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Abstract

The human cerebral cortex is composed of a mosaic of areas thought to subserve different 

functions. The parcellation of the cortex into areas has a long history and has been carried out 

using different combinations of structural, connectional, receptotopic, and functional properties. 

Here we give a brief overview of the history of cortical parcellation, and explore different 

microstructural properties and analysis techniques that can be used to define the borders between 

different regions. We show that accounting for the 3D geometry of the highly folded human cortex 

is especially critical for accurate parcellation. We close with some thoughts on future directions 

and best practices for combining modalities.

A. Introduction

Current neuroimaging studies frequently refer to activated cortical locations using areas 

defined by Korbinian Brodmann more than a century ago (Brodmann 1909). Despite the 

well-known shortcomings of Brodmann’s map, the moderate resolution of volume-averaged 

neuroimaging data did not initially demand better. Activations in ‘Brodmann areas’ are not 

typically accompanied by rigorous statistical analysis of the uncertainty associated with the 

localization. Most commonly, a ‘Brodmann area’ (BA) is used colloquially in the sense of 

any structurally-defined region in the cerebral cortex. Heavily-smoothed and thresholded 

average activations are then assigned to ‘Brodmann areas’, sometimes subdivided ad hoc, 

using surrounding folding patterns (Turner and Geyer 2014, Turner 2016). This is a 

consequent of the fact that Brodmann’s iconic summary map was largely transmitted to 

modern neuroimaging via the noisy channel of a single pair of labeled 2D lateral and medial 

views of the folded cortex. That diagram summarized observations from multiple, small, 
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usually non-overlapping samples of multiple brains. This approach has long been known to 

be problematic as: (1) there was no way to rigorously test the uncertainty of these 

localizations, and (2) the relationship between the Brodmann areas and cortical folding was 

little discussed and less quantified. While computational analysis of neuroimaging data has 

advanced remarkably in the last decade (Miller, Massie et al. 2000, Smith, Jenkinson et al. 

2006, Ashburner 2007, Behrens, Berg et al. 2007, Davatzikos, Fan et al. 2008, Fischl, 

Stevens et al. 2009), relatively little research has explicitly attempted to relate cyto- and 

myeloarchitecture to the complex but observable geometry of the cortical surface (e.g. 

(Fischl, Rajendran et al. 2008, Sereno, Lutti et al. 2013, Waehnert, Dinse et al. 2014, 

Waehnert, Dinse et al. 2016)). A primary goal of this research is to develop high resolution 

multi-contrast acquisition methods that reveal putative cortical boundaries both within the 

cortical sheet (i.e. laminae) and along the cortical sheet (i.e. cortical areas).

Improvements in acquisition technology have advanced MRI to the point where we can now 

catch glimpses in vivo of the laminar and columnar architecture that is one of the defining 

features of the human cerebral cortex (Geyer, Weiss et al. 2011). Using phased-array receive 

coils and ultra-high-field scanners, researchers have demonstrated the importance of using 

our understanding of the laminar nature of cortical gray matter to guide functional and 

diffusion MRI (dMRI and fMRI respectively) analysis (Polimeni, Fischl et al. 2010, 

Polimeni, Fischl et al. 2010, Leuze, Anwander et al. 2014). Within-area modules in visual 

extrastriate areas (e.g., V2 stripes, V4 patches) initially discovered in non-human primates 

have just begun to be convincingly visualized in humans at high fields (Nasr, Polimeni et al. 

2016, Tootell and Nasr 2017) and correlated with myelination density (Dumoulin, Harvey et 

al. 2017). The relatively stereotyped nature of the laminar origins and targets of cortico-

cortical connectivity raises the importance of being able to accurately determine which 

cortical lamina a given signal arises from, as there is suggestive evidence that such a 

capability may allow the inference of the direction of information flow within the cortex 

from fMRI (Polimeni, Fischl et al. 2010) – a significant potential development. Finally, an 

array of disorders such as epilepsy, schizophrenia, dyslexia and autism, may result in subtle 

but detectable changes in laminar architecture that could be measured using improved tools 

for quantifying the laminar and columnar properties of the human cerebral cortex. Knowing 

the vertical (columnar) position of an effect is potentially as important as knowing its 

tangential location (cortical area).

Classical microstructural parcellation—The heterogeneous appearance of the local 

laminar and columnar structure of different parts of the cortical sheet suggested early on that 

it might be worth defining subregions in preparation to looking for functional differences 

between areas. The pioneers in this field focused on either stains for cell bodies 

(cytoarchitectonics) or stains for myelinated fibers (myeloarchitectonics)(Flechsig 1920) 

(Brodmann 1909, Vogt and Vogt 1919, Flechsig 1920, von Economo and Koskinas 1925). 

Many competing hemisphere-wide maps based on sectioning and histological staining of 

cadaver brains were published, demarcating the boundaries of cyto- and myelo-architectonic 

domains. Perhaps because of the accessibility and compactness of his two summary images, 

Brodmann’s cytoarchitectonic parcellation came to dominate, despite the fact that some of 

the competing myeloarchitectonic parcellations have turned out to better reflect our current 
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understanding of cortical parcellation (Campbell 1905, Flechsig 1920). For example 

Flechsig (Flechsig 1920) correctly identified myelinated maxima in the region of what we 

now call the MT/FST complex, V3A, V6, and VIP, none of which were correctly identified 

by Brodmann (Sereno, Lutti et al. 2012). That these prescient early observations fell into 

obscurity was partly due to the difficulty of objectively comparing multiple incommensurate 

maps. Some of this early work of the Vogt school has only very recently been made more 

accessible by manual alignment with modern atlases (Nieuwenhuys 2013, Nieuwenhuys, 

Broere et al. 2015, Nieuwenhuys and Broere 2017).

The early architectonic maps subdivided the cortical sheet into a complex mosaic based on 

radial and lateral variations in the composition of tissue columns perpendicular to the pial 

and white matter surfaces. However, these parcellations were subject to many 

methodological criticisms. Their labor intensive nature limited sample size, which was 

problematic given: (1) inter-subject variability of cytoarchitectonic boundaries but also 

substantial within-area variation (see e.g., MT in Fig. 3 in (Sereno, McDonald et al. 2015); 

and (Kuehn, Dinse et al. 2017), on the hand-face border in somatomotor cortex), (2) the 

unavoidable artifacts of the histological process, such as idiosyncratic plastic deformation 

and tearing of sections, artefactual variations in fixation and staining density, and random 

angle of the plane of section relative to the intrinsic laminar coordinate system of the cortical 

sheet, (3) observer bias, and (4) limitation to a single tissue contrast per sample. In current 

invasive mapping studies on non-human primates, typically necessarily limited to small 

subject counts, these methods are practiced much the same way as they were 100 years ago 

(see e.g., (Seelke, Padberg et al. 2012), on electrophysiological mapping of higher level 

somatosensory areas followed by architectonic analysis).

Large-scale studies on post-mortem human tissue by Zilles, Amunts and colleagues have 

recently managed to address many of these limitations (Geyer, Schleicher et al. 1999, 

Schleicher, Amunts et al. 1999, Amunts, Malikovic et al. 2000, Morosan, Rademacher et al. 

2001, Amunts, Schleicher et al. 2003, Zilles, Eickhoff et al. 2003, Eickhoff, Amunts et al. 

2006, Amunts, Schleicher et al. 2007, Malikovic, Amunts et al. 2007). By expanding the 

number of tissue contrasts collected on individual post-mortem specimens beyond basic 

columnar density profiles to include immunohistochemical stains and polarized light(Axer, 

Axer et al. 2001, Axer, Amunts et al. 2011), by expanding sample sizes, by more closely 

controlling fixation and sectioning conditions, and by using probabilistic observer-

independent methods, it has become possible to generate cortical area parcellations that are 

better matched to the kind of receptotopic and functional parcellations that can now be 

obtained in living subjects (see e.g., (Rosenke, Weiner et al. 2017)).

Resting state functional connectivity—A great profusion of studies of “resting state 

functional connectivity”’ have been undertaken since the ground-breaking PET work by 

Raichle in the late 1980s (see, for example (Raichle, MacLeod et al. 2001, Raichle and 

Snyder 2007) for review) and by Biswal (Biswal, DeYoe et al. 1994, Biswal, Yetkin et al. 

1995) using MRI in the 1990s. This popular method merely requires that a subject lies ‘at 

rest’ in the scanner for a moderate amount of time. By analyzing the synchronization of 

signals between brain regions and then constraining the number of resulting regions using 

various combinations of topological neighborhood constraints, region size, local gradients, 
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and seed region definitions, a large number of different tentative cortical parcellation 

schemes have been published (e.g. (Yeo, Krienen et al. 2011, Power, Schlaggar et al. 2014)). 

To a substantially greater extent than was the case with more technically difficult 

microstructural parcellations, the very large number of alternate resting state parcellations 

and data formats already in the literature has made it virtually impossible to objectively 

assess and compare them (for recent reviews, see e.g. (Glasser, Smith et al. 2016, Schaefer, 

Kong et al. 2017)), an unfortunate echo of the initial flowering of cortical architectonics.

White-matter and gray-matter diffusion—The use of diffusion-weighted imaging to 

trace white-matter tracts provides yet another method for parcellation of the cortex 

somewhat analogous to resting-state functional connectivity (see (Eickhoff, Thirion et al. 

2015) for a review). Unlike invasive neural tracer methods, local diffusion-based tract 

tracing is a Markov process. Its memory-less nature means that a mistake capable of being 

propagated to the next step is possible in the passage through every voxel. Even assuming no 

mistakes, fiber tracts are like freeways, with multiple entrances and exits, so ‘connections’ 

can only be defined probabilistically. And mistakes are easy to make when there are crossing 

fibers within single voxels. Microscopic observations show this commonly occurs in the 

white matter, but also at the sudden right-angle turns that fibers make as they enter the gray 

matter in gyri. One huge advantage these methods have over injected tracer methods is that 

all ‘connections’ can be measured simultaneously in a single specimen/scan. Though these 

methods have not yet passed the acid test of correctly tracing connections between a single 

retinotopic location in one cortical visual area to the corresponding retinotopic points in its 

target cortical areas, their somewhat coarser image of connectivity has many uses(Johansen-

Berg and Behrens 2014). While global methods (Jbabdi, Woolrich et al. 2007, Yendiki, 

Panneck et al. 2011) can avoid this sensitivity to errors, they are designed for probing the 

properties of known connections rather than exploratory techniques.

