellus;
Wohlsein et al., 2011). In these novel hosts, EHV infections are typically more severe than
in equids and often fatal. Clinical signs in novel host species can manifest as respiratory
disease, retinitis, abortion, neonatal death and myeloencephalopathy (Greenwood et al.,
2012; Ma, Azab & Osterrieder, 2013; Abdelgawad et al., 2014).

Transmission of EHV occurs only during phases of acute viral replication when the
virus is actively shed into the environment by its host (Dunowska, 2014b; Marenzoni et
al., 2015). However, all herpesviruses share the ability to establish latent infections which
can last for the lifetime of their hosts (Carter, Wise ¢ Flores, 2006). The time span of
viral latency is characterized by absence of significant viral replication and minimal viral
gene expression, despite presence of the viral genome in the nucleus of the infected cell
(White, Suzanne Beard ¢» Barton, 2012; Reese, 2016). In contrast to human herpesviruses,
reactivation of latent EHV infections and the associated physiological conditions are not
well understood, but it is generally assumed that exposure to environmental stressors play
a major role in the reactivation of latent viral infections (Padgett et al., 1998; Glaser &
Kiecolt-Glaser, 2005; Dunowska, 2014b; Sebastiano et al., 2017).

In horses, the stress response to transportation has been linked to EHV reactivation,
which in turn can trigger virus transmission and related clinical outbreaks of novel strains
(Pusterla et al., 2009; Barbic et al., 2012; Badenhorst et al., 2015). Handling and transport
are the potential source of stress for the translocated individuals. In addition social stress
after introduction of a new individual might affect all animals concerned. For example
in domestic horses, changes in their social environment can elicit a physiological stress
response (Alexander & Irvine, 1998; York ¢ Schulte, 2014; Nuiiez et al., 2014).

Stress responses to transportation and to changes in the social environment might also
contribute to EHV reactivation and transmission in other equid species. Changes in the
social environment following translocation events typically induce a substantial stress
response in various wildlife species, including equids (Franceschini et al., 2008; Schmidt

Seeber et al. (2018), PeerJ, DOI 10.7717/peerj.5422 2118


https://peerj.com
http://dx.doi.org/10.7717/peerj.5422

Peer

et al., 2010; Dickens, Delehanty ¢ Michael Romero, 2010; Vick et al., 2012). However, all
available information on the effect of stress responses on EHV reactivation and shedding
in equids originates from studies on domestic horses or ponies. Whether in other equids,
translocation and changes in the social environment elicits stress responses that lead to
EHYV reactivation and transmission is unclear.

We conducted a study on the effects of social group restructuring following a
translocation event, in captive Grévy’s zebras (Equus grevyi Oustalet, 1882). First, we
tested whether the frequency of EHV shedding was elevated in the experimental time
period immediately after the translocation event, compared to two control periods (before
and after the experimental period). Secondly, we assessed whether the translocation event
and subsequent social re-structuring induce physiological stress responses. We tested
whether there is a direct correspondence between levels of physiological stress responses
and EHV shedding for all animals. Longitudinal data was collected on the severity of the
physiological stress response by measuring glucocorticoid (GC) metabolites in fecal samples
(Ganswindt et al., 2012). Fecal glucocorticoid metabolites (fGCM) have the considerable
advantage that they reflect cumulative secretion and elimination of GC’s over most of the
gut passage, as opposed to time specific GC measurements in blood (Sheriff et al., 2011;
Kersey & Dehnhard, 2014). Finally, we genotyped EHV strains shed by different individuals
to assess potential inter-individual EHV transmission as a result of stress-induced viral
shedding. The small sample size and limited access to control conditions constrains the
conclusions that can be drawn. However, the study may provide an indication of general
patterns of stress and EHV shedding in captive zebras.

MATERIALS & METHODS

Ethics statement

This study was approved by the Internal Ethics Committee of the Leibniz Institute for
Zoo and Wildlife Research (Approval number 2017-02-01), and was approved by the two
institutions housing the animals, Zoo Mulhouse and Tierpark Berlin.

