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Abstract

We investigate the use of deep neural networks (DNNs) for suppressing off-axis scattering in 

ultrasound channel data. Our implementation operates in the frequency domain via the short-time 

Fourier transform. The inputs to the DNN consisted of the separated real and imaginary 

components (i.e. in-phase and quadrature components) observed across the aperture of the array, at 

a single frequency and for a single depth. Different networks were trained for different 

frequencies. The output had the same structure as the input and the real and imaginary components 

were combined as complex data before an inverse short-time Fourier transform was used to 

reconstruct channel data. Using simulation, physical phantom experiment, and in vivo scans from 

a human liver, we compared this DNN approach to standard delay-and-sum (DAS) beamforming 

and an adaptive imaging technique that uses the coherence factor (CF).

For a simulated point target, the side lobes when using the DNN approach were about 60 dB 

below those of standard DAS. For a simulated anechoic cyst, the DNN approach improved contrast 

ratio (CR) and contrast-to-noise (CNR) ratio by 8.8 dB and 0.3 dB, respectively, compared to 

DAS. For an anechoic cyst in a physical phantom, the DNN approach improved CR and CNR by 

17.1 dB and 0.7 dB, respectively. For two in vivo scans, the DNN approach improved CR and 

CNR by 13.8 dB and 9.7 dB, respectively. We also explored methods for examining how the 

networks in this work function.
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I. INTRODUCTION

The delay-and-sum (DAS) beamformer is the standard method for combining ultrasound 

array channel signals into the ultrasound radio-frequency (RF) signals used to create a B-

mode image. The algorithm consists of applying phase delays and weights to each channel 

before channel signal summation. The phase delays are used to focus the beam on receive 

and the channel weights are used to control the beam characteristics, including main lobe 

width and side lobe levels.
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Sources of ultrasound image degradation such as off-axis scattering, multi-path 

reverberation, and phase aberration limit the clinical use of ultrasound imaging. For this 

reason, numerous techniques have been proposed to improve ultrasound image quality [1], 

[2], [3], [4]. Few of these techniques have transferred to the clinic. One notable exception is 

harmonic imaging, which discards all of the useful information at the fundamental frequency 

and forms images using the second harmonic waveform generated from non-linear 

propagation.

Byram et al. developed a model based beamforming method called aperture domain model 

image reconstruction (ADMIRE) [4], [5]. They tuned ADMIRE to improve ultrasound 

image quality by suppressing sources of image degradation. In addition, the development of 

ADMIRE demonstrated that beamforming could be posed as a nonlinear regression 

problem, which suggests that a deep neural network (DNN) might be used to accomplish the 

same task. This is important because ADMIRE is relatively inefficient. In contrast, DNNs 

take a long time to train but once trained can be implemented efficiently.

Recently, DNNs have been used to improve the state of the art in applications such as image 

classification [6], speech recognition [7], natural language processing [8], object detection 

[9], and others. DNNs consist of cascaded layers of artificial neurons. Although individual 

artificial neurons are simplistic processing units, when combined in a single layer network, 

they can be used to approximate any continuous function [10]. The potential contributions of 

DNNs to medical image classification have been and continue to be investigated [11]. In 

contrast, the impact of DNNs on medical image reconstruction are just starting to be 

examined [12], [13]. The goal of this paper was to significantly expand and report on our 

previous work to integrate DNNs into an ultrasound beamformer and to train them to 

improve the quality of the resulting ultrasound images [14].

II. METHODS

A Frequency domain sub-band processing

Several methods have relied on processing ultrasound channel data in the frequency domain 

to offer improvements to ultrasound image quality. For example, Holfort et al. applied the 

minimum variance (MV) beamforming technique in the frequency domain to improve 

ultrasound image resolution [15]. Shin et al. applied frequency space prediction filtering in 

the frequency domain to suppress acoustic clutter and noise [16]. ADMIRE also operates in 

the frequency domain to suppress off axis scattering and reverberation [4], [5].

A flow chart for the proposed DNN approach is in Fig. 1. Frequency domain minimum 

variance beamforming, frequency space prediction filtering, and ADMIRE have similar flow 

charts, except that the middle step is unique to each method. In each method, a short-time 

Fourier transform (STFT) is used to produce sub-band data in the frequency domain, which 

is processed in some way to suppress acoustic clutter and improve ultrasound image quality. 

Next, an inverse short-time Fourier transform (ISTFT) is used to convert back to the time-

domain. In this work, DNNs ere trained to suppress off-axis scattering.
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We used an STFT window length of one pulse length, the STFT window overlap was 90%, 

the window was rectangular, and no padding was used. The least squares ISTFT described 

by Yang was used to transform back to the time domain [17]. A diagram showing the 

frequency domain processing for a single depth of channel data (i.e., axially gated channel 

data from one depth) is in Fig. 2.

B. Neural Networks

We trained a different network for each frequency and the real and imaginary components of 

the signals were treated as separate inputs to the network as in Fig. 3 (a). Therefore, if the 

array had N elements, the number of network inputs was 2N The configuration of the 

network output was the same as that of the network input, i.e., separated real and imaginary 

data.

