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Abstract

Recent research has shown that motile cells can adapt their mode of propulsion to the mechanical 

properties of the environment in which they find themselves – crawling in some environments 

while swimming in others. The latter can involve movement by blebbing or other cyclic shape 

changes, and both highly-simplified and more realistic models of these modes have been studied 

previously. Herein we study swimming that is driven by membrane tension gradients that arise 

from flows in the actin cortex underlying the membrane, and does not involve imposed cyclic 

shape changes. Such gradients can lead to a number of different characteristic cell shapes, and our 

first objective is to understand how different distributions of membrane tension influence the shape 

of cells in an inviscid quiescent fluid. We then analyze the effects of spatial variation in other 

membrane properties, and how they interact with tension gradients to determine the shape. We also 

study the effect of fluid-cell interactions and show how tension leads to cell movement, how the 

balance between tension gradients and a variable bending modulus determine the shape and 

direction of movement, and how the efficiency of movement depends on the properties of the fluid 

and the distribution of tension and bending modulus in the membrane.
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1 Introduction

Movement of cells, either individually or collectively, plays an important role in numerous 

biological processes, including development, the immune response, wound healing, and 

cancer metastasis (Nürnberg et al. 2011). Single-cell organisms exhibit a variety of modes 

for translocation, including crawling, swimming, or drifting with a fluid flow. Some 

prokaryotes such as bacteria use flagella, while eukaryotes such as paramecia use cilia to 

swim, but both types can only use one mode. However other eukaryotes, such as tumor cells, 

are more flexible and can adopt the mode used to the environment in which they find 

themselves. For instance, whether a single-cell or collective mode of movement is used in 

tissues can depend on the density of the 3D extracellular matrix (ECM) in which cells find 
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themselves (Haeger et al. 2015). This adaptability has significant implications for 

developing new treatment protocols for cancer and other diseases, for it implies that it is 

essential to understand the processes by which cells detect extracellular chemical and 

mechanical signals and transduce them into intracellular signals that lead to force 

generation, morphological changes and directed movement.

The two primary modes of eukaryotic cell movement on surfaces or in the ECM are called 

mesenchymal and amoeboid (cf. Figure 1.1) (Friedl & Wolf 2010, Binamé et al. 2010). The 

former is used by fibroblasts and tumor cells of epithelial origin, and typically involves 

strong adhesion to the substrate. In 2D movement is by extension of relatively-flat 

lamellipodia at the leading edge, whose protrusion is driven by actin polymerization. Growth 

of this structure is understood in terms of the dendritic network hypothesis, which posits that 

filaments are nucleated at the membrane and treadmill as in solution, and that the densely-

branched structure of the network arises via nucleation of branches on existing filaments 

mediated by a protein called Arp2/3 (Pollard et al. 2000). Force is transmitted to the 

environment via integrin-mediated focal adhesions that are connected to the internal network 

(the cytoskeleton or CSK) via stress fibers. Movement frequently involves proteolysis of the 

ECM to create a pathway (Sanz-Moreno et al. 2008).

In contrast, the amoeboid mode utilizes a less-structured CSK that lacks stress fibers, and 

involves lower adhesion to the substrate. Proteolytic degradation of the ECM is generally not 

used, and cells adopt a more rounded cell shape, often with a highly contractile ’tail’ called 

the uropod (Lämmermann et al. 2008). Two sub-types of amoeboid motion are known. In 

one, cells move by generating a rearward flow in the cortex – the cross-linked filamentous 

actin (F-actin) network that is linked to the membrane. As described later, the drag force 

created by the rearward flow leads to a reactive tension gradient in the membrane that 

propels the cell forward, and this is called the ’tension-’ or ’friction-driven’ mode. In another 

type, cells move by blebbing, in which cycles of extension of the front and retraction of the 

rear as shown in Figure 1.2(b) are used. How the spatial localization of blebs shown there is 

controlled is not understood, and some cells exhibit random blebs over their surface (cf. 
Figure 1.2(a)), which leads to no net translocation. Another variation of blebbing 

called ’stable-bleb’ or ’leader-bleb’ migration is used by certain embryonic cells that form a 

balloon-like protrusion at their leading edge (cf. Figure 1.1) and can move rapidly (Maiuri et 
al. 2015, Ruprecht et al. 2015, Logue et al. 2015).