Another use for diffusion-weighted scans is to measure local differences in the ‘fabric’ of 

the fiber structure of the cortex, by analogy with the methods of early myeloarchitectonics. 

Though gray matter diffusion is much less anisotropic than white-matter diffusion, what 

anisotropy there is can be reliably measured and used to distinguish cortical areas (e.g. 

(Nagy, Alexander et al. 2013)). These methods are in their infancy. However, by combining 

high angular-resolution scans, multiple b-values (to measure aspects of local neurite 

orientation, dispersion and density), and by constructing features that measure diffusion 

relative to the orientation of the local cortical surfaces, it has been possible to distinguish 

cortical areas using both unsupervised and supervised methods (McNab, Polimeni et al. 

2013, Ganepola, Nagy et al. 2017)

T1 mapping—T1 relaxation has long been known to be correlated with myelination 

density. However, the brightness of each voxel in a standard ‘structural’ MRI image is only 

weighted by T1 relaxation value (actually, since T1 is shorter for brighter voxels, ‘T1’ 

images are actually weighted by R1=1/T1). The reason for saying ‘weighted’ is that other 

factors affect the voxel brightness, such as proton density and B1 receive inhomogeneities. 

But more insidiously, B1 transmit inhomogeneities affect the contrast between different 

voxels; there is a large (25%) variation in B1 transmit flip angles across the head at 3T for a 
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given nominal ‘flip angle’ (Lutti, Dick et al. 2014). A great deal of effort has been put into 

trying to repair these brightness and contrast artifacts after the fact, for example, for the 

purpose of distinguishing gray matter from white matter(Wells, Kikinis et al. 1994, Sled, 

Zijdenbos et al. 1998, Dale, Fischl et al. 1999, Weiskopf, Lutti et al. 2011). But given the 

comparatively small tangential variation in T1 between cortical areas (at maximum, only a 

5% variation), post-hoc brightness and contrast correction methods risk ‘normalizing’ away 

the signal.

A different strategy is to acquire additional scans to more accurately estimate T1 in the first 

place. A large number of different methods have been proposed over the years; here are four 

recent ones. A qualitative method for removing B1 receive inhomogeneities is to divide a T1 

scan by a 3D fast spin echo long-echo-train T2 scan, since receive inhomogeneities affect 

both scans similarly(Glasser and Van Essen 2011). However, different signal pathways 

(gradient echo vs. spin echo plus stimulated echo) result in different spatial distortion; and 

uncorrected transmit inhomogeneity locally affects contrast. An improved quantitative 

method is to collect multiple FLASH scans with different flip angles and use the signal 

equation to estimate T1(Fischl, Salat et al. 2004, Sigalovsky, Fischl et al. 2006). Another 

quantitative method for estimating T1 is MP2RAGE, where two MPRAGE images with 

different inversion times are combined (Marques, Kober et al. 2010). Finally, a fourth 

method is to collect two multi-echo FLASH scans with different flip angles, estimate the 

variable local flip angle with an independent dual-echo STEAM (spin-echo plus stimulated 

echo) scan (Jiru and Klose 2006), then solve directly for T1 and proton density after 

linearizing the FLASH signal equation (Helms, Dathe et al. 2008, Sereno, Lutti et al. 2012, 

Lutti, Dick et al. 2014). The greatest challenge in applying any of these methods to the 

cortex is that between-area, within-lamina (tangential) variation is actually substantially 

smaller than within-area, between-lamina (columnar) variation. This means that small errors 

in estimating laminar position can easily obscure the between-area differences that are 

critical for accurate parcellation.

In the following, we will concentrate on best practices for finding cortical laminae in both 

2D and 3D contexts and in vivo and ex vivo, consider recent advances in parcellating the 

gray matter using structural and diffusion-weighted scans. In addition, we present a new 

method for computing correspondences between the gray/white and pial surfaces, which is 

needed to quantify the properties of the gray matter in the cortex, and hence detect changes 

that are indicative of architectonic boundaries. We build on previous techniques for 

computing corresponding locations that required the embedding of constraints on allowable 

thickness values and correspondence properties into the surface evolution itself (MacDonald, 

Kabani et al. 2000, Das, Avants et al. 2009). In contrast, our variational technique that can 

be applied post-hoc on any pair of surfaces, and doesn’t require assumptions about the 

geometry of the surfaces. We finish by discussing the difficult interrelated problems of how 

best to combine modalities and compare competing parcellations.

B. Methods

The Perils of Analyzing a folded surface in an arbitrary viewing plane—One of 

the central features of the mammalian cerebral cortex is its differentiation into areas with 
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varying cyto-, myelo-, chemo- and vaso-architectonic properties, including changes in the 

density, morphology, and laminar distribution of cells and intracortical connections. The 

detection of the boundary between different areas is thus accomplished by quantifying these 

properties and looking for abrupt changes that mark the transition from one area to another. 

Automating this procedure requires extracting information that quantifies these properties at 

each point in the cortical ribbon, which in turn is based on some method of traversing the 

ribbon from the gray/white boundary to the pial surface. A dominant current method for 

carrying out this analysis is to treat the pial and white surfaces as capacitive plates, clamp 

the voltages to 0 and 1, respectively, then solve the Laplace equation of electromagnetism in 

the interior space (Jones, Buchbinder et al. 2000)}(Schleicher 1999). Streamlines of the 

solution that are perpendicular to the isopotential curves are followed from the white to the 

pial surface to establish a path for sampling gray matter properties. While in principle this 

analysis for computing intensity profiles within the cortical ribbon can be carried out using 

the pair of folded surfaces directly in their native 3D space, in practice, this is not possible 

with standard histological methods. The microscopic resolution needed to directly visualize 

architectonic features of the cortex, to uniformly infuse stains that highlight molecular 

properties, and finally to remove water and fat from human tissue to optically clear it 

currently require planar physical cutting of the tissue, following by staining, mounting, 

dehydration, and defatting. Polarized light imaging (Axer, Axer et al. 2001, Dammers, Axer 

et al. 2010, Axer, Amunts et al. 2011) does not require staining as it uses the intrinsic 

birefringence of the myelin sheath to produce contrast; but it still requires cutting, and 

hence, distortion prior to imaging. The Laplace analysis is then almost ubiquitously carried 

out on this two-dimensional slice (Schleicher, Amunts et al. 1999).

Recent work in tissue clearing (Chung and Deisseroth 2013), fast block-face imaging 

(Seiriki, Kasai et al.), and optical coherence tomography (Augustinack, Magnain et al. 2014, 

Wang, Zhu et al. 2014, Magnain, Augustinack et al. 2015) hold the promise of imaging 

before cutting has introduced irremediable distortions, but current histological techniques 

analyze the folded 2D surface embedded in three-dimensions by cutting through it along an 

arbitrary plane. In (Schleicher, Amunts et al. 1999) it was suggested that distortion induced 

by folding patterns is within acceptable limits if the angle between the cutting plane and the 

cortex is less than 60°. For cortical regions that exceed this limit, a different cutting plane 

should be used to analyze this region – by necessity in a different brain if the one brain had 

not been blocked. Unfortunately, due to the complexity and high spatial frequency of the 

folding patterns of the human neocortex, very little of the cortical sheet respects this 

constraint. This is shown in Figure 1, which displays an inflated surface with a color overlay 

of the angle between the coronal plane and the surface normal at each point on the white 

surface, with points that do not exceed the 60° threshold shown in gray. As can be seen, 

there are no large patches of the surface that fall below the 60° cutoff and in fact only 46% 

of the total cortical surface area falls below this threshold (52.6% and 52.9% for sagittal and 

horizontal planes respectively), suggesting that cortical folding patterns will introduce 

significant noise into this kind of analysis for almost every cortical region.

In order to assess the magnitude of these effects, we created a synthetic volume in which we 

take an actual (1mm3) MRI volume, derive white and pial surfaces from it, then divide the 

interior of the ribbon into 6 equally-spaced compartments meant to represent the 6 cortical 
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layers. We then fill the interior of each layer with a unique value (WM=110, layer 6=70, 

layer 5=60, layer 4=80, layer 3=50, layer 2=40, layer 1=30, exterior =10) to create a volume 

with 200μm3 resolution. An example coronal slice from this procedure is given in Figure 2. 

We then solve the Laplace equation and compute streamlines as described in (Schleicher, 

Amunts et al. 1999, Jones, Buchbinder et al. 2000), but limit the Laplace solution and the 

resulting streamlines to be within each coronal slice, as would be the case for normal 

histological analysis. Given that that the original surface is topologically equivalent to a 

sphere, any planar cut will result in a set of closed curves lying within that plane, as can be 

seen in Figure 2, right which shows the laminar surfaces used to create the synthetic volume 

overlaid on an arbitrary coronal slice. As can be seen, this results in a set of non-intersecting 

closed curves in the plane. We note that the number of curves changes as a function of which 

laminar surface is used for the intersection. In this particular case, the white surface shown 

in yellow has 3 separate closed curves, but the pial surface shown in red has only a single 

closed curve in this slice plane, which highlights the problematic nature of using planar 

analysis techniques for a highly-folded surface.

While the folds can change the planar topology as illustrated above, they also introduce 

significant geometric confounds into any laminar analysis. To illustrate this issue, we 

replicated the observer-independent laminar profile analysis procedure presented in 

(Schleicher, Amunts et al. 1999) and used in a number of important subsequent studies 

investigating the variability of architectonic boundaries in the human brain(Geyer and 

Ledberg 1996, Amunts, Schleicher et al. 1999, Amunts, Malikovic et al. 2000, Amunts, 

Kedo et al. 2005, Eickhoff, Amunts et al. 2006, Amunts, Schleicher et al. 2007, Eickhoff, 

Grefkes et al. 2007). In this approach, the Laplace streamlines are used to sample an 

intensity image in which the value at each pixel is related to the density of neurons at that 

location. Features representing each streamline are computed, then the equivalent of a spatial 

gradient is calculated by estimating the Mahalanobis Distance (MD) between the feature sets 

of adjacent blocks off streamlines (for details please see (Schleicher, Amunts et al. 1999)). 