Study animals and study set-up

We investigated EHV shedding and measured fGCM concentrations in four captive mature
Grévy’s zebra mares which at the time of this study were neither pregnant nor lactating.
One of these mares (“Ekwe”) was initially housed at Zoo Mulhouse, France, and during
the course of this study was translocated to Tierpark Berlin (a roughly 850 km distance
by road transport) where she joined a resident group of three mares (“Franzi”, “Kianga”,
“Zawadi”). No sedative was administered to the transported individual.

For the first four days after arrival in Berlin, the translocated mare was kept in an
enclosure that was separated by a wire fence from the enclosure of the resident mares.
From day 5 to 9 post-translocation the four mares shared an enclosure for the first time,
but were separated again from day 10 to 26 to allow for additional feeding of roughage to
the new mare. Based on a previous study the three mares in Tierpark Berlin were known to
be latently infected with at least two EHV strains (EHV-1, and Equus zebra-Herpesvirus)
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Figure 1 Experimental setup and sampling scheme. Day 0 indicates the day of the translocation; col-
lected sample types are indicated in the grey-shaded boxes.
Full-size &l DOI: 10.7717/peer;j.5422/fig-1

(Seeber et al., 2017). The EHV infection status of the new mare prior to translocation
was unknown.

We assessed the frequency of sporadic EHV shedding in the zebras at Tierpark Berlin
daily for 14 days post-translocation (termed ‘experimental period’), and in two control
periods before and after the experimental period (Fig. 1). The pre-experimental control
period comprised in total 25 days (19 days as a preliminary assessment four months before,
and 6 days immediately before translocation). After the experimental period, we reduced
the sampling frequency to two samples per week sampling. This post-experimental control
period comprised 10 sampling days, from day 19 to 49 post-translocation.

fGCM measurement
We collected one fecal sample per day from each of the four zebras at both locations over
a time span from 6 days before, to 14 days after translocation (for detail see Fig. 1).

On the day of the arrival of the translocated individual only this animal was sampled,
but not the resident ones, due to logistics. To control for unequal distribution of f{GCM in
the fecal boli, several subsamples were collected, pooled and homogenized. Samples were
frozen immediately and stored at —80 °C until extraction.

We extracted 0.5 g wet weight (ww) per fecal sample (N = 81) with 4.5 ml methanol
(90%) by automated shaking for 30 min. The extracts were then centrifuged at 1,000x g
for 15 min, and 0.5 ml of the supernatant was diluted 1:1 with water for the subsequent
Enzyme-Immunoassay (EIA). For {GCM concentration measurement we used an EIA with
an antibody against 11 3-hydroxyetiocholanolone (Pribbenow et al., 2014).

EHV shedding

Screening for EHV shedding was only conducted at Tierpark Berlin, where zebras were
housed in an outdoor enclosure for most of the day, but were separated into individually
assigned stalls for feeding of grain concentrate each morning. The animals were kept in
their respective stalls for up to three hours. In order to trace shedding of EHV by nasal
discharge, we collected swabs from each individual’s feed trough, on a daily basis. The swabs
were subsequently screened for EHV DNA to detect viral shedding and genetically identify
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virus strains. During the pre-experimental control period (for 19 days, four months before
the translocation event, and 6 days immediately before translocation), feed trough swabs
of only the three resident zebras were collected. During the experimental period, swabs
were collected from all four animals, including the translocated animal, for 14 days (apart
from the day of the arrival of the translocated individual, due to logistical constraints).
During the post-experimental control period (day 19 to 49) swabs were collected on 10
days from all animals. As the zebras were placed into individual stalls, feed troughs were
only used by one respective animal. Before translocation, the mare at Zoo Mulhouse
was exclusively housed in a group enclosure, therefore we were unable to collect swabs
from surfaces which only this specific animal had access to. As an extension of the core
study period we continued collecting trough swabs until day 49 post-translocation for all
animals, under a reduced sampling scheme with sampling two days per week to screen
for further EHV shedding. For swabbing, we used dry cotton swabs dipped in phosphate
buffered saline. Feed troughs were cleaned daily after swab sampling, however a carry-over
of viral DNA from one day to the next cannot be entirely excluded though we do note
that carryover could not be pervasive as negative results were rather the norm than the
exception. We collected two replicates of each swab sample to reduce the probability of
false-negative results, which may be expected at a higher rate when samples are collected
from the environment. Although it seems likely that our sampling approach will lead to
an underestimation of the true shedding frequency, it can be expected that the observed
frequency of shedding events correlates positively with the true frequency of viral shedding.