We used feed-forward multi-layer fully connected networks in this work. In this type of 

network topology, each neuron in one layer has directed connections to the neurons in the 

next layer as shown in Fig. 3 (a). Depending on the number of hidden layers and the width 

of each hidden layer, a network may have hundreds or even thousands of neurons. A single 

neuron is simplistic processing unit that consists of a summation operation over the inputs 

followed by an activation function that nonlinearly maps to the output as shown in Fig. 3 (b).

We performed a hyperparameter search with parameters in the ranges indicated in Table I. A 

variant of stochastic gradient descent (SGD), called Adam, was used to train the neural 

networks in this work with mean-squared error (MSE) as the loss function [18]. An early 

stopping criterion was employed, where training was terminated if network performance did 

not improve based on the validation loss after 20 epochs. For each training epoch, the 

network was saved only if the validation loss was the best obtained up to that point in the 

training. In this way, the network with the best validation loss was produced at the end of 

training.

To create and train the networks in this work, we used Keras, a high-level neural network 

API written in Python [19], with TensorFlow as the backend [20]. Training was performed 

on a GPU computing cluster maintained by the Advanced Computing Center for Research 

and Education at Vanderbilt University.

Selection of the network activation function is an important design choice and neural 

network activation functions are still an active area of research [21], [22]. An activation 

function determines whether a neuron activates or not based on the value of the weighted 

sum of inputs. We used the rectified linear unit (ReLU) as the activation function for the 

networks in this work, given as

g z = max 0, z (1)

where z is the summation output. The rectified linear unit is a nonlinear function; however, it 

is composed of two linear parts and is easier to optimize with gradient-based optimization 

methods compared to other activation functions such as the hyperbolic tangent [23]. The 
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shape of the rectified linear unit is in Fig. 4. A linear activation function was used for the 

neurons in the output layer.

Dropout is an effective technique for preventing a neural network, which may have a large 

number of adjustable weights, from overfitting and memorizing the training data [24]. When 

using dropout, neurons and their connections are randomly removed from the network 

according to a given dropout probability during the training phase (dropout is not used 

during the testing phase, i.e., when evaluating the networks on the validation and test data 

sets, and once the networks are deployed). Reports in the literature on the effectiveness of 

dropout for regression problems are sparse or nonexistent1. We varied the dropout 

probability to study if dropout was useful for the application in this work.

Before training a neural network, the parameter weights of the network need to be initialized 

to a starting value. One option is to randomly initialize the weights using a Normal 

distribution or Uniform distribution. There exist other initialization methods that take into 

account the activation function of choice. He et al. developed a weight initialization methods 

for activation functions in the rectified linear unit family [21]. We examined using weights 

initialized using a Gaussian distribution, a Uniform distribution and the initialization 

methods developed by He et al. for rectified linear units.

C. Training Data

Training was conducted in a supervised manner, where a network was shown paired input 

and output examples. The training process for deep neural networks requires a large data set. 

Such data sets do not exist for the problem studied in this work and obtaining an 

experimental training data set for this application would be very time consuming or even 

impossible. Therefore, we used simulation to generate training, validation, and test data sets. 

FIELD II was used to simulate the responses from point targets placed in the field of a linear 

array transducer having the parameters given in Table II [26]. The point targets were 

randomly positioned along the annular sector in Fig. 5. The center radius of the annular 

sector was set to be equal to the transmit focal depth. The goal was to train a network for the 

STFT depth that was centered at the transmit focal depth. For point targets positioned as 

described and for the central elements of the array, the received signal will be centered in the 

depth at the transmit focus. To expand the depth of field of the network and to take into 

account some of the offset effects from using a STFT window, the width of the annular 

sector was two pulse lengths.

Acceptance and rejection regions were defined based on the characteristics of the transducer 

as shown in Fig. 5. The acceptance region consisted of the main lobe width as measured by 

the first null of a simulated beam for the array at the transmit center frequency. The 

acceptance region and rejection were kept the same for all frequencies.

FIELD II was used to simulate the channel data for an individual point target. The channel 

data was gated using a window centered at the transmit focus and having a temporal length 

1There is limited consensus that dropout should not be used to train neural networks to solve regression problems [25].
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that was one pulse length long. A fast Fourier transform was used to convert the data into the 

frequency domain.

For point targets located in the acceptance region, the desired output was exactly same as the 

input. For point targets located in the rejection region, the desired output was equal to zero at 

all output nodes. In this way, the network was asked to return the input if the point target was 

in the acceptance region and to completely suppress the output if the point target was in the 

rejection region.

The training data set consisted of the simulated individual responses from 100,000 point 

targets randomly positioned in the annular sector in Fig. 5. This data set was only used 

during the network training phase, specifically to adjust the network weights. Half of the 

point targets were in the acceptance region and the other half in the rejection region. 