The amoeboid mode is widely used, and when the environment is less favorable to 

mesenchymal movement, due e.g., to changes in the adhesiveness of the substrate, cells 

compensate by undergoing a ‘mesenchymal-to-amoeboid’ transition (MAT) (Friedl & 

Alexander 2011, van Zijl et al. 2011). Leukocytes can use the mesenchymal mode in the 

ECM, but can also migrate in vivo in the absence of integrins, using a ’flowing and 

squeezing’ mechanism (Lämmermann et al. 2008). Dd moves in a cyclic AMP (cAMP) 

gradient either by extending pseudopodia or by blebbing, and cells monitor the stiffness of 

the surroundings to determine the mode: pseudopodia in a compliant medium and blebbing 

in stiffer media (Zatulovskiy et al. 2014). Finally, some cells move only by blebbing. Certain 

lines of carcinoma cells don’t move on 2D substrates, but in a confined environment they 

polarize spontaneously, form blebs, and move efficiently (Bergert et al. 2012).
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A third, less-studied mode of movement is by unconfined swimming in a fluid. Dd cells and 

neutrophils both do this (Barry & Bretscher 2010), presumably to move through fluid-filled 

voids in their environment. A model of swimming by shape changes has been analyzed in 

(Wang & Othmer 2015a), where it is shown that Dd can swim by propagating protrusions 

axially. The model gives insights into how characteristics of the protrusions such as their 

height affect the swimmer’s speed and efficiency. Simplified models for movement by 

repetitive blebbing, using what can described as a ’push-pull’ mechanism, have been 

analyzed and the efficiency of movement determined (Wang & Othmer 2015b; 2016). 

However, it is also observed that Dd cells can swim without shape changes or blebbing for 

several body lengths (Howe et al. 2013), and the authors state that ’Simply put, we do not 

understand how these cells swim, and therefore how they move.’ Herein we show how 

swimming can arise by maintaining an axial tension gradient in the membrane, and this 

would be difficult to detect at the macroscopic level.

Crawling and swimming are the extremes on a continuum of strategies, and the variety of 

modes used in different environments raises questions about how mechano-chemical sensing 

of the environment is used to control the evolution of the CSK (Renkawitz & Sixt 2010). 

Protrusions and other shape changes require forces that must be correctly orchestrated in 

space and time to produce net motion – those on cells in Figure 1.2 (a) are not, while those 

in (b) are – and to understand this orchestration one must couple the intracellular dynamics 

with the state of the surrounding fluid or ECM. Tension in the membrane and cortex has 

emerged as an important determinant in the orchestration, whether in the context of 

undirected cell movement, or in movement in response to environmental cues. Experimental 

observations on several modes of tension-driven movement are described in the next section.

2 The basis of tension-driven movement

To describe recent experimental results we introduce some terminology. We consider a cell 

as a three-layered structure comprised of the plasma membrane, the cortex, and the 

remainder (cytosol, nucleus and other components). The membrane is a lipid bilayer ~10 nm 

thick, and the cortex, which is 200–300 nm thick, is composed of an F-actin network cross-

linked by filamin and bound to the motor protein myosin-II (myo-II), which can confer 

rigidity to the cortex, but can also contract and exert tension in the cortex. Membrane-bound 

proteins such as myo-I – a small motor protein that binds to both actin and the membrane 

(Dai et al. 1999) – or linker proteins such as ERMs (ezrin, radixin, and moesin), tether the 

cortex to the membrane and exert a normal force on the membrane. However the connection 

is dynamic and when the cortex flows it can slide tangentially under the membrane 

(Hochmuth et al. 1996, Dai & Sheetz 1999) and exert a tangential stress on the membrane. A 

detailed force balance done later shows how this can lead to swimming without either 

blebbing or shape changes.

Two recent papers describe a similar phenomenon – tension-driven motion of cells in 

confined environments – using human dermal fibroblast cells (Liu et al. 2015), or zebrafish 

germ-layer cells (Ruprecht et al. 2015). Liu et al. (2015) identify two morphologies, one 

type – A1 – has a rounded body and a small leading edge, and the other – A2 – has a more 

ellipsoidal body with a large uropod (Figure 1.1). They showed that slow mesenchymal cells 
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undergo the MAT when the adhesion is low and the cells are confined between plates, and 

this leads to two distinct shapes and two types of fast migration. The first (A1) involves low 

contractility of the cortex and a local protrusion, and the second (A2), is a ’stable-bleb’ type 

that involves high myo-II activity and involves a strong retrograde actin flow. Type A1 

appears to require an external signal to polarize, whereas type A2 can appear spontaneously, 

as has been shown for other cell types as well (Lorentzen et al. 2011, Bergert et al. 2012). 

The authors suggest that the type A2 system may be bistable.

A different, permanently-polarized, stable-bleb shape can be obtained from a stable non-

polarized blebbing cell by increasing the contractility in zebrafish progenitor cells (Ruprecht 

et al. 2015). The stable-bleb form involves cortical flow rates of 10’s of µms/min (Figure 

2.1(a)), which would certainly induce an anterior-to-posterior cytoplasmic flow near the 

cortex, and thus a posterior-to-anterior flow in the center. The authors also postulate a high 

cortical growth rate at the front of a cell and a high disassembly rate at the rear (cf. Figure 

2.1(b)). This hypothesis is supported by the fact that blebbistan (which inhibits myo-II 

contractility), latrunculin A (which leads to actin depolymerization), and jasplakinolide 

(which stabilizes actin networks) all inhibit polarization and cortical flow. The authors 

explain the transition from random blebbing to a stable-bleb shape as an instability of a 

spherical shape, which is adopted in the absence of surface contact, to fluctuations in the 

membrane. To date only a linear stability analysis of the problem has been done (Callan-

Jones et al. 2016), and the results of that analysis are contrasted with the results herein in the 

Discussion section.

