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Abstract

The bone marrow is primary site of hematopoiesis and home for hematopoietic stem cells (HSCs) 

in adult mammals. Prostate cancer commonly metastasizes to bone and forms bone metastases in 

almost all patients who die of the disease. Prostate cancer bone metastases are thought to develop 

after rare bone marrow disseminated tumor cells (DTCs) escape a dormant state and reactivate. 

Prostate cancer DTCs and normal HSCs have been shown to compete for residence in the bone 

marrow and share many of same regulatory mechanisms for survival, proliferation and homing. In 

this review, we highlight these parallels in order to help our readers use the literature in HSC and 

DTC biology to inform their research and generate hypotheses in both fields.
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Introduction

Prostate cancer (PCa) is a large public health problem with over 180,000 new cases and over 

26,000 deaths per year in the United States alone1. Of PCa patients with distant metastases, 

90% have metastases to bone2. Prostate cancer cells are thought to spread to the bone 

marrow early in the disease process, even at or before the time of curative intent surgery or 

radiation therapy to the prostate. At this time, they are termed disseminated tumor cells 

(DTCs) or micro-metastases. These cells are found in bone marrow or other tissues rather 

than circulating in peripheral blood, which most investigators term circulating tumor cells, 

or CTCs. The presence of bone marrow DTCs in PCa patients at the time of radical 

prostatectomy has been demonstrated by research groups at three institutions using various 
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techniques including, RT-PCR for prostate specific antigen (PSA), immunohistochemistry 

for PSA and single cell selection of epithelial cell adhesion molecule (EPCAM) positive 

cells by single cell isolation after prior negative and positive selection3–7. Furthermore, their 

presence was shown by all three groups to correlate with PCa recurrence5,8,9. However, 

recently investigators reported being able to detect these cells in only a small minority of 

patients with localized PCa10. This report highlights the challenges in conducting this type 

of research and suggests further investigation.

PCa DTCs can remain viable but dormant for long time periods; as illustrated by the fact 

that about 20% of PCa recurrences after surgery occur greater than 5 years after patients 

were thought to be cured11. Reactivation or dormancy escape of bone marrow DTCs is 

thought to be a major cause of relapse in PCa and other malignancies12. Furthermore, an 

understanding of the biology of how DTCs or micrometastases are different from 

macroscopic tumors and how they interact with bone microenvironment has the potential to 

lend insight into later stages of the disease when metastases are visible on imaging. 

Therefore, understanding the biology of DTCs in the bone environment is crucial for 

prevention of relapse or treatment of relapsed disease.

There are two major models which have been invoked to describe tumor heterogeneity, 

either of which could describe the behavior of DTCs. The cancer stem cell (CSC) model 

suggests that subpopulations of cancer cells form a hierarchical cluster of tumor initiating 

cells13. These CSCs often feature parameters present in normal tissue stem cells, and like 

normal stem cells maintain themselves through self-renewal, but also differentiate into 

progenitor cell populations and ultimately into mature or non-stem cancer cells (NSCCs). 

The second major model for tumor development is the stochastic model. In the stochastic 

model, tumors develop by clonal evolution to progress into heterogeneous populations which 

are influenced by both intrinsic and extrinsic environmental factors14.

Many tissues which harbor DTCs, including lung, liver and bone marrow, are also sites in 

which clinical relapse can eventually occur. Each of these organs support stem cell 

populations and tightly regulates proliferation as a component of normal function. This 

suggests that the normal activity of the host tissues to regulate stem cell function, be it the 

induction or maintenance of quiescence, ultimately becomes insufficient to enforce 

dormancy of DTCs. Yet, whether DTCs are primed for proliferation but constantly kept in 

check by suppressive signals or rather reprogrammed into a semi-permanent dormant state 

by the microenvironment remains unclear. In several experimental systems DTCs isolated 

directly from humans or from preclinical models are difficult to grow in vitro, and only 

proliferate after extended culture periods12,15. The implication from these studies is that 

DTCs, at least in these organs, are reprogrammed into a dormant state rather than held in 

check by the continual presence of negative regulators. Alternatively, there is ample 

evidence that immune regulation of DTCs plays a major role in controlling DTC 

proliferation16–19. How the host is able to distinguish normal stem cells from tumor cells, be 

they CSCs or NSCCs remains unclear.