Although the rejection region had greater area compared to the acceptance region, dividing 

the data in this manner maintained balanced classes. Our experience indicates that it is more 

difficult to accurately reconstruct signals than to suppress signals, suggesting that it may be 

advantageous to have higher density training data in the acceptance region.

The validation data set consisted of the simulated individual responses from 25,000 different 

point targets randomly positioned along the annular sector in Fig. 5. Half of them were in the 

acceptance region and the other half in the reject region. This data set was only used during 

the training phase and for model selection. At the end of each training epoch, the validation 

data set loss was computed and used to determine when to stop training the network. If after 

20 epochs, the validation loss did not improve, the training phase for the network was 

terminated. In addition, after each epoch, the current weights for the network were saved if 

validation loss decreased below that of the previous best epoch validation ultrasound channel 

data.

The test data set had the same setup as the validation data set, except that the responses from 

25,000 point targets that had different positions compared to those in the validation data set 

were simulated. The test data was only used to report the performance of the final selected 

model.

White Gaussian noise was added to batches of training, validation, and test data with 

variable SNR in the range 0–60 dB. It should be noted that the training, validation, and test 

data sets used in this work consisted of the responses from individual point targets. 

Networks were never trained or evaluated using the response from multiple point targets as 

would be expected in a diffuse scattering scenario.

The training, validation, and test data sets were normalized in the following way. For each 

point target, the absolute value was taken of the separated real and imaginary components 

and the maximum value was found. The real and imaginary components were divided by 

this maximum value. During deployment, aperture domain signals were normalized using 

this same method and then rescaled using the normalizing constant after being processed by 

a network.
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D. Transfer Learning

The first network that we trained was for the transmit center frequency using the process 

described in the previous sections. Instead of starting from scratch to train networks at other 

frequencies, we initialized a network for a new analysis frequency using the weights from a 

network trained for a different analysis frequency. The advantage of this approach is that it is 

quicker to adjust the weights of an already trained network than it is to start from scratch, all 

of the networks have the same architecture, and only the weights have been adjusted based 

on the frequency that the network was trained to process.

E. Coherence Factor

As an additional comparison besides standard DAS, we also include the coherence factor 

(CF), which is an adaptive imaging method that suppresses clutter by exploiting the fact that 

non-clutter signals exhibit longer spatial coherence across the aperture compared to clutter 

signals [1], [2]. The coherence factor is defined as

CF =
∑i = 0

N − 1S i
2

N∑i = 0
N − 1 S i 2 (2)

where N is the number of elements in the subaperture, S(i) is the received signal after 

receive delays have been delayed, and i is the index for the receive channel. Images were 

formed by multiplying the coherence factor in Eq. 2 by radio frequency data that was 

beamformed using DAS and then taking the envelope. Images created using the coherence 

factor were included in this paper to serve as a comparison between the DNN beamformer 

and other adaptive beamformers.

F. Image Quality Metrics

Image quality was quantified using contrast ratio (CR) as

CR = − 20log10
μlesion

μbackground
, (3)

contrast-to-noise ratio (CNR) as

CNR = 20log10
μbackground − μlesion

σ2
background + σ2

lesion

, (4)

and speckle signal-to-noise ratio (SNRs) as
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SNRs =
μbackground
σbackground

, (5)

where µ is the mean of the envelope and σ is the standard deviation of the uncompressed 

envelope.

G. Simulations

The training, validation, and test data sets used for network training and evaluation purposes 

were generated using a simulated array transducer that was modeled after an ATL L7–4 38 

mm linear array transducer and with properties in Table II. Field II was used to generate 

these data sets and to create channel data sets for point targets and diffuse scattering 

scenarios to show the capability of the trained neural networks.

For the point target simulation, a point target was placed at the transmit focus for the array. 

The point target was imaged using beams that were separated by one pitch length. White 

Gaussian noise was added to the simulated data so that the channel SNR was 50 dB.

For the cyst simulation, a 5 mm diameter spherical anechoic cyst was centered at a depth of 

70 mm. The region around the cyst was filled with scatterers having density of 25 scatterers 

per resolution cell and zero scatterers were placed inside the cyst. The cyst was imaged 

using beams separated by one pitch length. A total of five anechoic cysts were scanned. 

White Gaussian noise was added to the simulated data so that the channel SNR was 20 dB.

H. Phantom Experiment

A linear array transducer (ATL L7-4 38 mm) was operated using a Verasonics Vantage 128 

system (Verasonics, Kirkland, WA) to scan a 5 mm diameter cylindrical anechoic cyst at a 

depth of 70 mm in a physical phantom. The physical phantom was a multipurpose phantom 

(Model 040GSE, CIRS, Norfolk, VA) having 0.5 dB/cm of attenuation. The same scanning 

configuration was used for the phantom experiment as was used in the simulations. A total 

of 14 scans were made at different positions along the long axis of the cylindrical cyst.

I. In vivo Experiment

A linear array transducer (ATL L7-4 38 mm) was operated using a Verasonics Vantage 128 

system (Verasonics, Kirkland, WA) to scan the liver of a 36 year old healthy male. The scans 

were conducted to look for vasculature in the liver. The same scanning configuration was 

used for the in vivo experiment as was used in the phantom experiment. The study was 

approved by the local Institutional Review Board.