DNA was extracted from the swabs using a commercially available kit (NucleoSpin
Tissue Kit, Macherey-Nagel, Diiren, Germany) following the manufacturer’s instructions.
A diagnostic herpesvirus nested PCR was performed as described in Kleiboeker et al. (2002)
with modifications of the thermocycling protocol (Seeber et al., 2017). PCR products were
visualized on a 1.5% agarose gel. Bands in the expected product size (225 bp) were excised
from the gel and purified using a kit (NucleoSpin Gel and PCR clean-up; Macherey-Nagel,
Diiren, Germany), according to the manufacturer instructions. Purified PCR products
were Sanger sequenced by LGC Genomics GmbH, Berlin, Germany.

All initial sequencing results exclusively matched equid gammaherpesviruses. However,
the strain identification by BLAST alignment was often ambiguous due to the relatively
short sequence length. In order to obtain larger fragments of the DNA polymerase gene
we designed new PCR primers specific to equine gammaherpesviruses (expected size 707
to 710 base pairs): EGHf (5'-ATA GCC AAG ATA GCC AAG ATC C-3'), and EGHr
(5-GTG TCC CCG TAG ATG ACC TT-3"). We used the following PCR conditions: initial
denaturation at 95 °C for 2 min, followed by 45 cycles of 95 °C (20 s), 61 °C (20 s) and
72 °C (45 s), and final elongation at 72 °C for 2 min. The EGHf primer was used for Sanger
sequencing.

Data analysis

To test the effect of presumed environmental stressors on f{GCM levels we divided the core
study period into four time periods, according to the management regime: (1) “before
translocation”, (2) “separate phase 17: after arrival of the new mare during which this
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individual was kept in a separate enclosure until day 4 post-translocation, (3) “common
enclosure”: days 5 to 9 post-translocation, and (4) “separate phase 2”: during which the
new mare was again kept in a separate enclosure, i.e., from days 10 post-translocation.
The effect of presumed environmental stressors on f{GCM concentrations was tested by
fitting a general linear mixed model using the log-transformed f{GCM concentration as
the response variable. However, the gut passage time of feces is reported to be 28 =7 h
in Grévy’s zebras (Steuer et al., 2011), whereas herpesvirus reactivation due to perceived
stress may be a matter of minutes to only a few hours. Thus, to control for gut passage time
we assigned each {GCM measurement to the previous day (referred to as time corrected
fGCM concentrations), and fitted another general linear mixed model using time-corrected
log-transformed fGCM concentrations as response variable.

To test for an increase in EHV shedding between the control periods and the
experimental periods in the resident animals, we fitted two generalized linear mixed
model with binominal errors. In the first model we analyzed the differences between the
pre-experimental control period and the experimental period using data on the three
resident individuals. In the second model we analyzed the differences between the post-
experimental control period and the experimental period using data on all four individuals.
As a response variable we used for each animal and study period the paired number of
days with EHV shedding and days without shedding. As predictors we used in both models
study period (control and experimental) as a fixed effect, and animal ID as a random effect.

To control for potential differences in the magnitude of the stress responses between the
resident mares and the new mare we included residency status (“new” versus “resident”)
as a predictor. In addition the respective time period (before, separate 1, common,
separate 2) was used as a predictor variable. Furthermore, we included the interaction
between residency status and time to test for the possibility that the time trajectory of
the stress response might depend on residency status. Finally, to account for additional
inter-individual variability and repeated sampling of individuals we included individual
identity as a random factor in the model. Visual inspections indicated no obvious violations
of assumptions of normality and homogeneity of error variances.