Thus there are two ’stable-bleb’ cell morphologies in which a gradient of cortical density 

and myo-II contraction is used to generate a cortical flow and an axial pressure gradient (cf. 
Figure 2.2). How the flow is initiated, and in particular, whether it arises as an instability or 

requires contact with a substrate, is unknown. This mode of movement has only been 

demonstrated when cells are constrained to move between two horizontal barriers, and it has 

been suggested that substrate contact may open stretch-activated calcium channels and 

initiate modification of the cortex (Hung et al. 2016). Interestingly, some cells cannot move 

if they are only in contact with the substrate on the ventral (bottom) side, but will move 

when confined in a micro-channel (Bergert et al. 2012). This suggests that cortical flow may 

not arise when the cell is in contact with a surface on only one side, and this has been shown 

experimentally in Dd (Yumura et al. 2012).

To understand the origin of movement in these cells, recall that the cortex slips past the 

membrane, and in a numerous cell types, including Dd (Traynor & Kay 2007), leukocytes 

(Lee et al. 1990) and dendritic cells (Renkawitz et al. 2009), the membrane does not flow in 

a cell-fixed coordinate frame – it merely translocates with the cell body. Thus the membrane 

functions more like an elastic than a viscous material, and the drag force due to cortical flow 

creates an opposed tension gradient in the membrane. Back-to-front tension gradients of the 

order of 5 pN/µm2 have been measured in axons and keratocytes (Lieber et al. 2015), but 

only on the dorsal membrane of cells in surface contact on the ventral membrane. When the 

internal and external fluids are inviscid and quiescent, as in sections 3 and 4, these tensions 

must be equal and opposite, and the cell does not translocate. However, when the interior 

and exterior fluids are viscous, as in Section 5, there can be a non-zero tangential stress on 
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these fluids, and this may produce motion. We will show that such tension gradients in the 

membrane can generate movement without shape changes, and we call this ’swimming’. The 

plausibility of such motion is supported by the observed surface-tension-driven Marangoni 

propulsion of a fluid droplet on a viscous fluid (Lauga & Davis 2012). In fact, by cutting the 

cell in Figure 2.1 along the long axis, and opening it up and stretching the free ends to 

infinity, the membrane becomes an interface between the interior and exterior fluids, and one 

has the configuration of the classical Marangoni problem. Of course reality is more complex 

here, since the cortex as described above is a dynamic structure, thin at the front and thick at 

the rear,

While the primary experimental evidence of tension-driven movement involves cortical 

flows, we show that it is the existence of a tension gradient, whether or not it involves a 

cortical flow, that drives movement. Thus the results herein will be applicable to a larger 

class of cells than those used in the experiments described above.

3 The shape problem for cells

3.1 The free energy functional and the shape equations

The observed shapes described above, in particular the stable-bleb types shown in Figure 

2.2, raise a number of questions. Since amoeboid cells have a less-structured CSK, the cell 

shape is primarily determined by the distribution of internal forces in the membrane and the 

forces in the cortex. Thus the first question is what distribution of forces in the membrane 

and the cortex is needed to produce the observed shapes? Secondly, since directed cell 

movement requires cell polarization and cortical flow, what balances in the cortex amongst 

cortical thickness, the level of myo-II for contraction, myo-I for attachment to the 

membrane, and other factors, are needed to produce the cortical flow? Finally, how do the 

properties of the micro-environment affect the speed of movement, and whether a cell 

switches from tension-driven movement to blebbing-driven movement?

A model that incorporates a detailed description of the cortical network growth, myo-II, and 

cortical-network interactions, combined with the transport of actin monomers and other 

components in the CSK, will be very complex, and to date the cortex has been described as 

an active gel in simplified treatments of cortical flow (Joanny & Prost 2009, Prost et al. 
2015, Bergert et al. 2015). While this produces some insights, the biochemical details are 

embedded in an active component of the stress tensor for the gel, and thus the relative 

importance of the individual processes mentioned above cannot be investigated. We also do 

not attempt to develop a detailed model here, but rather, we use an alternate high-level 

description of the cortex to investigate how cortical forces and heterogeneity of membrane 

properties determine the shape of cells in quiescent fluids, and how these factors determine 

the shape and speed of swimming cells. Since the forces are simply specified, we can 

consider both the case in which there is a cortical flow that generates stresses, and the case 

in which the cortex is under stress but not flowing with this approach.