We and others have hypothesized that DTCs reside in similar environments or “niches” as 

hematopoietic stem cells (HSCs) and compete for occupancy of the bone marrow 

Cackowski and Taichman Page 2

Bone. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microenvironment20. Likely because of shared interactions with stromal cell types, research 

over the past one or two decades has discovered shared regulatory mechanisms between 

DTCs and HSCs. In this review, we use HSC biology to frame a discussion of PCa bone 

marrow DTC regulation in hopes that we will help our readers gain intuition into DTC 

biology and help them generate new hypotheses by drawing on the more extensive HSC 

literature. We concentrate here on PCa, but note that many of the same concepts will apply 

to breast cancer and other malignancies which metastasize to bone. The mechanisms 

discussed below are summarized in Figure 1.

Homing

Perhaps the most established and robust parallel between DTCs and HSCs is in homing to 

the bone marrow, much of which involves the cytokine CXCL12 (SDF-1). Over a decade 

ago, CXCL12 was suggested to be important for PCa bone metastasis21. Subsequently, 

blocking CXCL12 was shown to inhibit transit of PCa cells to the bone marrow. CXCL12 

and was also shown to strongly co-localize with metastatic PCa cells – principally in the 

metaphysis of long bones in the mouse models used for these studies22. There is an 

extensive literature on the role of CXCL12 in the HSC niche and homing. The niche 

constituent Cxcl12 abundant reticular cell (CAR) cell is defined by the high expression of 

CXCL12 as measured by a fluorescent reporter gene23. Furthermore, the effect of other cells 

on homing and the HSC niche are in part through effects on CXCL12 – namely that the 

effects of the sympathetic nervous system on the HSC niche are proposed to be through 

modulation of CXCL12 expression in peri-vascular cells and osteoblasts24,25. Most recently, 

the pre-metastatic niche for both PCa and breast cancer was proposed to consist of 

vasculature associated mesenchymal stromal cells. Similarly, our group found a role for the 

adhesion molecule, Annexin 2, in homing of both HSCs and PCa DTCs to bone 

marrow26,27. In keeping with the central role of CXCL12 for homing of both cell types, 

Annexin 2 appeared to act by stabilization of CXCL1228.

Location

We and others have shown that HSCs and DTCs functionally compete for residency in bone 

marrow20. In an analogous fashion to its function of maintaining HSCs in a pluripotent state, 

the bone marrow environment appears to cause PCa cells to assume a more primitive or 

cancer stem cell phenotype. Although this was long hypothesized, Shiozawa and colleagues 

recently showed a rapid assumption of a stem-like phenotype as defined by increased 

percentage of CD133+/CD44+ positive PCa cells29.

However, the precision location and cellular makeup of the HSC and especially DTC niches 

remains much less well defined. There has been much more work published on the location 

of the HSC niche than the precise location of DTCs in bone marrow. However, even for 

HSCs, the publication of multiple high impact papers has not brought clarity to this 

discussion. After decades of study, multiple cell types have been implicated as constituents 

of the bone marrow HSC niche, most of which are derived from mesenchyme. Earlier 

studies predominantly suggested an endosteal and osteoblast associated location of the HSC 

niche30–32. However, more recent studies using mouse genetic manipulations have found 
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perivascular locations to be more important33–35. Among the peri-vascular cell types that are 

proposed to support HSCs are Cxcl12 abundant reticular (CAR) cells lining sinusoids and 

nestin positive cells adjacent to arterioles23,36. Nerve fibers are often associated with 

vasculature in bone marrow as in other parts of the body. More recently than some other cell 

types, the sympathetic nervous system has also been reported to regulate bone marrow HSCs 

and more recently DTCs as well24,37.

The relatively small number of studies examining the location of PCa DTCs in mouse 

models with microscopy have placed them predominantly at the metaphyses or otherwise 

adjacent to the growth plates38,39. These are also the locations where macroscopic bone 

metastases most commonly ultimately form. DTCs at the metasphasyses are predominantly 

within a few cell diameters or less than about 100 μm from the endosteal surface, which 

suggests an endosteal or osteoblastic location for PCa DTCs. Some have suggested that 

cancer associated fibroblasts are also important for tumor development in these endosteal 

locations39. However, it is also important to note that the metasphasyses of mice are very 

heterogenous with a high vessel density, and many other cell types including hematopoietic 

precursors and immune cells. Furthermore, because the growth plate closes in humans but 

not rodents, the location of DTCs in humans might also differ. In breast cancer, investigator 

have shown the importance of a perivascular niche for breast cancer bone marrow DTCs and 

that vessel outgrowth promotes dormancy escape40. Alagous micro-anatomy and 

mechanisms are plausible in PCa but to our knowledge have not be directly studied.