Peaks in the MD then correspond to putative borders between architectonic areas.

We applied this procedure to a coronal slice containing a synthetic stria of Gennari – a 

region in which the intensity of the simulated layer 4 is increased significantly, as shown in 

Figure 3. Finally, we extracted the largest curve from the intersection of an arbitrary coronal 

plane with the white matter surface and computed the Mahalanobis distance between 

neighboring blocks of 200-um-spaced Laplace profiles. The results of this analysis are 

shown in Figure 4, with the borders of the synthetic stria marked with vertical red lines. 

Recall that the synthetic data used as input to this cortical parcellation procedure has no 

boundaries other than the simulated V1. Every layer has exactly the same thickness and 

intensity everywhere in the brain. Nevertheless, the through-plane folding of the cortex 

induces apparent changes in laminar properties when viewed in an arbitrary coronal plane, 

giving rise to large spikes in the MD throughout the slice, some larger than those observed at 

the true boundary. And even those at the true boundaries are displaced relative to their true 

location by through-plane folding, as shown in Figure 4.

In order to elucidate the source of these large spikes in the MD, we zoom into a region of 

spikes completely within the boundaries of the simulated V1 in Figure 5, with the two 
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blocks of contours used to compute the MD shown in different colors (cyan and red) in 

Figure 6. Examining this figure, it is clear that the large MD is a result of through-plane 

folding, with the cyan contours largely orthogonal to the gray/white boundary, but the red 

ones covering a region in which the through-plane folding of the cortex causes the profiles to 

be oblique to the cortex. This problem is exacerbated by the fact that the different layers are 

differentially affected. For example, in this region, the deep layers show a much greater 

apparent expansion than the superficial ones, although, of course, all the layers are exactly 

the same thickness in their native three-dimensional space.

B.1. Variational approach to finding a vector field connecting gray and white matter 
boundaries

In the previous section, we showed that the analysis of the folded cortex in an arbitrary plane 

introduces large artifacts into the resulting maps of putative areal boundaries. In this section, 

we extend this analysis to 3D and investigate the effects of different types of schemes for 

sampling between the two surfaces. Laminar modeling requires sampling cortical intensities 

along a path connecting the gray/white and pial boundaries, thus implicitly establishing a 

correspondence between the two surfaces. A simple and intuitively appealing way to 

compute this correspondence is simply to move outwards along the surface normal of the 

inner (white) surface until the pial surface is reached. Unfortunately, this method fails when 

the normal of one surface is tangential to the other, resulting in arbitrarily long traversals 

(e.g. when the inner surface is a flat large U and the outer one is a smaller flat U).

As discussed in the previous section, the most common approach to computing these 

traversals is to treat the two surfaces as capacitive plates with the outer (pial) surface 

clamped to a voltage of 1 and the inner (white) surface clamped to 0. The Laplace equation 

of electromagnetism is then solved to yield an EM field specifying a voltage at each location 

between the surfaces. The paths between the surfaces are then found by following the 

gradient of this field (e.g., using Euler integration). These paths have a number of desirable 

properties that account for their widespread use – they are smooth, non-self-intersecting (and 

hence invertible), and they intersect both boundaries at right angles to the surfaces.

While intellectually appealing and elegant, the Laplace approach has a number of 

drawbacks. The solution of the Laplace equation is carried out on a discrete mesh, limiting 

the resolution of the results. More importantly, the resulting correspondence is non-uniform 

if the surfaces are not parallel (as is frequently the case for the white and pial surfaces). In 

addition, while the traversals are perpendicular to the boundary surfaces (and the interior 

isopotential lines), they can be highly curved and hence may not be perpendicular to actual 

cortical layers.

An example of this issue is given in Figure 7, which shows a synthetic CSF (dark, top), GM 

(gray, central), and WM (bright, bottom) image, with the Laplace equation solved between 

the two boundaries, then streamlines followed with Euler integration (shown in cyan). 

Examining this image, one can see how tightly bunched the streamlines are near the bottom 

of the downward facing “spike”, a situation that is common in deep cortical sulci. Further, 

we note the change in shape of the streamlines as they transition from terminating on the 

base of the spike to doing so on the upper horizontal boundary. Figure 8 quantifies this effect 
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by plotting the change in the length of adjacent streamlines on the vertical axis and the 

spacing between neighboring terminations on the horizontal axis. As can be seen, the 

streamlines are least densely spaced in precisely those regions in which their length is 

changing most dramatically – exactly the opposite of what is needed. These variations in 

streamline length and in what “gray matter” they sample can result in large apparent spatial 

changes in gray matter properties that are solely due to the geometry of the pial surface.

While this example may seem contrived, in fact we created it to better understand the 

ubiquitous artefactual borders seen in actual data in situations in regions in which the pial 

surface has much sharper curvature than the white surface. This is shown in real data in 

Figure 9, in which we applied this technique to 150μm isotropic ex vivo MRI. The same 

circular patterns surrounding fundi can be observed throughout the cortex, overwhelming 

any potentially useful information about the underlying cytoarchitecture contained in this 

data. Finally, we note that using the streamlines as measures of thickness is also problematic 

as can be seen examining the first few streamlines at either edge of the image in which the 

streamline distance is growing larger due to the nonlocal effects of the spike, despite the fact 

that the actual distance between the two boundaries is constant.

To resolve these issues and remove the geometric artifacts induced by the Laplace 

streamlines, we developed a procedure to explicitly construct a vector field connecting the 

two surfaces with the desired properties – a spatially coherent set of vectors that do not 

diverge too far from the surface normal direction. To achieve this, we take a variational 

approach and build an energy functional with two terms – one that one that maximizes the 

degree of parallelism of adjacent vectors, and a second that keeps each vector close to 

parallel to the surface normal.

The approach we take can be seen as treating the task of constructing a vector field as a 

registration problem, similar in spirit to the diffeomorphic surface evolution work of (Das, 

Avants et al. 2009), although our technique can work with an pair of existing surfaces. That 

is, we seek a vector field that establishes correspondence between the white and pial 

surfaces. Typically, this type of registration has two types of terms in the energy functionals 

that drive them – a “data” term that is derived from the geometric or intensity properties of 

the surfaces or volumes to be registered, and a “smoothness term” that encourages smooth, 

invertible transformations. In contrast, in our domain we have no “data” term, just a set of 

smoothness terms – one to keep the vectors reasonably close to the surface normal (that is, 

so that like the Laplace streamlines, they intersect the two boundary surfaces at 

approximately right angles) and another to ensure that they are parallel.

One technical detail that we must resolve is how to conduct the numerical minimization on a 

triangular mesh. That is, if we fix the base of each vector to be a (stationary) point on the 

gray/white surface, the minimization amounts to moving the vertices within the pial surface 

such that the energy is reduced, while maintaining an invertible mapping. We can phrase the 

minimization as a sequence of movements of each vertex within the tangent bundle (TpS) of 

the pial surface, so that each differential update is computed as a vector that is a linear 

combination of the two principal directions at each point. However, these movements are not 

in general guaranteed to stay within the surface when they cross over the border of a 
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triangular face. While one might imagine that this issue can be easily addressed by 

projecting the point back onto the surface at each step, this is not the case, as the projection 

operator for an arbitrarily folded manifold such as the pial surface is not well-defined (this 

can be seen in the case where the movement causes a vertex to leave one side of a sulcus and 

approach the opposing bank – the projection would then move the vertex back within the 

surface on the wrong bank of the sulcus).

Fortunately, part of our surface reconstruction procedure instantiates a spherical coordinate 

system for the cortex(Fischl, Sereno et al. 1999, Fischl, Sereno et al. 1999, Fischl, Liu et al. 

2001). This allows us to phrase the minimization as a mapping from S2 to itself in much the 

same way we carry out spherical registration across subjects. In this formulation, every point 

on each surface is mapped to exactly one point on the unit sphere, and we can therefore cast 

the movement of vertices on the surface as a movement on the unit sphere, then use the 

correspondence (and the chain rule) to compute what movement on the pial surface is 

equivalent to the movement on the sphere. Since the mapping is differentiable and invertible, 

we know that the principal directions, which are orthogonal on the sphere, will form a basis 

under the spherical mapping (that is, they will not be collinear). While we could cast the 

minimization in terms of longitude and co-latitude as was elegantly done in the development 

of Spherical Demons (Yeo, Sabuncu et al. 2010), we wish to avoid the difficulties of the 

nonuniform coordinates and multiple charts that must be used on the sphere. Instead, we 

take a simpler approach, and compute all vertex movement within the tangent bundle of the 

sphere, then project each vertex back onto the sphere after every update, taking advantage of 

the well-defined nature of projection onto the sphere (in contrast to an arbitrary folded 

manifold).

More specifically, the energy functional we minimize is given by:

E = (1 − λ)JN(x) + λJ p(x) = (1 − λ) ∑
v = 1

V
1 − tv, ov

w + 1 − tv, ov
p + λ ∑

v = 1

V
∑

n = 1

Nv
1 − tv, tn

where x is a location on the pial surface, Jp(x) is the term that encourages a parallel vector 

field, JN(x) keeps the vectors close to the surface normal of the white and pial surfaces, tv is 

the vector connecting the white and pial surfaces at the vth vertex, normalized to have unit 

length, Nv is the number of neighbors of that vertex, ov
w and ov

p are the outwards-pointing 

surface normals of the white and pial surfaces respectively, and <> denotes the inner product 

operator. Note that the t and o vectors are all functions of x, but we have dropped this 

functional dependence for notational simplicity. In addition, we note that adding an 

additional term to encourage uniform vertex spacing is straightforward.