To investigate the relationship between f{GCM concentrations and EHV-shedding,
we fitted a generalized linear mixed model with the EHV shedding status as the
response variable. As predictors we included the time-corrected log-transformed fGCM
concentration as a fixed effect and individual identity as the random effect. Statistical
analyses were performed in R version 3.2.5 (R Development Core Team, 2016), using the
“elmmADMB” package (Fournier et al., 2012). The significance threshold was set at an
a-level of p < 0.05.

Virus sequences were queried against GenBank (Benson et al., 2009) using BLAST.
All viral sequences matched a single gammaherpesvirus strain (EHV-7) most closely
and we could identify within strain variation. The aligned long EHV DNA polymerase
(DPOL) gene sequences were used to determine a maximum likelihood tree with
Asinine gammaherpesvirus 5 (AHV-5, accession no. FJ798319.1) as an out-group, using
Geneious version 9.1.5 software (Kearse et al., 2012) and PhyML (Guindon et al., 2010).
For comparative purposes, we included two respective EHV sequences which had been
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Figure 2 EHV shedding prevalence in the experimental and control periods. The relative prevalence
of EHV shedding in the respective period (pre-experimental control period, experimental, and post-
experimental control period) is shown (A) for the resident animals, and (B) for all animals.
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isolated from two of the study animals in a previous study outside of the core and extended
sampling times of the current study (Secber et al., 2017).

RESULTS

In the resident zebras, the frequency of EHV shedding was elevated in the experimental
period after the translocation event, compared to the pre-experimental period (p =0.012;
95% CI [0.6—4.9], Fig. 2A). In all zebras, the frequency of EHV shedding was higher
immediately after transport, than in the post-experimental control period (p = 0.007; 95%
CI [0.79-5.09], Fig. 2B).

Furthermore, in all study animals, we found elevated f{GCM concentrations in all time
periods after the translocation event (Tables 1 and 2, Fig. 3). Residency status significantly
affected f{GCM concentrations only during the time spent in the common enclosure with
higher concentrations in the translocated than in the resident mares (Tables 1 and 2, Fig. 3).

Based on data of all animals, we found no significant effect of individual {GCM
concentrations on the likelihood of EHV shedding using the uncorrected values (p = 0.40;
95% CI [—1.08-2.71]; Fig. 4A). However, the model using the time-corrected values
showed that an increase in f{GCM concentrations significantly increased the likelihood of
EHV shedding (p =0.032; 95% CI [0.21-4.69]; Fig. 4B).

All virus strains detected belonged to the gamma-herpesvirinae, and all sequences most
closely matched Equus zebra-Herpesvirus, and EHV-7 (with mostly equal identity scores,
nucleotide identity 92-95%). We generated a maximum-likelihood phylogenetic tree,
which indicated three genotype variants, including two genotype variants that had been
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Table 1 Individual mean fecal glucocorticoid metabolite concentrations in captive Grévy’s zebra
mares, per time period. Individual mean f{GCM concentrations (ng/g ww) = standard deviation in captive
Grévy’s zebra mares, for each respective time period (before: 6 to 1 days before translocation event;
separate 1: 0 to 4 days after translocation, separate enclosures; common: 5 to 9 days after translocation,
common enclosure; separate 2: 10-14 days after translocation, separate enclosures).

Individual ~ Residency Time phase
status

Before translocation ~ Separate 1 Common Separate 2

Mean fGCM concentrations (ng/g ww) =+ std dev

Kianga resident 110.8 £ 23.0 225.8 £ 62.0 154.5 +13.2 199.3 = 44.2
Franzi resident 140.3 £ 34.7 214.0 £97.9 187.4 £ 46.5 198.9 £ 64.0
Zawadi resident 142.2 + 40.1 203.5 & 80.1 149.1 + 14.0 171.4 = 40.8
Ekwe translocated 88.6 = 18.2 196.2 £ 59.6 312.3 £ 109.3 203.3 £ 30.9

Table 2 Models on fGCM concentrations testing effects of time category and residency status. Results of the general linear model to compare
fGCM concentrations between before translocation and the three post-translocation time periods, and the respective interaction with residency sta-
tus. Statistically significant effects are highlighted in bold.