Stress Response and Survival

A commonly proposed reason for “why” DTCs become dormant is as a survival 

mechanism41. After hematogenous spread to a new location such as the bone marrow, DTCs 

might not have the same proliferative signals present in the primary tumor and therefore stop 

cycling, which has been shown to correlate with resistance to chemotherapy and other 

causes of apoptosis. Prominent molecular mediators of this survival signaling include TGF-

β2, p38 MAPK and the endoplasmic reticulum stress response6,41–43. Even more recently, 

the importance of transcription factors best known for induction of pluripotency in 

embryonic stem cells has become apparent. These include SOX2, SOX9, NANOG, and 

retinoic acid receptor β44,45.

Dormancy vs. Proliferation

Many of the best characterized regulators of PCa dormancy have analogous roles in 

regulation of HSC quiescence vs. proliferation. TGF-β2 is perhaps the best characterized 

factor maintaining dormancy in DTCs from PCa and other cancers42. Similarly, the TGFβ 
family member BMP-7 also maintains PCa DTC dormancy46,47. TGF-β family members 

have analogous effects for HSCs. TGF-β2 maintains HSCs in a quiescent state but increases 

their ability to engraft. Conversely, TGF-β1 inhibits HSC reconstituting ability48.

It is interesting to consider further that the bone marrow microenvironment is a rich source 

of growth factors and cytokines with capacity to regulate DTC growth. Numerous molecules 

present in the marrow including basic fibroblast growth factors (bFGF), insulin-like growth 
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factors I and II (IGF-I and –II), platelet-derived growth factor (PDGF), epidermal growth 

factor (EGF), and transforming growth factor alpha (TGF-α) may serve as mitogens for 

DTCs49. In fact, even some forms of TGF-β may stimulate the growth of DTCs50–53. 

Stromal-derived factor-1 or CXCL12 is well established as a critical regulator of DTC 

homing and mobilization54–56. However, inhibition of CXCL12 signaling demonstrates anti-

mitogen activities, which in part is due to autocrine signaling but could also be due to 

stromal control of DTC activiites28,57.

In a similar way, bone morphogenetic protein 7 (BMP7) produced by bone marrow stromal 

cells triggers dormancy of PCa cells. When PCa cells were co-cultured with bone marrow 

stromal cells, prostate cancer cells entered dormancy through the activation of the cell cycle 

inhibitor p21, the metastasis suppressor gene N-myc downstream-regulated gene 1 

(NDRG1), and p38 MAPK phosphorylation46. Additionally, BMP7 dramatically suppresses 

the ERK MAPK pathway46. These observations are consistent with previous studies by 

Aguirre-Ghiso’s group, proposing that the ratio of ERK and p38 MAPK pathways plays a 

pivotal role in the determination of tumor dormancy42. Dormancy is prevented when BMP7 

secreted by bone marrow stromal cells is blocked by shRNA or pan-BMP inhibitor Noggin. 

Moreover, the effects of BMP7 on dormancy of PCa cells both in vitro and in vivo are 

attenuated when BMP receptor 2 (BMPR2) on PCa is down-regulated46.

We have reported that growth arrest specific-6 (GAS6) expression from osteoblasts in the 

bone marrow environment plays a critical role in establishing prostate tumor cell 

dormancy58. GAS6 signaling inhibits PCa proliferation, as it does with hematopoietic 

progenitor cells59 suggesting once DTCs enter the niche, interactions between GAS6 and its 

receptors may regulate PCa dormancy58. Interestingly, GAS6 expression is not uniform 

amongst different bone locations as significantly higher expression of the protein can be 

detected in murine femurs vs humeri60. These observations correlate well with the 

prevalence of human PCa metastasis in immune deficient mice were the predicted 

probability across all animal models was 7% (range 5-10%) for the forearms and 33% 

(range 28-38%) for the leg bones60. GAS6 signals predominately through the TAM family 

of receptor tyrosine kinases Tyro3, Axl and Mer tyrosine kinase (MERTK). Subsequently, 

we have shown that DTCs recovered from marrow of immune deficient mice differ in their 

expression of two of the major GAS6 receptors such that a balance between the expression 

of Axl and Tyro3 may serve as a molecular switch between a dormant (predominatly Axl 

expression) and a proliferative phenotype (Tyro3 expression) in PCa bone metastases61. 