In order to minimize E, we represent x as a function of spherical coordinates r, and sample 

Jp and Jn at +−ε (where we set ε to be 1/10 of the average inter-vertex spacing on the 

surface) in the positive and negative principal directions in TpS of the sphere:

dJ
dr = dJ

dx
dx
dr = λ

2ε (J(x(r + εev
1)) − J(x(r − εev

1))ev
1 + J(x(r + εev

2)) − J(x(r − εev
2))ev

2
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where x(r) is computed using barycentric interpolation of the face that the projection of r 
onto the unit sphere lies within (which is itself found using a spatial lookup table, so it not 

computationally costly), and ev
1 and ev

2 are the two principal directions on the unit sphere S at 

vertex v. This procedure is used for computing the values and derivatives of both Jp and Jn 

(with different functions returning the energy at the location r of course). A geometric 

intuition for the effects of modifying λ can be obtained by examining Figure 10, which 

shows the same toy example as above for various values of λ.

An example of minimizing equation (1) using gradient descent for a pair of cortical surfaces 

with λ=[0,0.2,0.4, 0.6, 0.8,1.0] is given in Figure 11. In this experiment, we minimize 

equation (1) using equation (2) to compute the gradients, continuing integration until the 

percent change in the error functional falls below a pre-specified tolerance of 10−3. To 

guarantee that the mapping is invertible, we add the penalty for triangles with area close to 0 

proposed by Ashburner in (Ashburner 2000).

In order to assess the value of the vector field we obtain using this approach we use the 

simulated laminar volume presented in the previous section. By construction, this synthetic 

volume should have no boundaries in it since each layer occupies the exact same fraction of 

the entire cortical ribbon everywhere in space. To quantify the true negative and false 

positive rates of the Laplace and variational formalizations, we computed the minimum 

energy vector field with λ=.9, a value chosen to produce a relatively smooth vector field, 

although other values (not shown) achieve comparable results. To compute boundaries, we 

use the same approach as previously utilized to compute spatial gradients of the Laplace-

sampled intensity profiles: we fit a first order Taylor series to approximate the intensity 

profiles in a spatial neighborhood of each vertex, then minimize the RMS error of the Taylor 

expansion to compute the spatial derivatives. Finally, we take the Frobenius norm of this 

matrix of partial derivatives and use it to look for spurious boundaries. The results of this 

experiment are shown Figure 11. Example of vector fields after energy minimization for 

various values of λ (left: λ=0, right: λ=1) in a region around the central sulcus (red = 

sulcal, green = gyral), shown on a white matter surface. (we do not include p-values as the 

results are wildly significant with the Laplace gradient magnitude being mean +− standard 

deviation of 2.6+−2.55, and the variational one being 0.9+−1. Given the 140,000 vertices 

over the surfaces, these standard errors of the mean become so small that the p-value is 

meaninglessly tiny, assuming we could estimate the spatial covariance structure). This 

picture reveals the same critical flaw in the Laplace streamlines as seen previously – in 

regions where the pial surface is not parallel to the white surface the Laplace streamlines are 

distributed nonuniformly on the pial surface. This result in circular “swirls” of high 

gradients as the streamlines transition from being spaced evenly to all being drawn to a deep 

pinch in the pial surface, exactly as was seen in Figure 7. In contrast, the gradient magnitude 

derived from the vector field we derived from our energy minimization approach shown at 

the right does not have this freedom – parallel vectors that are uniformly spaced on the white 

surface cannot bunch too much on the pial surface, resulting in a more uniform distribution 

and more consistent spatial sampling of the intensity profiles.
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To assess true positives and false negatives we synthesize a “stria of Gennari”, the heavily 

myelinated layer 4 band in primary visual cortex, by increasing the intensity of a layer 4 in a 

small region to 100 (from 80), then recomputing the streamlines. The average intensity 

profiles for the Laplace approach and the variational one presented here are given in Figure 

13. As can be seen, the variational streamlines more closely approach the true synthetic 

values inside the stria (green curve, true value=100) and outside (blue curve, true value=80), 

than does the Laplace approach in which the streamlines curve interior to the ribbon and 

hence intersect interior boundaries obliquely, increasing partial volume effects and reducing 

laminar contrast.

It is worth noting that this approach could be combined with a local-curvature-based laminar 

depth correction in order to approximate Bok-like ‘equivolume’ effects on laminar thickness 

(Waehnert, Dinse et al. 2014, Waehnert, Dinse et al. 2016) (see next).

C. Parcellations using structural MRI

As mentioned in the introduction, one greatest difficulties of using structural MRI estimates 

of myelination is the extreme sensitivity to small errors in the estimation of laminar position, 

which potentially overwhelm the small but significant tangential differences that indicate 

transitions between cortical areas. The methods just described for refining gray/white matter 

to pial surface streamlines is likely to improve the homogeneity of depth estimates across the 

folded cortex. But that assumes that cortical laminae can be picked out by depth fraction. It 

has long been known that the apparent position of cortical laminae within the cortical 

column is modulated by the curvature of the cortex (Bok 1929).

In a study of the relation between lamina-specific quantitative T1 and retinotopy (Sereno, 

Lutti et al. 2012), it was found that quantitative T1 and curvature were moderately correlated 

across the entire cortex (R2 = 0.14). This correlation was simply regressed out to clean up 

the laminar-specific T1 maps. A deeper explanation of why this relationship exists in the 

first-place builds on the original ideas of Bok (Waehnert, Dinse et al. 2014, Tardif et al. 

2015, Tardif, Schafer et al. 2015). Assume that as the cortex bends, each local tangential 

volume element of each cortical layer attempts to retain its original, unbent volume. In a 

sulcus, if one assumes that deeper layers are being stretched, then deeper layers will have to 

thin out to retain their original local volume, which is very clearly observed in histological 

sections cut perpendicular to a sulcus. One motivation for the deep-layer stretching force is 

that a number of general features of the adult cortical folding pattern can be reproduced in a 

mechanical model where a thin ‘cortical’ gel layer expands in volume like the thickening but 

also laterally-expanding cortex over an underlying armature of white matter that expands 

much less (Tallinen, Chung et al. 2014). The Bok-inspired ‘equivolume’ model of cortical 

folding does a better job of following the prominent layer 4B in V1 than does simple cortical 

thickness fraction. However, V1 is a unique area; it is unusually thin, unusually cell-dense, 

and its unusually prominent layer 4B is unique among cortical areas. Not surprisingly, V1 

was one of the first cortical areas to be (macroscopically) distinguished by Meynert in the 

19th century. Because cortical laminae in most cortical areas are not nearly as distinct as V1 

layer 4B, it is more difficult to explicitly test this hypothesis elsewhere.
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By measuring lamina-specific quantitative T1 signals in living humans, it was possible to 

distinguish a number of heavily myelinated cortical regions as originally seen in the post-

mortem myeloarchitectonic studies of Flechsig (1920) (Flechsig 1920, Sereno, Lutti et al. 

2012). In the occipital and parietal visual cortex, these include V1 (of course), V6 (a visual-

periphery-emphasizing motion area), MT/FST (which together formed the prominent 

maximum in lateral occipital cortex), V3A (a dorsolateral motion-sensitive area), V6A (a 

reach-related area anterior to V6), V8 (as originally defined by (Hadjikhani, Liu et al. 

1998)), LIP+ (intraparietal areas involved in eye movements and attention), and VIP+ (a 

multisensory area, as defined in (Sereno and Huang 2006)). In auditory cortex, quantitative 

T1 defines the auditory core (areas A1 and R, (Dick, Tierney et al. 2012)), as well as a 

separate lateral maximum of myelination along the superior temporal gyrus. In frontal 

cortex, quantitative T1 outlines and distinguishes motor cortex from S1, the frontal eye 

fields, dorsolateral prefrontal cortex, and a multisensory area located near the boundary 

between the motor cortex representation of the face and hand (originally named PZ in 

(Huang and Sereno 2007), to respect the equivalent macaque monkey area originally 

discovered by (Graziano and Gandhi 2000), and later renamed area 55 in humans by 

(Glasser, Coalson et al. 2016)).

Though the number of areas distinguished by quantitative T1 might seem large, it represents 

a definite minority of the total number of cortical areas thought to exist. As initially 

recognized by early students of cortical myeloarchitectonics, there are substantial portions of 

inferior parietal cortex, precuneus cortex, insular cortex, inferotemporal and anterior 

temporal cortex, frontal cortex, anterior cingulate cortex, and frontal pole cortex that have 

very shallow gradients of change in myelination and in quantitative T1 that are near the 

practical threshold for detecting areal differences (<1%). Though it is possible to calculate 

gradients in these regions to try to find borders, gradients are extremely noisy unless the data 

is first very heavily spatially smoothed, which has the potential to tangentially displace 

borders. To reliably distinguish these regions with quantitative T1 alone is likely to require 

additional effort to measure and classify subtle differences in laminar (columnar) profiles, 

which will require higher fields and smaller voxels. As we see next, diffusion-weighted 

imaging may be able to more directly distinguish subtle interareal differences not 

accompanied by average differences in quantitative T1.

D. Parcellations using diffusion-weighted MRI in the gray matter

Diffusion-weighted MRI has been widely adopted to analyze white matter microstructure, 

but has been virtually ignored as a method for distinguishing regions in the gray matter 

because of the reduced anisotropy there. However as noted above, differences in the texture 

of the cortical fabric have long been used in myeloarchitectonic mapped by histologists to 

distinguish cortical areas. High angular resolution diffusion measurements conceivably 

contain information about area-specific fiber arrays (including both dendrites and local 

cortical axons). The first requirement is that slight deviations from isotropic diffusion – a 

constant radius diffusion surface – are present in the gray matter and are reproducible across 

scans. This is, in fact, the case (Nagy, Alexander et al. 2013). Since architectonic features of 

cortical areas have always been defined in a local coordinate system based on the two 

dimensions of the cortical surface and the third dimension of cortical depth, it was important 
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to measure gray matter diffusion with respect to the cortical surface (see also (McNab, 

Polimeni et al. 2013)). By constructing features based on a spherical harmonic 

decomposition of the diffusion surface together with the local orientation of the cortical 

surface, it was possible to distinguish selected cortical areas from each other, but also to 

classify never-seen regions beyond training regions(Nagy, Alexander et al. 2013).