III. RESULTS

A. Hyperparameter Search

Networks were trained using the transducer characteristics in Table II. A total of 100 neural 

networks were trained using the hyperparameter search in Table I. The parameters for the 
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network with the lowest validation loss are in Table III and the MSE of the selected network 

for the training, validation, and test data sets were 1.8 × 10−4, 2.1 × 10−4, and 2.5 × 10−4, 

respectively. The training and validation loss functions for the network with the lowest 

validation loss are in Fig. 6, which provides strong evidence that the selected network did 

not suffer from overfitting.

Validation loss as a function of the hyperparameter search space is in Fig. 7. Fig. 7 (a) shows 

a positive correlation between dropout and validation loss, suggesting that dropout was not 

beneficial while training the networks in this work. Fig. 7 (c) suggests that the learning rate 

should be on the order of 10−3 or less.

Fig. 7 (b) shows a weak negative correlation between layer width and validation loss, 

suggesting that there was a benefit to increasing layer width. Fig. 7 (e) shows that on average 

the lowest validation loss resulted for single layer networks. However, it should be noted that 

out of the five best performing networks, four of them had three or more hidden layers. 

These findings suggest that the larger networks performed better than the smaller networks, 

which is consistent with previous work on the loss surfaces of neural networks. 

Choromanska et al. suggested that larger networks have loss surfaces with many local 

minima that are easy to find and have similar performance in terms of validation loss, while 

smaller networks have fewer minima that are harder to find and poor performance in terms 

of validation loss [27].

After selecting the best performing network, we used this network to train networks for the 

other analysis frequencies as described Section II-D. Typically, this took a single 

hyperparameter tuning step to modify the weights of the network such that it had similar 

performance for the new frequency. The STFT gate length was 16 samples, which was 

approximately one pulse length, for all of the examples in this work, including the training, 

validation, and testing data sets. A 16 point DFT was used. The first network that we trained 

was for the transmit center frequency. Because the input sequence was real, the DFT is 

conjugate symmetric. Therefore, we trained a total of nine networks and used the 

redundancy of the DFT to assign values for the remaining frequencies.

B. Simulated Point Target

Simulated point target images using DAS and the DNN approach are in Fig. 8. The tails that 

are characteristic for DAS point target images are clearly visible in Fig. 8 (a) and they have 

been suppressed in Fig. 8 (c) using DNNs. The axially integrated lateral profile is in Fig. 8 

(d) and shows that side lobes were suppressed by approximately 60 dB when using the DNN 

approach compared to standard DAS and by approximately 40 dB compared to CF. The 

axial profile through the center of the point target is in Fig. 8 (e) shows that the axial 

response when using the DNN approach were about 15 dB higher than those observed when 

using DAS and CF.

In general, these results show the potential of the DNN approach for suppressing side lobes 

for individual point targets. The networks were trained using the responses from single point 

targets and the images in Fig. 8 show that the DNNs successfully accomplished the task they 

were trained to do.
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C. Simulated Anechoic cyst

The set of networks that was trained using the responses from individual point targets was 

applied to simulated ane choic cysts. Example cyst images produced using DAS, CF, and the 

proposed DNN approach are in Fig. 9. In addition, contrast ratio, contrast-to-noise ratio, and 

speckle SNR values when using DAS, CF, and DNNs are in Table IV, which shows mean 

and standard deviation values for five simulated cysts.

Compared to standard DAS, the DNN approach improved contrast ratio by 8.8 dB and 

improved contrast-to-noise by 0.3 dB, while preserving speckle SNR. It should be noted that 

the best achievable CNR without altering background speckle is the theoretical value for the 

SNR of a Rayleigh distribution, approximately 5.6 dB. The DNN approach almost achieves 

this optimal value. There was a statistically significant difference as measured by a paired 

samples t-test between the DAS and DNN images for contrast ratio (df = 4, t = 19.1, p = 4 

×10−5) and for contrast-to-noise ratio (df = 4; t = 17.6, p = 6×10−5). There was also a 

statistically significant difference between the CF and DNN images for contrast ratio (df = 4, 

t = −22.9, p = 2 × 10−5) and for contrast-to-noise ratio (df = 4, t = 49.0, p = 1 × 10−6). The 

axial and lateral profiles in Fig. 9 (d) and (e) show that the DNN envelope was about 30 dB 

below that of standard DAS near the center of the cyst, indicating that the DNNs offered 

suppression of off-axis scattering relative to standard DAS. In addition, comparing the 

background speckle regions when using standard DAS and the proposed DNN approach, the 

DNN approach produced a speckle pattern that was very similar to that produced by 

standard DAS. The CF method produced a larger improvement in contrast ratio than did 

DNNs; however, it did so at the expense of CNR and speckle SNR, which were significantly 

lower compared to DAS. The tradeoff of CNR for contrast is a common trend with adaptive 

beamformers and can hinder visualization.