Similarly, further investigations found that MERTK signaling stimulates dormancy escape 

and stimulates formation of a CSC phenotype29,45. Although, there is scant literature for a 

role of GAS6 in normal HSC function, it is intriguing to note that AXL signaling was 

recently found to regulate the self-renewal of malignant HSCs in chronic myelogenous 

leukemia62. This was found to be due to β-catenin signaling, which has a well-established 

role in the function of CSCs for PCa and other solid tumors63.

It is not surprising that HSC quiescence is tightly regulated given the importance of these 

cells in maintaining normal homeostasis, or in response to injury. In fact multiple pathways 

are thought to intersect for the purpose of providing redundancy and for maintaining stem 

cell activities64–68. Thus it should come as no surprise that DTCs, as molecular parasites of 
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the HSC niche, are likely to be maintained in a dormant state by many intersecting signals. 

As an example, when DTCs come into close proximity to niche osteoblasts they upregulate 

their expression of Axl43. Recently we found that expression of both TGF-ß and its receptors 

were regulated by Axl expression in PCa cells, while blockade of TGF-ß signaling limits the 

ability of the osteoblasts to induce dormancy of PCa cells43. Importantly, both Gas6 and Axl 

are required for TGF-ß2-mediated cell growth suppression43. Together, these data suggest 

that a feedback loop between GAS6 and TGF-ß signaling is likely to provide intersecting 

and redundant systems critical to maintaining PCa cell dormancy (Illustrated in Figure 2).

From the preceding discussions it is implied that DTCs are tumor-initiating and are kept in 

check by proliferative inhibitory signals emanating from the host tissue12. At the same time, 

clinical observations suggest that a loss of immune function is associated with resurgence of 

tumor progression16–19. Recently Malladi et al demonstrated that a distinct class of stem-like 

DTCs are primed to enter quiescence and evade innate immunity69. As part of the phenotype 

of a tumor-initiating stem/progenitor population, the cells through production of DKK1, 

enter a dormant like state which is predicated to counteract WNT signaling69. Excitingly, in 

this state the DTCs are able to evade NK cell surveillance and thus acquire a long-term 

survival advantage which poises the population for proliferation as immune function 

changes over time69. Furthermore, in keeping with the studies discussed above on the role of 

GAS6 in maintaining PCa DTC cellular dormancy, AXL signaling was recently shown to 

induce development of natural killer cells70.

The sympathetic nervous system has been proposed to stimulate HSC proliferative activity 

and bone marrow regeneration. For example, Lucas et al showed that hematopoietic 

regeneration was inhibited by damage to bone marrow sympathetic nerve fibers from 

chemotherapy drugs, especially cisplatin71. Similarly, Heidt et al showed that chronic 

variable stress increased proliferative activity of HSCs72. The resultant increased production 

of inflammatory cells elevated the risk of myocardial infarction and stroke in an animal 

model. Likewise, in PCa the sympathetic nervous system stimulates the development of the 

primary tumor73. Our group recently showed that sympathetic neurotransmitter 

norepinephrine stimulates escape from dormancy in a PCa model. This effect of 

norepinephrine was through direct action on PCa cells and also through decreased 

expression of the well know dormancy associated molecule GAS6 by osteoblast lineage 

cells37.

Conclusions and Perspective

Over the prior 20 years, we have seen remarkable parallels develop in our understanding of 

the biology of PCa DTCs and normal HSCs. This includes the study of localization, homing, 

survival, and proliferation. Frequently, the advances in normal hematology have preceded 

concurrent findings in solid tumor biology. This has provided enormous opportunities for 

hypothesis generation for investigators studying the biology of PCa DTCs. We are confident 

that these research parallels will continue in the future. This will provide fertile ground for 

both hematology and PCa researchers to the benefit of their respective patients.
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Highlights

• Prostate cancer disseminated tumor cells (DTCs) and hematopoietic stem 

cells (HSCs) have analogous functions.

• Both home to the bone marrow, for which CXCL12 is critically important.

• HSCs and DTCs share a home or “niche” as shown in part by competition 

experiments.

• The niche regulates survival and dormancy vs. proliferation of both cell types.
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Figure 1. 
Key cells and secreted factors regulating HSCs and prostate cancer DTCs. HSC; 

hematopoietic stem cell, DTC; disseminated tumor cell, NE; norepinephrine, CAR; Cxcl12 

abundant reticular cell, MSC; mesenchymal stem cell, NK Cell; natural killer cell.
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Figure 2. 
Crosstalk between TAM and TGF-β pathways in dormancy induction and maintenance.
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