Subsequent studies using unsupervised group average cortical parcellations showed that 

some areas that could not be distinguished on the basis of T1/T2 measurements could be 

distinguished on the basis of a k-means clustering of the cortical-surface-based gray matter 

diffusion features (Calamante, Jeurissen et al. 2017, Ganepola, Nagy et al. 2017). More 

recent studies have examined how choice of feature sets, including data measured at 

different b-values, affects supervised performance in distinguishing each area in the Human 

Connectome Project parcellation from its neighbors (Calamante, Jeurissen et al. 2017).

Although these methods will likely benefit from ultra-high-field diffusion data capable of 

providing multiple measurements along cortical columns, these initial demonstrations 

suggest that gray matter diffusion may provide one or more additional effective dimensions 

orthogonal to quantitative T1 measurements, useful for distinguishing cortical areas.

E. Conclusion

Great strides have been made in the microstructural parcellation of the human brain. 

However, it is important not to underestimate how much work remains. We start by backing 

up and asking “what is a cortical area?”, then take stock of progress, and finish with a few 

suggestions for how to proceed.

What is a cortical area?—It’s worth remembering that a cortical area is a human label 

for local region of the neocortex after normal development. In the case of invasive 

experiments on animals, it has often been suggested that cortical areas are best defined on 

the basis of multiple converging criteria including at least: (1) receptotopic organization, (2) 

architectonic features, (3) connection patterns, (4) neurophysiological properties, and (5) 

effects of localized lesions. In the case of areas whose borders are not in dispute such as V1, 

these five measures can each be used separately to mark borders, and then these 

independently derived estimates can be compared. There are surprisingly few cortical areas 

whose borders are as well-agreed-upon as V1.

As with many scientific endeavors, the easier targets get investigated first. In the case of the 

visual system, this means V1, and then V2 and MT. Finding and characterizing these areas 

in living humans has turned out to be surprisingly difficult. Layer 4B of V1, the “stria” in 

striate cortex, makes V1 perhaps the most architectonically distinct cortical area. It was 

detected macroscopically by Meynert in post-mortem samples in 1867. However, reliably 

visualizing this feature across the extent of V1 with in vivo human structural imaging 

requires long, ultra-high field scans and uncommonly still subjects. With human V2, ultra-

high field scanning was also required to finally functionally visualize the stripe 

compartments (Nasr, Polimeni et al. 2016), already known to exist 40 years ago from 

invasive work in non-human primates. Similarly, we can finally now reliably locate human 
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area MT through a confluence of quantitative T1 mapping and retinotopic mapping (Sereno, 

Lutti et al. 2012), which recently showed that only the posterior one-third to one-half of the 

lateral occipital maximum of quantitative T1 (and by implication, myelination) actually 

corresponds to MT proper. Once again, the fact that MT was adjoined by several densely-

myelinated, motion-related areas that are difficult to discriminate from MT was known long 

ago from work in non-human primates.

But even in the case of these three paragons of cortical areas, there are unsettling details as 

one digs deeper. In the case of V1, there are additional internal borders that will have to be 

ignored as in vivo resolution is improved. For example, at the cortical representation of the 

blind spot (which receives input only from ipsilateral dLGN layers) and the monocular 

crescent (which receives input only from contralateral dLGN layers), the pattern of ocular 

dominance columns is interrupted, which affects most of the criteria listed above. Or 

consider V2, where there seem to be at three subareas intercalated as side-by-side stripes 

into a single map. Or consider the case of the periphery of MT/V5, where there is an sharp 

drop in myelination within the boundaries of the retinotopic map ((Allman and Kaas 1971); 

Fig. 3, 4A in (Sereno, McDonald et al. 2015)).

Moving to the majority of visual areas beyond V1, V2, MT, and V6, where quantitative T1 is 

less diagnostic, most studies have turned primarily to retinotopy for parcellation. Although 

invasive studies in primates and other animals have suggested that there is a fair degree of 

variation even within species, most work in humans has implicitly assumed that individual 

brains all have the same number of cortical visual areas, that all visual cortical areas have the 

same neighbor relations, and that it makes sense to average across individuals (as we have 

ourselves). There is a fair amount of agreement about the layout of early visual areas. 

Nevertheless, outside of V1, V2, and MT, there are enough disagreements in detail that no 

generally agreed upon ‘ground truth’ exists for non-human primates, much less for humans. 

Moving to other modalities, mapping auditory areas is more difficult since there is currently 

only one main mapping coordinate, tonotopy, to distinguish areas on a 2D cortex. Mapping 

somatosensory areas is yet harder, since compared to the retina, the surface of the body is 

inconveniently shaped, and the subject is resting on it. Finally, with motor areas, it’s hard 

acquire good MRI data when the subject moves due to technological limitations such as 

motion-induced field changes. Attempts to map all 4 modalities at the same time in the same 

group of subjects (e.g., (Sood and Sereno 2016)) suggest that individual brains are similar, 

but not identical in areal number and neighbor relations; given that different primate species 

differ in these two measures, this should not be surprising. Comparative and development 

evidence suggests that cortical areas have arisen by duplication, subdivision, or fusion. 

These processes may still be at work in disturbed and perhaps even in normal development 

(the second author’s V3A appears to directly touch his V2 without an intervening V3).

Though we have implied otherwise above, fundamental questions about the definition of a 

‘cortical area’ remain open, namely, whether boundaries between every pair of cortical areas 

are similarly sharp and smooth, and whether boundaries determined by different techniques 

should agree in the limit of ‘really good data’. It has long been known that some borders, 

such as the one between V1 and V2, are sharp and smooth, and well aligned across different 

techniques, but it is not known whether these features extend to all cortical areas. And even 
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within early sensory areas, recent invasive experiments simultaneously measuring cerebral 

blood volume (CBV) and neural activity (Winder, Echagarruga et al. 2017) show that 

spontaneous CBV changes are closely associated with neural activity due to whisker 

stimulation and volitional whisker and body movements, but are only weakly coupled with 

neural activity during rest periods. This may complicate the task of combining non-invasive 

neuroimaging data from multiple techniques (e.g., receptotopic mapping versus resting state 

correlations) to generate omnibus parcellations, especially for locations where both types of 

data are not discriminative.

All of these findings suggest that it will be critical to establish probabilistic maps that are 

capable of handling not only substantial variation in cortical area size, but also variation in 

cortical area number and neighbor relations. Though implied by the word “probabilistic”, 

the variation in uncertainty of areal boundaries is often lost when viewing “ground truth” 

summary maps. Of course, researchers mainly interested in using rather than generating 

parcellations will gravitate toward a single, definitive, convenient-to-use “ground truth”. 

Keeping the “ground truth” communally editable is a difficult job.

In vivo and ex vivo—By analogy with the difficulty of combining and adjudicating 

between architectonics and topographical mapping, there is a similarly difficult passage 

between in vivo and ex vivo parcellation. Except in rare circumstances, in vivo and ex vivo 
data is not available from the same subject. Another MRI-imaging-specific difficulty is that 

in vivo and ex vivo structural contrast is markedly different for measures of T1, T2, T2*, and 

diffusion. Though ex vivo T2* contrast (inverted) is a reasonable substitute for in vivo T1 

contrast, it is clear that fine points like the subvoxel position of the gray-white matter border 

– a critical stepping off point for laminar measures – might subtly differ between the two, 

and that no simple functional form appears to relate the tissue parameter changed induced by 

fixation. On the positive side, the greater resolution available with ex vivo data should be 

able to help with designing algorithms to help discern the more subtle contrast between 

laminae that can be measured in vivo with quantitative T1 scans.

A way forward for histology—Although we have been critical of methods applied to ex 
vivo histological sections, there are excellent reasons for continuing to cut and stain sections 

in the traditional way, and we do not mean to imply otherwise (and we note the world-class 

neuroanatomical expertise that was a significant component of these studies undoubtedly 

precluded serious errors). There are simply no alternatives; the volume of human tissue that 

can be currently cleared as an uncut block (e.g., CLARITY(Chung and Deisseroth 2013)) 

would cover only a small portion of one human cortical gyrus, and while promising 

alternatives such as optical coherence tomography (OCT) avoid the problem of cutting-

induced distortions(Wang, Black et al. 2011, Magnain, Augustinack et al. 2014, Wang, Zhu 

et al. 2014, Magnain, Augustinack et al. 2015, Wang, Lenglet et al. 2015, Magnain 2016, 

Wang, Akkin et al. 2016), these techniques have also not yet been scaled up to image entire 

hemispheres or brains. Our critique is merely a motivation to try to find ways around the 

problems we have outlined, for example, by combining information from adjacent slices 

during the estimation of columnar paths. This is a substantially more difficult problem than 

computing streamlines in isotropically sampled MRI data of comparatively much lower 
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resolution. While ex vivo MRI methods continue to advance in terms of resolution and 

contrast and provide an intrinsically 3D acquisition that does not suffer from the slice-based 

distortions that plague histology, the several orders of magnitude increase in resolution, and 

the panoply of molecularly-specific staining options that are only available via ex vivo 
histology, provide a strong impetus to try to resolve the problems we have presented (see for 

example, the detailed, whole-brain cellular-resolution atlas presented in (Ding, Royall et al. 

2017)).

Comparing and combining parcellations—As the number of different cortical 

parcellation schemes increases, the difficulty of objectively comparing and combining them 

increases even faster. With low-subject-count invasive animal experiments, it is customary to 

illustrate single-subject data based on two or more of the area-defining criteria listed above 

(receptotopy, architectonics, etc.) in such a way that the reader can verify for themselves the 

extent to which the independently measured criteria do in fact support coincident borders. 

With neuroimaging data based on large group averages and multiple criteria, however, it can 

be more difficult to tell if parcellation borders derived independently from different criteria 

in fact agree. This is especially problematic when criteria have been combined to generate a 

single parcellation. First, cross-subject alignment methods differ. For example, surface-based 

alignment can be driven by sulcus depth, receptotopic map coordinates, connectivity 

measures, T1 values, or some combination; and 3D methods are somewhat incommensurate 

with surface-based methods. Second, one criterion may not detect any border within a region 

that is easily subdivided by a different criterion, making different borders differently 

supported; or researchers may insert ‘knowledge-based’ borders not directly supported by 

the data at hand. Third, different techniques have adjustable parameters to determine, for 

example, how many areas are generated, or what their general shape should be, or how 

smooth borders should be. It is often difficult to determine how much of a parcellation is 

determined by these priors and how much is more directly data-driven.