D. Phantom Anechoic Cyst

The set of networks that was trained using simulated training data was applied to an 

experimental scan from a physical phantom. The images produced using standard DAS, CF, 

and the proposed DNN approach are in Fig. 10. Contrast ratio, contrast-to-noise ratio, and 

speckle SNR are in Table V. When using the proposed DNN approach compared to standard 

DAS, contrast ratio improved by 17.1 dB, contrast-to-noise ratio increased by 0.7 dB, and 

speckle SNR decreased 0.06. There was a statistically significant difference as measured by 

a paired samples t-test between the DAS and DNN images for contrast ratio (df = 13, t = 

18.7, p = 9 × 10−11) and for contrast-to-noise ratio (df = 13, t = 24.5, p = 3 × 10−12). There 

was also a statistically significant difference between the CF nd DNN images for contrast 

ratio (df = 13, t = 7.0, p = 8 × 10−11) and for contrast-to-noise ratio (df = 13, t = 73.3, p = 2 

× 10−18).

It is apparent from the background regions in Fig. 10 (a) and (c) that the speckle patterns are 

similar for standard DAS and the proposed DNN approach. In addition, the axial and lateral 

profiles through the center of the cyst in Fig. 10 (d) and (e) show that near the center of the 

cyst the DNN approach produced envelope values that were 40 dB below those produced by 

DAS, demonstrating the ability of the DNNs to suppress off-axis scattering. In this case, 

DNNs performed better than the CF for all of the examined speckle statistics.
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E. In vivo Scan

The networks trained to suppress off-axis scattering using simulated training data were 

applied to in vivo scans from a human liver. The images produced using DAS, CF, and 

DNNs are in Fig. 11. Contrast ratio, contrast-to-noise ratio, and speckle SNR measurements 

from the solid and dashed circles indicated in Figs. 11 (a) and (c) are listed in Table VI.

The scan in Figs. 11 (a–c) was of a region in the liver that did not contain any major blood 

vessels. The white arrows in Fig. 11 (c) indicate small blood vessels that were revealed by 

the DNN approach that were not apparent in the DAS image and only somewhat visible in 

the CF image. Using the regions traced by the solid and dashed lines in Fig. 11, the DNN 

approach improved the contrast ratio by 19.2 dB and CNR by 4.9 dB Compared to the CF, 

the DNN approach improved the contrast ratio by 5 dB and CNR by 4.8 dB.

The scan in Figs. 11 (d–f) was of a larger blood vessel in the liver. Compared to DAS, the 

DNN approach improved the contrast ratio by 8.3 dB and contrast-to-noise ratio by 14.4 dB. 

Compared to the CF, the DNN approach improved the contrast ratio by 0.9 dB and CNR by 

3.7 dB.

F. Depth of Field

The networks trained in this work had a depth of field, which resulted in a degraded speckle 

pattern away from the training depth. To quantify depth of field, we simulated a speckle 

target phantom that was 4 cm in depth and centered at the 7 cm transmit focal depth. The 

images for this phantom using DAS, CF, and the DNN approach are in Fig. 12. These results 

show that the DNN approach increased speckle variance as the distance from the training 

depth increased.

We computed speckle SNR as a function of depth for five realizations of the images in Fig. 

12 and averaged the resulting curves. The average speckle SNR curve as a function of depth 

is in Fig. 13, which shows that speckle SNR was fairly constant when using DAS but 

decreased away from the focus when using the DNN approach and the CF. Using a criterion 

of 10% difference between the DNN speckle SNR values and the theoretical value for the 

SNR of a Rayleigh distribution, the depth of field for the DNN approach was 2.6 cm. For the 

CF, the degradation in speckle SNR was at least 25% and increased as a function of the 

distance from the transmit focal depth.

G. Revealing Network Operation

One of the criticisms of using neural networks is that direct examination of a network 

architecture with its parameter weights does not provide insight into how a network 

performs the task that it was trained to do. We examined several methods for illuminating 

how the networks trained in this work accomplish the task they were trained to perform.

1) Fixed Network Response: In the first network examination method, the network for 

the transmit frequency was provided signals from the acceptance or rejection region. As a 

particular input signal was propagated through the network, we kept track of the neurons 

that became active. Those neurons that did not become active were removed from the 
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network along with all of their connections. The activation functions of the active neurons 

were also replaced with linear functions. In essence, we fixed the network based on a 

specific input signal. Next, this linearized and fixed network was exposed to point target 

responses from a grid of points located along the center of the annular sector shown in Fig. 5 

and a beam profile plot was created.

The beam profile plots for adaptive (no network alterations) and fixed network and for 

several kinds of inputs used to fix the network are in Fig. 14. In Fig. 14 (a), the network was 

fixed based on an on-axis point target (i.e., an acceptance region signal). The result shows 

that the fixed response resembled the response when using DAS. In Fig. 14 (b), the network 

was fixed based on a signal from a region of background speckle. In this case, the fixed 

response also resembled the response when using DAS. In Fig. 14 (c), the network was fixed 

based on a signal originating from the center of an anechoic cyst. The result shows that the 

fixed response was a beam that had a similar shape to DAS, but attenuated all signals by at 

least 80 dB.