Time span Estimate 95% conlf. int. std. error z-value P
Intercept 4.78 [4.68, 4.88] 0.05 97.88 <0.001
Residency status —0.27 [—0.41, —0.05] 0.09 —2.44 0.015
Before translocation — separate 1 0.66 [0.5,0.82] 0.08 8.14 <0.001
Separate 1: residency status 0.07 [—0.22,0.35] 0.15 0.46 0.65
Before translocation — common enclosure 0.28 [0.14, 0.43] 0.08 5.19 <0.001
Residency status 0.92 [0.63,1.21] 0.15 6.23 <0.001
Before translocation — separate 2 0.46 [0.29, 0.64] 0.09 5.19 <0.001
Residency status 0.22 [—0.12,0.57] 0.18 1.26 0.21

identified in a previous study in the resident mares Franzi (EHV genotype “Fr”) and Kianga
(EHV genotype “Ki”), respectively (Seeber et al., 2017) (Fig. 5A). Each variant was generally
restricted to individual animals, apart from three instances: the strain first recovered from
Kianga was retrieved once from Ekwe, and the strain initially recovered from Franzi was
found twice in Ekwe (Fig. 5A). Throughout the entire study period, clinical signs of acute
viral infection such as excessive nasal or ocular discharge, severe lethargy, or conjunctivitis
were not observed in any of the study animals.

DISCUSSION

Three main results were generated by studying captive Grévy’s zebras: (1) the probability of
EHV shedding was elevated in the experimental period immediately after the introduction
of a new individual, (2) the group restructuring event may have acted as an environmental
stressor that led to increased f{GCM concentrations in both the resident and translocated
animals, and (3) elevated GC levels correlated with EHV reactivation and virus shedding
among the resident zebras. Thus, we provide evidence that stressors such as translocation
and related changes in the social environment may elicit a physiological stress response
in wild equids with subsequent EHV reactivation and potential virus transmission. Due
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to the lack of swab samples from the translocated zebra before transport, we cannot
exclude that this animal was shedding EHV before the translocation event. However, in the
resident animals the rate of EHV shedding increased significantly from the control to the
experimental period, and, in all animals, decreased significantly from the experimental to
the post -experimental control period. The small sample size of this study, however, may be
a limiting factor for the interpretation of our results, and further investigation on a larger
scale would be beneficial to confirm whether this is a general pattern in zebras. Ideally, an
independent control group (e.g., individuals in a different enclosure) would be examined
in order to comprehensively assess the effects of social stress.

Our results support the prediction that elevated GC levels correlate with EHV
reactivation and virus shedding, using the time-corrected values. In contrast, the correlation
with uncorrected time data did not reach statistical significance. Thus, our results indicate
rapid EHV reactivation in the resident zebras in response to increased GC levels, and a time
lag in the corresponding fGCM concentrations due to the gut passage. How fast such EHV
reactivations typically occur in equids has, to our knowledge, not been investigated in detail.
In a study of experimentally infected mice, herpesviruses reactivation could be traced to the
earliest time point of screening 14 hours after exposure to a stressor (Sawtell ¢» Thompson,
1992). However, the lack of earlier screening prevented a more detailed assessment, thus a
more rapid virus reactivation may be possible. Taken together, our results are consistent
with limited information in the literature indicating rapid herpesvirus reactivation in

response to increased GC levels.
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Fr and Ki had been identified in “Franzi” and “Kianga”, respectively, in a previous study, with the respec-
tive reference sequences labeled “F ref”, and “K ref”, respectively. Clusters “Fr”, “Ki”, and “Ek” are indi-
cated by different frame lines. Colored tips indicate potential transmission events. (B) Genotypes as in Fig.
3. A indicated by frame lines, traced per individual during the two weeks after arrival of the new mare.
Full-size Gl DOL: 10.7717/peerj.5422/fig-5

We have limited support for inter-individual EHV transmission: specifically,
transmission seemed to have occurred from Ekwe to Franzi, and from Kianga to Ekwe
(Fig. 5B). However, based on our results we cannot completely exclude the possibility that
no transmission events occurred and instead all animals were already infected with the
observed genotype variants before the onset of our study. The higher variability within
the “Ek” genotype (up to 8 base pairs, Fig. S1 ) may indicate multiple closely related EHV
variants shed by one individual co-infected host.