We are unfortunately in a situation similar to that of the first blossoming of cyto- and 

myeloarchitectonics. The profusion of schemes resulted in confusion, backlash, and the 

eventual almost universal adoption of the Brodmann map, despite its shortcomings. To avoid 

settling too quickly on a single cortical parcellation, it will be important to provide tools to 

allow researchers access to individual criteria components so that data can be recombined in 

different ways, or augmented with new criteria and compared across subject, modality and 

algorithm.
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Figure 1. 
Angle (in degrees) of dot product of coronal plane with pial surface normal (light/gray dark 

gray curvature maps shown for all regions < 60°).
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Figure 2. 
Example of synthesis procedure. Top, from left-to-right: original MRI, 6 equidistant 

compartments created between the white and pial surfaces, and rightmost, an image 

synthesized to have uniform intensity within each compartment or “layer”. Bottom: zoom to 

show individual surfaces.
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Figure 3. 
Synthetic V1 with increased layer IV intensity in the “stria” (green arrows show end of 

stria).
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Figure 4. 
Mahalanobis distance across the cortex, red lines indicate boundaries of synthetic stria.
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Figure 5. 
Zoom on MD around left-hand and right-hand V1 boundary.
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Figure 6. 
Laplace streamlines shown in region around the spike that occurs near profile 450 (cyan to 

left of spike, red to right of spike). The coronal view creates apparent changes in laminar 

intensity that are really just the result of typical cortical folding patterns.
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Figure 7. 
Synthetic image with Laplace solutions between ‘white matter’ (at bottom) and CSF (top).
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Figure 8. 
Change in the length of the streamlines on the vertical axis plotted against the spacing 

between the termination points on the horizontal. As can be seen, where the streamlines 

change length the most is where the sampling density is the smallest. The synthetic surfaces 

are spaced 128 pixels apart, so a change of 25 pixels is approximately 20%.
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Figure 9. 
Example of Laplace streamline sampling artifacts in ex vivo MRI data. Top: the magnitude 

(Frobenius norm) of the spatial derivative of the Laplace streamline samples of a 200μm ex 

vivo FLASH scan of a human brain (α=20°, TR=40ms, TE=20ms). Small circular regions of 

high gradient magnitude can be seen in many parts of the cortex. Bottom left: zoom on 

region in the green box. Bottom right: axial zoom of the surfaces over the intensity volume. 

The arrows show the correspondence between locations in the volume and those on the 

surface. The yellow arrows correspond to regions of high gradients and the black to low 

gradients. These gradients represent a change in the streamline solution from those that 

cluster at the deepest point of the pial surface (shown in red) to those terminating on the 

banks of the sulcus instead of the fundus, by analogy with the synthetic geometry shown in 

Figure 7
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Figure 10. 
Examples of minimizing equation (1) for various values of λ (from left to right: 0, 0.2, 0.4, 

0.6, 1)
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Figure 11. 
Example of vector fields after energy minimization for various values of λ (left: λ=0, right: 

λ=1) in a region around the central sulcus (red = sulcal, green = gyral), shown on a white 

matter surface. Blue arrows indicate two locations of prominent differences.
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Figure 12. 
Left: magnitude of the spatial gradient (Frobenius norm) using the vector field sampling. 

Right: magnitude of the spatial gradient using the Laplace streamlines for sampling the 

synthetic volume.
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Figure 13. 
Synthetic stria streamline results shown for variational (green=within stria, blue=outside of 