The results from this analysis show that the network adjusted the beam based on the type of 

signal was at the input. In the case of the main lobe point scatter and speckle region target, 

the fixed response resembled the standard DAS response and the network seemed to act like 

a normal beam. In contrast, when the network was fixed using a signal from the center of a 

cyst, the network created a beam that attenuated both main lobe and side lobe signals by 

about 80 dB relative to DAS.

The fixed response from the main lobe point target in Fig. 14 (a) also showed the presence of 

a deep null in the beam profile. This null is similar to those observed when examining the 

beams produced by minimum variance beamforming [15]. Similar to minimum variance, it 

is possible the network learned how to place nulls at specific locations to suppress areas of 

strong off-axis scattering. For comparison, examples of minimum variance weights and 

associated beam profiles are in Fig. 17.

2) Neuron Activity: The second method that we examined for revealing network function 

was to compute the fraction of active neurons as a function of the hidden layer number. 

Similar to looking at fixed network responses, we propagated different kinds of input signals 

through the network and monitored the fraction of active neurons as a function of hidden 

layer. The results from this analysis are in Fig. 15.

Fig. 15 (a) shows the results for this analysis for the signal from an on-axis point target and 

for the signal from a point target in the side lobe region of the beam. Fig. 15 (b) shows the 

results of this analysis for a signal originating from a region of background speckle and for a 

signal originating from the middle of an anechoic cyst.

The results in Fig. 15 show that for the examined signals, a limited number of the total 

neurons in the network became active as the signals propagated through the network. In 

general, approximately 20–40% of the neurons became active. In addition, these results 

show that the network suppressed rejection region signals by reducing the activation rate of 
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the neurons in the final hidden layers such that the last hidden layer contained no active 

neurons when the network was exposed to a rejection region signal.

3) First Layer Apodization: The last method we used to analyze network function was to 

compute beam profiles for the complex apodization weights applied to the first hidden layer 

of the networks. The results from this analysis are in Fig. 16 and show the different kinds of 

beams that the network learned for several of the neurons in the first hidden layer. The 

complex weights in the first layer do not look dissimilar to the weights computed using a 

minimum variance beamformer. The distribution of deep nulls also has some similarities to 

minimum variance beamforming [15]. For comparison, examples of minimum variance 

weights and associated beam profiles are in Fig. 17.

IV. DISCUSSION

The simulated anechoic cyst results in Section III-C showed that the DNN approach 

improved contrast ratio and contrast to-noise ratio. During training and evaluation, the 

network was only shown the responses from individual point targets. The signals inside the 

cyst region were the combined responses of many point targets in the rejection region for the 

network and the results show that the network learned to suppress these signals. The signals 

from a background speckle region were also the combined responses from many point 

targets and the results indicated that the network learned to not suppress these signals. One 

would expect diffuse scattering signals like these to be far outside the signal space in which 

the networks were trained, and it would not have been surprising if the networks did not 

generalize to these new areas of the aperture domain signal space. But the results presented 

in this section showed that the network generalized to diffuse scattering signals in such a 

way as to improve image contrast while preserving speckle. This result suggests that the 

networks may be behaving linearly in terms of summation.

The physical phantom anechoic cyst results in Section III-D showed that networks trained 

using simulated training data provided improvements to CR and CNR, while causing small 

decreases in speckle SNR. It seems feasible that if the training data could be better matched 

to physical reality by using more representative simulations or even creating training data 

using experiments, the speckle variance of the DNN approach could be decreased and made 

to be similar to DAS. It may also be important to introduce sound speed errors and other 

sources of degradation into the training process. Doing so could boost the image quality 

improvements offered by the DNN approach to in vivo scans.

The selected network used a dropout probability of 4.4×10−4. In addition, we report the 

validation loss as a function of dropout in Fig. 7 (a), which shows a positive correlation 

between dropout and validation loss. This finding suggests that for the multivariate 

regression problem studied in this work the disadvantages of dropout may outweigh the 

advantages. We hypothesize that the layers of the network can be divided into two stages: 

the first stage solves a classification problem (i.e., does the signal contain clutter 

components or not) and the second stage reconstructs the signal using only non-clutter 

components. If this is the case, it may be useful to include dropout in the classifier stage and 

to only remove dropout from the reconstruction stage.
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The results from the anechoic cyst phantom experiment in Fig. 10 suggest that the networks 

trained in this work are robust to noise and have noise suppressing ability. The character of 

the envelope inside the physical phantom cyst is that of noisy data and the network 

successfully suppressed this noisy data inside the cyst.