We expected that the long-distance transportation over 14 hours for an unsedated wild
equid would be substantially more stressful than the subsequent integration into a new
social group. Surprisingly, this expectation was not consistent with the temporal changes
of fGCM concentrations that were observed in the translocated mare. In the first time
period after arrival f{GCM concentration peaked at 2.8-fold of the pre-translocation mean
concentration, but during the time period in the common enclosure peaked at 4.7-fold
(Fig. 3, Table 1). While we are not able to completely disentangle the role of transport as
an independent stressor, it is likely that the additional increase in f{GCM concentrations
during the time period in the common enclosure can be attributed to factors of the
social environment. In addition, the mean fGCM concentrations in the translocated
mare increased from pre-transport to the time period immediately after transport by a
roughly equal amount, as they did from this time period to the subsequent time period,
in the common enclosure. Accordingly, in contrast to our expectation it appears that the
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integration into a new group was at least as stressful as the long distance transportation.
However, due to the limited sample size in this study it remains unclear whether or not this
is a general pattern. In this context it is important to consider that individual personality
traits can affect how animals respond to challenging circumstances (termed coping style;
e.g., (Baker et al., 2016; Cockrem, 2013)). Thus the adaptive capacity, and subsequently
the physiological stress response in terms of GC secretion may be affected by individual
stress perception and coping mechanisms. Our findings, even if tentative emphasize that
social stress related to group restructuring can have major effects on physiological stress
responses in wild equids.

Restructuring of social groups can be a source of considerable stress. For example, in
horses, changes in group composition and consequent decreasing predictability of the
social environment are reflected in increasing glucocorticoid levels (Alexander ¢ Irvine,
1998; York ¢» Schulte, 2014; Nufiez et al., 2014). Our results indicate that changes in group
composition can elicit physiological stress responses in both newly introduced and resident
Grévy’s zebras. Unexpectedly, the observed physiological stress responses occurred in
the initial time period when animals were separated which prevented physical aggression
between the residents and the new mare. Despite a physical barrier, introduction of a new
mare to the environment was sufficient to elicit a stress response. During the subsequent
time span in the common enclosure the new mare may have been exposed to actual physical
aggression by the group of residents, as is common after group restructuring in horses
(Alexander & Irvine, 1998), and would explain the further elevated f{GCM concentrations
in the new mare during this time span. Taken together our results show that changes in
the social environment can be substantial stressors in captive Grévy’s zebra. However,
because these animals live in artificially composed groups we cannot conclude that changes
in group composition under more natural conditions elicit similarly strong physiological
stress responses and with the subsequent reactivation of latent virus infections.

CONCLUSIONS

Group restructuring affected the newly integrated mare and also all individuals indicating
that not only stressors such as long-distance transport, but also less obvious stressors such
as the perturbation of established social groups can potentially trigger viral reactivation.
This result could have implications for the management of wild animals in captivity,
which frequently includes exchange of breeding stock between zoological institutions.
Subclinical virus shedding in equids exposed to stressors should be considered in order to
reduce the risk of transmission to novel hosts, where EHV infection can have severe health
consequences (Greenwood et al., 2012; Abdelgawad et al., 2014). However in practice, viral
reactivation and transmission among equids might remain undetected due to the absence
of clinical signs. Furthermore, environmental stressors may also play an important role in
EHYV reactivation and spreading in wild equid populations. For example, in free-ranging
zebras elevated fGCM levels have been observed in the dry season when zebras aggregate in
large herds (Cizauskas et al., 2015; Lea et al., 2017; Seeber et al., 2018). It could therefore be

expected that EHV reactivation and transmission rates increase under such environmental
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conditions. However further research will be needed to fully understand the relationship
between perceived stress, GC release and EHV reactivation in wild equids.
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