stria) and Laplace (red=within stria, magenta=outside of stria).
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	Abstract
	A. Introduction
	Classical microstructural parcellation—The heterogeneous appearance of the local laminar and columnar structure of different parts of the cortical sheet suggested early on that it might be worth defining subregions in preparation to looking for functional differences between areas. The pioneers in this field focused on either stains for cell bodies (cytoarchitectonics) or stains for myelinated fibers (myeloarchitectonics)(Flechsig 1920) (Brodmann 1909, Vogt and Vogt 1919, Flechsig 1920, von Economo and Koskinas 1925). Many competing hemisphere-wide maps based on sectioning and histological staining of cadaver brains were published, demarcating the boundaries of cyto- and myelo-architectonic domains. Perhaps because of the accessibility and compactness of his two summary images, Brodmann’s cytoarchitectonic parcellation came to dominate, despite the fact that some of the competing myeloarchitectonic parcellations have turned out to better reflect our current understanding of cortical parcellation (Campbell 1905, Flechsig 1920). For example Flechsig (Flechsig 1920) correctly identified myelinated maxima in the region of what we now call the MT/FST complex, V3A, V6, and VIP, none of which were correctly identified by Brodmann (Sereno, Lutti et al. 2012). That these prescient early observations fell into obscurity was partly due to the difficulty of objectively comparing multiple incommensurate maps. Some of this early work of the Vogt school has only very recently been made more accessible by manual alignment with modern atlases (Nieuwenhuys 2013, Nieuwenhuys, Broere et al. 2015, Nieuwenhuys and Broere 2017).The early architectonic maps subdivided the cortical sheet into a complex mosaic based on radial and lateral variations in the composition of tissue columns perpendicular to the pial and white matter surfaces. However, these parcellations were subject to many methodological criticisms. Their labor intensive nature limited sample size, which was problematic given: (1) inter-subject variability of cytoarchitectonic boundaries but also substantial within-area variation (see e.g., MT in Fig. 3 in (Sereno, McDonald et al. 2015); and (Kuehn, Dinse et al. 2017), on the hand-face border in somatomotor cortex), (2) the unavoidable artifacts of the histological process, such as idiosyncratic plastic deformation and tearing of sections, artefactual variations in fixation and staining density, and random angle of the plane of section relative to the intrinsic laminar coordinate system of the cortical sheet, (3) observer bias, and (4) limitation to a single tissue contrast per sample. In current invasive mapping studies on non-human primates, typically necessarily limited to small subject counts, these methods are practiced much the same way as they were 100 years ago (see e.g., (Seelke, Padberg et al. 2012), on electrophysiological mapping of higher level somatosensory areas followed by architectonic analysis).Large-scale studies on post-mortem human tissue by Zilles, Amunts and colleagues have recently managed to address many of these limitations (Geyer, Schleicher et al. 1999, Schleicher, Amunts et al. 1999, Amunts, Malikovic et al. 2000, Morosan, Rademacher et al. 2001, Amunts, Schleicher et al. 2003, Zilles, Eickhoff et al. 2003, Eickhoff, Amunts et al. 2006, Amunts, Schleicher et al. 2007, Malikovic, Amunts et al. 2007). By expanding the number of tissue contrasts collected on individual post-mortem specimens beyond basic columnar density profiles to include immunohistochemical stains and polarized light(Axer, Axer et al. 2001, Axer, Amunts et al. 2011), by expanding sample sizes, by more closely controlling fixation and sectioning conditions, and by using probabilistic observer-independent methods, it has become possible to generate cortical area parcellations that are better matched to the kind of receptotopic and functional parcellations that can now be obtained in living subjects (see e.g., (Rosenke, Weiner et al. 2017)).Resting state functional connectivity—A great profusion of studies of “resting state functional connectivity”’ have been undertaken since the ground-breaking PET work by Raichle in the late 1980s (see, for example (Raichle, MacLeod et al. 2001, Raichle and Snyder 2007) for review) and by Biswal (Biswal, DeYoe et al. 1994, Biswal, Yetkin et al. 1995) using MRI in the 1990s. This popular method merely requires that a subject lies ‘at rest’ in the scanner for a moderate amount of time. By analyzing the synchronization of signals between brain regions and then constraining the number of resulting regions using various combinations of topological neighborhood constraints, region size, local gradients, and seed region definitions, a large number of different tentative cortical parcellation schemes have been published (e.g. (Yeo, Krienen et al. 2011, Power, Schlaggar et al. 2014)). To a substantially greater extent than was the case with more technically difficult microstructural parcellations, the very large number of alternate resting state parcellations and data formats already in the literature has made it virtually impossible to objectively assess and compare them (for recent reviews, see e.g. (Glasser, Smith et al. 2016, Schaefer, Kong et al. 2017)), an unfortunate echo of the initial flowering of cortical architectonics.White-matter and gray-matter diffusion—The use of diffusion-weighted imaging to trace white-matter tracts provides yet another method for parcellation of the cortex somewhat analogous to resting-state functional connectivity (see (Eickhoff, Thirion et al. 2015) for a review). Unlike invasive neural tracer methods, local diffusion-based tract tracing is a Markov process. Its memory-less nature means that a mistake capable of being propagated to the next step is possible in the passage through every voxel. Even assuming no mistakes, fiber tracts are like freeways, with multiple entrances and exits, so ‘connections’ can only be defined probabilistically. And mistakes are easy to make when there are crossing fibers within single voxels. Microscopic observations show this commonly occurs in the white matter, but also at the sudden right-angle turns that fibers make as they enter the gray matter in gyri. One huge advantage these methods have over injected tracer methods is that all ‘connections’ can be measured simultaneously in a single specimen/scan. Though these methods have not yet passed the acid test of correctly tracing connections between a single retinotopic location in one cortical visual area to the corresponding retinotopic points in its target cortical areas, their somewhat coarser image of connectivity has many uses(Johansen-Berg and Behrens 2014). While global methods (Jbabdi, Woolrich et al. 2007, Yendiki, Panneck et al. 2011) can avoid this sensitivity to errors, they are designed for probing the properties of known connections rather than exploratory techniques.Another use for diffusion-weighted scans is to measure local differences in the ‘fabric’ of the fiber structure of the cortex, by analogy with the methods of early myeloarchitectonics. Though gray matter diffusion is much less anisotropic than white-matter diffusion, what anisotropy there is can be reliably measured and used to distinguish cortical areas (e.g. (Nagy, Alexander et al. 2013)). These methods are in their infancy. However, by combining high angular-resolution scans, multiple b-values (to measure aspects of local neurite orientation, dispersion and density), and by constructing features that measure diffusion relative to the orientation of the local cortical surfaces, it has been possible to distinguish cortical areas using both unsupervised and supervised methods (McNab, Polimeni et al. 2013, Ganepola, Nagy et al. 2017)T1 mapping—T1 relaxation has long been known to be correlated with myelination density. However, the brightness of each voxel in a standard ‘structural’ MRI image is only weighted by T1 relaxation value (actually, since T1 is shorter for brighter voxels, ‘T1’ images are actually weighted by R1=1/T1). The reason for saying ‘weighted’ is that other factors affect the voxel brightness, such as proton density and B1 receive inhomogeneities. But more insidiously, B1 transmit inhomogeneities affect the contrast between different voxels; there is a large (25%) variation in B1 transmit flip angles across the head at 3T for a given nominal ‘flip angle’ (Lutti, Dick et al. 2014). A great deal of effort has been put into trying to repair these brightness and contrast artifacts after the fact, for example, for the purpose of distinguishing gray matter from white matter(Wells, Kikinis et al. 1994, Sled, Zijdenbos et al. 1998, Dale, Fischl et al. 1999, Weiskopf, Lutti et al. 2011). But given the comparatively small tangential variation in T1 between cortical areas (at maximum, only a 5% variation), post-hoc brightness and contrast correction methods risk ‘normalizing’ away the signal.A different strategy is to acquire additional scans to more accurately estimate T1 in the first place. A large number of different methods have been proposed over the years; here are four recent ones. A qualitative method for removing B1 receive inhomogeneities is to divide a T1 scan by a 3D fast spin echo long-echo-train T2 scan, since receive inhomogeneities affect both scans similarly(Glasser and Van Essen 2011). However, different signal pathways (gradient echo vs. spin echo plus stimulated echo) result in different spatial distortion; and uncorrected transmit inhomogeneity locally affects contrast. An improved quantitative method is to collect multiple FLASH scans with different flip angles and use the signal equation to estimate T1(Fischl, Salat et al. 2004, Sigalovsky, Fischl et al. 2006). Another quantitative method for estimating T1 is MP2RAGE, where two MPRAGE images with different inversion times are combined (Marques, Kober et al. 2010). Finally, a fourth method is to collect two multi-echo FLASH scans with different flip angles, estimate the variable local flip angle with an independent dual-echo STEAM (spin-echo plus stimulated echo) scan (Jiru and Klose 2006), then solve directly for T1 and proton density after linearizing the FLASH signal equation (Helms, Dathe et al. 2008, Sereno, Lutti et al. 2012, Lutti, Dick et al. 2014). The greatest challenge in applying any of these methods to the cortex is that between-area, within-lamina (tangential) variation is actually substantially smaller than within-area, between-lamina (columnar) variation. This means that small errors in estimating laminar position can easily obscure the between-area differences that are critical for accurate parcellation.In the following, we will concentrate on best practices for finding cortical laminae in both 2D and 3D contexts and in vivo and ex vivo, consider recent advances in parcellating the gray matter using structural and diffusion-weighted scans. In addition, we present a new method for computing correspondences between the gray/white and pial surfaces, which is needed to quantify the properties of the gray matter in the cortex, and hence detect changes that are indicative of architectonic boundaries. We build on previous techniques for computing corresponding locations that required the embedding of constraints on allowable thickness values and correspondence properties into the surface evolution itself (MacDonald, Kabani et al. 2000, Das, Avants et al. 2009). In contrast, our variational technique that can be applied post-hoc on any pair of surfaces, and doesn’t require assumptions about the geometry of the surfaces. We finish by discussing the difficult interrelated problems of how best to combine modalities and compare competing parcellations.
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	B. Methods
	The Perils of Analyzing a folded surface in an arbitrary viewing plane—One of the central features of the mammalian cerebral cortex is its differentiation into areas with varying cyto-, myelo-, chemo- and vaso-architectonic properties, including changes in the density, morphology, and laminar distribution of cells and intracortical connections. The detection of the boundary between different areas is thus accomplished by quantifying these properties and looking for abrupt changes that mark the transition from one area to another. Automating this procedure requires extracting information that quantifies these properties at each point in the cortical ribbon, which in turn is based on some method of traversing the ribbon from the gray/white boundary to the pial surface. A dominant current method for carrying out this analysis is to treat the pial and white surfaces as capacitive plates, clamp the voltages to 0 and 1, respectively, then solve the Laplace equation of electromagnetism in the interior space (Jones, Buchbinder et al. 2000)}(Schleicher 1999). Streamlines of the solution that are perpendicular to the isopotential curves are followed from the white to the pial surface to establish a path for sampling gray matter properties. While in principle this analysis for computing intensity profiles within the cortical ribbon can be carried out using the pair of folded surfaces directly in their native 3D space, in practice, this is not possible with standard histological methods. The microscopic resolution needed to directly visualize architectonic features of the cortex, to uniformly infuse stains that highlight molecular properties, and finally to remove water and fat from human tissue to optically clear it currently require planar physical cutting of the tissue, following by staining, mounting, dehydration, and defatting. Polarized light imaging (Axer, Axer et al. 2001, Dammers, Axer et al. 2010, Axer, Amunts et al. 2011) does not require staining as it uses the intrinsic birefringence of the myelin sheath to produce contrast; but it still requires cutting, and hence, distortion prior to imaging. The Laplace analysis is then almost ubiquitously carried out on this two-dimensional slice (Schleicher, Amunts et al. 1999).Recent work in tissue clearing (Chung and Deisseroth 2013), fast block-face imaging (Seiriki, Kasai et al.), and optical coherence tomography (Augustinack, Magnain et al. 2014, Wang, Zhu et al. 2014, Magnain, Augustinack et al. 2015) hold the promise of imaging before cutting has introduced irremediable distortions, but current histological techniques analyze the folded 2D surface embedded in three-dimensions by cutting through it along an arbitrary plane. In (Schleicher, Amunts et al. 1999) it was suggested that distortion induced by folding patterns is within acceptable limits if the angle between the cutting plane and the cortex is less than 60°. For cortical regions that exceed this limit, a different cutting plane should be used to analyze this region – by necessity in a different brain if the one brain had not been blocked. Unfortunately, due to the complexity and high spatial frequency of the folding patterns of the human neocortex, very little of the cortical sheet respects this constraint. This is shown in Figure 1, which displays an inflated surface with a color overlay of the angle between the coronal plane and the surface normal at each point on the white surface, with points that do not exceed the 60° threshold shown in gray. As can be seen, there are no large patches of the surface that fall below the 60° cutoff and in fact only 46% of the total cortical surface area falls below this threshold (52.6% and 52.9% for sagittal and horizontal planes respectively), suggesting that cortical folding patterns will introduce significant noise into this kind of analysis for almost every cortical region.In order to assess the magnitude of these effects, we created a synthetic volume in which we take an actual (1mm3) MRI volume, derive white and pial surfaces from it, then divide the interior of the ribbon into 6 equally-spaced compartments meant to represent the 6 cortical layers. We then fill the interior of each layer with a unique value (WM=110, layer 6=70, layer 5=60, layer 4=80, layer 3=50, layer 2=40, layer 1=30, exterior =10) to create a volume with 200μm3 resolution. An example coronal slice from this procedure is given in Figure 2. We then solve the Laplace equation and compute streamlines as described in (Schleicher, Amunts et al. 1999, Jones, Buchbinder et al. 2000), but limit the Laplace solution and the resulting streamlines to be within each coronal slice, as would be the case for normal histological analysis. Given that that the original surface is topologically equivalent to a sphere, any planar cut will result in a set of closed curves lying within that plane, as can be seen in Figure 2, right which shows the laminar surfaces used to create the synthetic volume overlaid on an arbitrary coronal slice. As can be seen, this results in a set of non-intersecting closed curves in the plane. We note that the number of curves changes as a function of which laminar surface is used for the intersection. In this particular case, the white surface shown in yellow has 3 separate closed curves, but the pial surface shown in red has only a single closed curve in this slice plane, which highlights the problematic nature of using planar analysis techniques for a highly-folded surface.While the folds can change the planar topology as illustrated above, they also introduce significant geometric confounds into any laminar analysis. To illustrate this issue, we replicated the observer-independent laminar profile analysis procedure presented in (Schleicher, Amunts et al. 1999) and used in a number of important subsequent studies investigating the variability of architectonic boundaries in the human brain(Geyer and Ledberg 1996, Amunts, Schleicher et al. 1999, Amunts, Malikovic et al. 2000, Amunts, Kedo et al. 2005, Eickhoff, Amunts et al. 2006, Amunts, Schleicher et al. 2007, Eickhoff, Grefkes et al. 2007). In this approach, the Laplace streamlines are used to sample an intensity image in which the value at each pixel is related to the density of neurons at that location. Features representing each streamline are computed, then the equivalent of a spatial gradient is calculated by estimating the Mahalanobis Distance (MD) between the feature sets of adjacent blocks off streamlines (for details please see (Schleicher, Amunts et al. 1999)). Peaks in the MD then correspond to putative borders between architectonic areas.We applied this procedure to a coronal slice containing a synthetic stria of Gennari – a region in which the intensity of the simulated layer 4 is increased significantly, as shown in Figure 3. Finally, we extracted the largest curve from the intersection of an arbitrary coronal plane with the white matter surface and computed the Mahalanobis distance between neighboring blocks of 200-um-spaced Laplace profiles. The results of this analysis are shown in Figure 4, with the borders of the synthetic stria marked with vertical red lines. Recall that the synthetic data used as input to this cortical parcellation procedure has no boundaries other than the simulated V1. Every layer has exactly the same thickness and intensity everywhere in the brain. Nevertheless, the through-plane folding of the cortex induces apparent changes in laminar properties when viewed in an arbitrary coronal plane, giving rise to large spikes in the MD throughout the slice, some larger than those observed at the true boundary. And even those at the true boundaries are displaced relative to their true location by through-plane folding, as shown in Figure 4.In order to elucidate the source of these large spikes in the MD, we zoom into a region of spikes completely within the boundaries of the simulated V1 in Figure 5, with the two blocks of contours used to compute the MD shown in different colors (cyan and red) in Figure 6. Examining this figure, it is clear that the large MD is a result of through-plane folding, with the cyan contours largely orthogonal to the gray/white boundary, but the red ones covering a region in which the through-plane folding of the cortex causes the profiles to be oblique to the cortex. This problem is exacerbated by the fact that the different layers are differentially affected. For example, in this region, the deep layers show a much greater apparent expansion than the superficial ones, although, of course, all the layers are exactly the same thickness in their native three-dimensional space.
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	B.1. Variational approach to finding a vector field connecting gray and white matter boundaries