The in vivo result in Fig. 11 (c) demonstrated how the DNN approach revealed small blood 

vessels that were not apparent in the standard DAS image. The regions with reduced image 

intensity contained aperture domain signals that were in the suppression region of signal 

space for the networks. These signals were suppressed because they were actually clutter in 

the form of off-axis scattering or because of model mismatch between training and physical 

reality or the presence of sources of acoustic clutter not accounted for during training (e.g., 

reverberation). Introducing other sources of image degradation to the training data will 

increase confidence that the revealed structures are due to the former.

The CF provided better contrast ratio than the DNN approach in the simulated anechoic cyst. 

Otherwise, the DNN approach performed better than the CF.

The depth of field analysis in Section III-F demonstrated that the networks trained in this 

work had a depth of field of approximately 2.6 cm. Maintaining good speckle quality outside 

of this range would require adjusting the weights of the network using a different set of 

training data. It may be possible to expand the depth of field by increasing the thickness of 

the annular sector used to generate the original training data. Synthetic aperture methods 

may also expand the depth of field.

The probe properties used for the training, validation, and test data sets were identical to 

those used in the simulation. These properties were selected to match the probe properties 

for the ATL L7–4 38 mm linear array used in the experiments. Discrepancies between 

assumed and actual probe geometries could cause significant issues for the DNN approach. 

In terms of the geometry of the probe, the pitch is probably the most important parameter as 

it controls the spatial sampling of the array. We have not systematically studied the effect of 

errors between assumed and actual probe properties on the DNN approach. However, we 

would expect probe geometry errors on the order of 5% or more to cause a large degradation 

in image quality for the DNN beamformer. In general, we would envision training a set of 

DNNs that are matched to a specific probe geometry. In terms of the mismatch between 

simulation and experiment, the transmit focal depth was 7 cm, so it is a reasonable to assume 

that the FIELD II simulations for this depth were accurate.

In this work, we trained neural networks to suppress off-axis scattering. It should be possible 

to train networks to suppress other sources of acoustic clutter such as reverberation. Training 

data for networks to suppress acoustic reverberation could be created using simulation 

methods developed by Byram et al. [28].

A DNN beamforming method has several advantages over similar methods such as 

ADMIRE that employ non-linear processing. First, processing aperture domain data with a 

set of networks provides a more flexible foundational framework with faster real-time 

potential because the computationally expensive training phase can be performed ahead of 

time. Second, DNNs do not include a tuning parameter at time of execution. Finally, it may 

Luchies and Byram Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be possible to train DNNs to handle high dynamic range imaging applications such as 

cardiac imaging better than adaptive beamformers. Others have shown that most existing 

adaptive beamformers perform poorly on high dynamic range signals where clutter level is 

much higher than the signal of interest [29], [30]. It may be possible to train DNNs to reduce 

or eliminate this observed degradation.

The DNNs used in this work were fully connected feed forward neural networks. Moving 

toward more advanced net work architectures has helped to improve the effectiveness of 

neural networks in other applications and it is possible that the same gains could be realized 

by using more advanced network architectures for the application in this work. Con 

volutional networks have improved the effectiveness of neural networks in many 

applications; however, they assume that the important features for suppressing clutter in 

aperture domain signals are spatially localized, which is an assumption that is not obvious 

for this application. In addition, convolutional networks offer the greatest advantages to 

problems that have many inputs (e.g., treating each pixel in an image as an input to a 

network). The number of elements in a linear ultrasound array is relatively small compared 

to the number of pixels in an image. Convolutional networks may offer advantages when 

using DNNs to suppress clutter in matrix array data.

V. CONCLUSION

In this paper, we proposed a novel DNN approach for suppressing off-axis scattering. 

Although DNNs have been used to solve classification problems based on ultrasound B-

mode images before, to our knowledge they have never been used for the purposes of 

ultrasound beamforming. The networks were trained using FIELD II simulated responses 

from individual point targets. Using the proposed method we showed improvements to 

image contrast in simulation, phantom experiment, and in vivo data. We also explored how 

the networks operated to reduce off-axis scattering by examining fixed and adaptive network 

responses and the number of active neurons per hidden layer. Our results demonstrate that 

DNNs have potential to improve ultrasound image quality.
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Fig. 1. 
Flow chart for the proposed DNN approach.
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Fig. 2. 
Frequency domain processing, where the inputs were a single axially gated section of 

channel data. Each channel was transformed into the frequency domain using the discrete 

Fourier transform (DFT). DNNs specific to each DFT frequency and trained to suppress off-

axis scattering removed clutter. The data was transformed back into the time domain using 

an inverse discrete Fourier transform (IDFT). Note that the IDFT and summation operations 

could be interchanged.
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Fig. 3. 
(a) Example feed-forward multi-layer fully connected network setup for a two element array. 