	C. Parcellations using structural MRI
	D. Parcellations using diffusion-weighted MRI in the gray matter
	E. Conclusion
	What is a cortical area?—It’s worth remembering that a cortical area is a human label for local region of the neocortex after normal development. In the case of invasive experiments on animals, it has often been suggested that cortical areas are best defined on the basis of multiple converging criteria including at least: (1) receptotopic organization, (2) architectonic features, (3) connection patterns, (4) neurophysiological properties, and (5) effects of localized lesions. In the case of areas whose borders are not in dispute such as V1, these five measures can each be used separately to mark borders, and then these independently derived estimates can be compared. There are surprisingly few cortical areas whose borders are as well-agreed-upon as V1.As with many scientific endeavors, the easier targets get investigated first. In the case of the visual system, this means V1, and then V2 and MT. Finding and characterizing these areas in living humans has turned out to be surprisingly difficult. Layer 4B of V1, the “stria” in striate cortex, makes V1 perhaps the most architectonically distinct cortical area. It was detected macroscopically by Meynert in post-mortem samples in 1867. However, reliably visualizing this feature across the extent of V1 with in vivo human structural imaging requires long, ultra-high field scans and uncommonly still subjects. With human V2, ultra-high field scanning was also required to finally functionally visualize the stripe compartments (Nasr, Polimeni et al. 2016), already known to exist 40 years ago from invasive work in non-human primates. Similarly, we can finally now reliably locate human area MT through a confluence of quantitative T1 mapping and retinotopic mapping (Sereno, Lutti et al. 2012), which recently showed that only the posterior one-third to one-half of the lateral occipital maximum of quantitative T1 (and by implication, myelination) actually corresponds to MT proper. Once again, the fact that MT was adjoined by several densely-myelinated, motion-related areas that are difficult to discriminate from MT was known long ago from work in non-human primates.But even in the case of these three paragons of cortical areas, there are unsettling details as one digs deeper. In the case of V1, there are additional internal borders that will have to be ignored as in vivo resolution is improved. For example, at the cortical representation of the blind spot (which receives input only from ipsilateral dLGN layers) and the monocular crescent (which receives input only from contralateral dLGN layers), the pattern of ocular dominance columns is interrupted, which affects most of the criteria listed above. Or consider V2, where there seem to be at three subareas intercalated as side-by-side stripes into a single map. Or consider the case of the periphery of MT/V5, where there is an sharp drop in myelination within the boundaries of the retinotopic map ((Allman and Kaas 1971); Fig. 3, 4A in (Sereno, McDonald et al. 2015)).Moving to the majority of visual areas beyond V1, V2, MT, and V6, where quantitative T1 is less diagnostic, most studies have turned primarily to retinotopy for parcellation. Although invasive studies in primates and other animals have suggested that there is a fair degree of variation even within species, most work in humans has implicitly assumed that individual brains all have the same number of cortical visual areas, that all visual cortical areas have the same neighbor relations, and that it makes sense to average across individuals (as we have ourselves). There is a fair amount of agreement about the layout of early visual areas. Nevertheless, outside of V1, V2, and MT, there are enough disagreements in detail that no generally agreed upon ‘ground truth’ exists for non-human primates, much less for humans. Moving to other modalities, mapping auditory areas is more difficult since there is currently only one main mapping coordinate, tonotopy, to distinguish areas on a 2D cortex. Mapping somatosensory areas is yet harder, since compared to the retina, the surface of the body is inconveniently shaped, and the subject is resting on it. Finally, with motor areas, it’s hard acquire good MRI data when the subject moves due to technological limitations such as motion-induced field changes. Attempts to map all 4 modalities at the same time in the same group of subjects (e.g., (Sood and Sereno 2016)) suggest that individual brains are similar, but not identical in areal number and neighbor relations; given that different primate species differ in these two measures, this should not be surprising. Comparative and development evidence suggests that cortical areas have arisen by duplication, subdivision, or fusion. These processes may still be at work in disturbed and perhaps even in normal development (the second author’s V3A appears to directly touch his V2 without an intervening V3).Though we have implied otherwise above, fundamental questions about the definition of a ‘cortical area’ remain open, namely, whether boundaries between every pair of cortical areas are similarly sharp and smooth, and whether boundaries determined by different techniques should agree in the limit of ‘really good data’. It has long been known that some borders, such as the one between V1 and V2, are sharp and smooth, and well aligned across different techniques, but it is not known whether these features extend to all cortical areas. And even within early sensory areas, recent invasive experiments simultaneously measuring cerebral blood volume (CBV) and neural activity (Winder, Echagarruga et al. 2017) show that spontaneous CBV changes are closely associated with neural activity due to whisker stimulation and volitional whisker and body movements, but are only weakly coupled with neural activity during rest periods. This may complicate the task of combining non-invasive neuroimaging data from multiple techniques (e.g., receptotopic mapping versus resting state correlations) to generate omnibus parcellations, especially for locations where both types of data are not discriminative.All of these findings suggest that it will be critical to establish probabilistic maps that are capable of handling not only substantial variation in cortical area size, but also variation in cortical area number and neighbor relations. Though implied by the word “probabilistic”, the variation in uncertainty of areal boundaries is often lost when viewing “ground truth” summary maps. Of course, researchers mainly interested in using rather than generating parcellations will gravitate toward a single, definitive, convenient-to-use “ground truth”. Keeping the “ground truth” communally editable is a difficult job.In vivo and ex vivo—By analogy with the difficulty of combining and adjudicating between architectonics and topographical mapping, there is a similarly difficult passage between in vivo and ex vivo parcellation. Except in rare circumstances, in vivo and ex vivo data is not available from the same subject. Another MRI-imaging-specific difficulty is that in vivo and ex vivo structural contrast is markedly different for measures of T1, T2, T2*, and diffusion. Though ex vivo T2* contrast (inverted) is a reasonable substitute for in vivo T1 contrast, it is clear that fine points like the subvoxel position of the gray-white matter border – a critical stepping off point for laminar measures – might subtly differ between the two, and that no simple functional form appears to relate the tissue parameter changed induced by fixation. On the positive side, the greater resolution available with ex vivo data should be able to help with designing algorithms to help discern the more subtle contrast between laminae that can be measured in vivo with quantitative T1 scans.A way forward for histology—Although we have been critical of methods applied to ex vivo histological sections, there are excellent reasons for continuing to cut and stain sections in the traditional way, and we do not mean to imply otherwise (and we note the world-class neuroanatomical expertise that was a significant component of these studies undoubtedly precluded serious errors). There are simply no alternatives; the volume of human tissue that can be currently cleared as an uncut block (e.g., CLARITY(Chung and Deisseroth 2013)) would cover only a small portion of one human cortical gyrus, and while promising alternatives such as optical coherence tomography (OCT) avoid the problem of cutting-induced distortions(Wang, Black et al. 2011, Magnain, Augustinack et al. 2014, Wang, Zhu et al. 2014, Magnain, Augustinack et al. 2015, Wang, Lenglet et al. 2015, Magnain 2016, Wang, Akkin et al. 2016), these techniques have also not yet been scaled up to image entire hemispheres or brains. Our critique is merely a motivation to try to find ways around the problems we have outlined, for example, by combining information from adjacent slices during the estimation of columnar paths. This is a substantially more difficult problem than computing streamlines in isotropically sampled MRI data of comparatively much lower resolution. While ex vivo MRI methods continue to advance in terms of resolution and contrast and provide an intrinsically 3D acquisition that does not suffer from the slice-based distortions that plague histology, the several orders of magnitude increase in resolution, and the panoply of molecularly-specific staining options that are only available via ex vivo histology, provide a strong impetus to try to resolve the problems we have presented (see for example, the detailed, whole-brain cellular-resolution atlas presented in (Ding, Royall et al. 2017)).Comparing and combining parcellations—As the number of different cortical parcellation schemes increases, the difficulty of objectively comparing and combining them increases even faster. With low-subject-count invasive animal experiments, it is customary to illustrate single-subject data based on two or more of the area-defining criteria listed above (receptotopy, architectonics, etc.) in such a way that the reader can verify for themselves the extent to which the independently measured criteria do in fact support coincident borders. With neuroimaging data based on large group averages and multiple criteria, however, it can be more difficult to tell if parcellation borders derived independently from different criteria in fact agree. This is especially problematic when criteria have been combined to generate a single parcellation. First, cross-subject alignment methods differ. For example, surface-based alignment can be driven by sulcus depth, receptotopic map coordinates, connectivity measures, T1 values, or some combination; and 3D methods are somewhat incommensurate with surface-based methods. Second, one criterion may not detect any border within a region that is easily subdivided by a different criterion, making different borders differently supported; or researchers may insert ‘knowledge-based’ borders not directly supported by the data at hand. Third, different techniques have adjustable parameters to determine, for example, how many areas are generated, or what their general shape should be, or how smooth borders should be. It is often difficult to determine how much of a parcellation is determined by these priors and how much is more directly data-driven.We are unfortunately in a situation similar to that of the first blossoming of cyto- and myeloarchitectonics. The profusion of schemes resulted in confusion, backlash, and the eventual almost universal adoption of the Brodmann map, despite its shortcomings. To avoid settling too quickly on a single cortical parcellation, it will be important to provide tools to allow researchers access to individual criteria components so that data can be recombined in different ways, or augmented with new criteria and compared across subject, modality and algorithm.
	What is a cortical area?
	In vivo and ex vivo
	A way forward for histology
	Comparing and combining parcellations


	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13