The inputs to the network were separated into real and imaginary components. Information 

only moves from left to right. (b) Diagram for a single neuron.
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Fig. 4. 
Rectified linear unit.
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Fig. 5. 
Scatterers were randomly placed along the annular sector as depicted. The acceptance region 

was taken as the region between the first nulls of a simulated beam.
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Fig. 6. 
Training and validation loss functions for the network with the lowest validation loss.
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Fig. 7. 
Validation loss as a function of hyperpameter search space.
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Fig. 8. 
Point target using (a) DAS, (b) CF, and (c) DNNs. (d) Axially integrated lateral profile and 

(e) axial profile through the center of the point target. White Gaussian noise was added to 

the channel data so that the channel SNR was 50 dB. Images are shown with a 60 dB 

dynamic range.
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Fig. 9. 
Simulated 5 mm diameter anechoic cyst at 70 mm depth using (a) DAS, (b) CF, and (c) 

DNNs. (d) Lateral and (e) axial profiles through the center of the cyst. White Gaussian noise 

was added such that the channel SNR was 20 dB. Images are shown with a 60 dB dynamic 

range.
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Fig. 10. 
Phantom 5 mm diameter anechoic cyst at 70 mm depth using (a) DAS, (b) CF, and (c) 

DNNs. (d) Lateral and (e) axial profiles through the center of the cyst. Images are shown 

with a 60 dB dynamic range.
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Fig. 11. 
In vivo scans of human liver using (a, d) DAS, (b, e) CF, and (c, f) DNNs. The regions used 

to compute CR, CNR, and SNRs recorded in Table VI are shown in (a) and (d). The region 

with a solid line indicates the inside region and the region with a dashed line indicates the 

background region. Images are shown with a 60 dB dynamic range.
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Fig. 12. 
Simulated speckle target through depth using (a) DAS, (b) CF, and (c) DNNs. White 

Gaussian noise was added such that the channel SNR was 50 dB. Images are shown with a 

60 dB dynamic range.
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Fig. 13. 
(a) Speckle SNR as a function of depth for standard DAS and DNN approach. (b) Percent 

difference between speckle SNR for DAS, CF, and DNNs relative to the theoretical speckle 

SNR assuming a Rayleigh distribution. A 10% difference criterion is indicated as a dashed 

line and was used to determine the depth of field for the DNN approach.
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Fig. 14. 
Adaptive network and fixed network responses for (a) center of point target, (b) area of 

diffuse scattering, and (c) middle of an anechoic cyst. The fixed and adaptive DNN 

responses were normalized with respect to the DAS response. These beam profiles are for 

the transmit center frequency.
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Fig. 15. 
Percent of active neurons for (a) point target responses and (b) diffuse scattering responses.
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Fig. 16. 
Complex apodization weights are in the left column. Corresponding beam profiles are in the 

right column. The results are shown for three of the nodes in the first hidden layer.
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Fig. 17. 
Complex apodization weights computed using minimum variance beamforming are in the 

left column for (a) an anechoic cyst and (c) a region of diffuse scattering. Corresponding 

beam profiles are in the right column.
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Table I

HYPERPARAMETER SEARCH SPACE

Parameter Search Values

Hidden Layers 1–5

Layer Widths 65–260 (multiples of 5)

Learning Rate 10−5 − 10−2

Learning Rate Decay 10−8 − 10−5

Dropout Probability 0–0.5

Weight Initializations Normal, Uniform
 He Normal, He Uniform
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Table II

LINEAR ARRAY PARAMETER VALUES

Parameter Value

Active Elements 65

Transmit Frequency 5.208 MHz

Pitch 298 µm

Kerf 48 µm

Simulation Sampling Frequency 520.8 MHz

Experimental Sampling Frequency 20.832 MHz

Speed of Sound 1540 m/s

Transmit Focus 70 mm
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Table III

BEST NETWORK PARAMETER VALUES

Parameter Value

Hidden Layers 5

Layer Width 170

Learning Rate 1.1 × 10−3

Learning Rate Decay 4.1 × 10−8

Dropout Probability 4.4 × 10−4

Weight Initialization He Normal
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Table IV

SPECKLE STATISTICS FOR SIMULATED ANECHOIC CYSTS

Parameter DAS CF DNN

CR (dB) 25.9 ± 0.6 42.6 ± 1.8 34.7 ± 1.3

CNR (dB) 5.2 ± 0.4 3.0 ± 0.3 5.5 ± 0.4

Speckle SNR 1.93 ± 0.08 1.43 ± 0.05 1.92 ± 0.08

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 September 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luchies and Byram Page 38

Table V

SPECKLE STATISTICS FOR PHANTOM ANECHOIC CYST

Parameter DAS CF DNN

CR (dB) 18.5 ± 1.0 32.3 ± 2.8 35.6 ± 4.2

CNR (dB) 3.7 ± 0.4 1.4 ± 0.4 4.4 ± 0.5

Speckle SNR 1.76 ± 0.08 1.21 ± 0.05 1.70 ± 0.08
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Table VI

SPECKLE STATISTICS FOR IN VIVO SCANS

Fig. 11 (a–c) Fig. 11 (d–f)

Parameter DAS CF DNN DAS CF DNN

CR (dB) 6.5 20.7 25.7 1.2 8.6 9.5

CNR (dB) −0.4 −0.3 4.5 −15.9 −5.2 −1.5

Speckle SNR 2.03 1.07 1.75 1.83 0.96 1.44
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