For this purpose we separate mechanics from the details of the cortical structure by 

prescribing a force distribution on the membrane that reflects what is believed to occur in the 

cortex in vivo. This allows us to vary the cortical forces directly, whether they arise from 
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cortical flows or simply from static tension gradients in the cortex. We do this first for cells 

in an inviscid quiescent fluid, where there are no shear stresses due to the fluids, and 

secondly for swimming cells, in which the interior and exterior fluids flow freely. The three-

fold aim of the latter step is to show that cells can swim when subject to cortical forces, to 

determine how much the shape of a moving cell differs from that of a stationary cell, and to 

show how the shape differences depend on cell and fluid properties.

The determination of the steady-state shapes of vesicles and red blood cells has been 

thoroughly studied, both in the absence of fluid motion (Seifert et al. 1991, Seifert 1997), 

and in the presence of fluid motion (Veerapaneni et al. 2009, Zhao et al. 2010, Li et al. 
2014). In the former the shapes are computed as minimizers of the free energy of the 

membrane, typically given by a Canham-Helfrich functional described below, and in the 

latter they represent shapes that lead to minimum dissipation in the flow. However, vesicles 

have no cortical layer and red blood cells have a very thin layer of spectrin – which contains 

no molecular motors – attached to the membrane. When there is a cortical flow and 

membrane-cortex tethers are actively formed and broken, there are dissipative processes 

involved and the membrane-cortex forces are not conservative. While one can use a virtual 

work argument to determine stationary shapes when there are non-conservative forces, we 

avoid this as follows. To find the stationary shapes under prescribed forces, we define a free-

energy functional for the membrane, which we treat as an elastic medium since this 

conforms with experimental findings in Dd (Luo et al. 2013), we compute its first variation 

with respect to a deformation, which gives the membrane force, and to this we add the 

cortical forces directly.

The membrane has four modes of deformation: dilatation, shear, bending and torsion, but 

only the bending mode is treated in general and we follow this practice here. In addition to 

the bending energy, which to lowest order is proportional to the square of the local curvature 

of the membrane, there are contributions to the free energy corresponding to the work 

associated with area and volume changes when these are conserved.

We let Ω ⊂ R3 denote the volume occupied by the cell and let  denote its boundary. We 

assume that  is a smooth, compact, two-manifold without boundary, parameterized by the 

map Φ : D ⊂ R2 → , defined so that the position vector x to any point on the membrane is 

given by x = x(u1, u2) for a coordinate pair (u1, u2) ∈ D. We let n denote the outward normal 

on , and define basis vectors on the surface via

ei = ∂x
∂ui i = 1, 2 . (3.1)

In general these are not normalized.

The free energy associated with bending, which was first set forth for membranes by 

Canham (1970) and later by Helfrich (1973), has the following form
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ℱB =
𝒮

2kc(H − C0)2dS +
𝒮

kGKdS . (3.2)

Here κ1 and κ2 are the principal curvatures, H = −(κ1 + κ2)/2 is the mean curvature, and K = 

κ1 κ2 is the Gaussian curvature1. C0 is a phenomenological parameter called the 

spontaneous curvature, kc the bending rigidity - which may be stress-dependent (Diz-Muñoz 

et al. 2016), and kG the Gaussian rigidity, which may also vary over the membrane. When 

kG is constant, the integral of the Gaussian curvature is constant if Ω does not change 

topological type under deformation, and the integral can be ignored.

Under the constraints of constant surface area A0 and volume V0 of the cell, the free energy 

takes the form

ℱ = ℱB +
D

Λ( g − g0)du1 du2 + P
Ω

dV − V0 , (3.3)

where P ≡ pext − pin is the pressure difference across the membrane, which we assume is 

constant over the membrane. Typically pin is a few hundred pascals higher than pext 

(Salbreux et al. 2012). The constant term PV0 simply translates the free energy and can be 

ignored, since it disappears after the first variation of (3.3) is taken. In the second-last 

integral over the boundary, g is the determinant of the metric tensor g of the surface, whose 

components are gi j = ei · ej, and g0 is its value in a reference or undeformed configuration in 

which the area is A0. The integral represents the energy needed to alter the area from its 

initial value, and Λ is the energy per unit area that arises when A is changed. Thus Λ has 

units of force/length, which defines a tension, but it is not a surface tension in the usual 

sense. Instead it is an in-plane stress of a two-dimensional surface, which can be seen as 

follows.

Consider a small x-y section of a thin flat plate of thickness h, and suppose there are no 

normal stresses to the section in the z-direction, which is orthogonal to the plate. Suppose 

the plate is an elastic material and let T be the stress tensor and let ε be the strain relative to 

a reference configuration. For small, uniform strains in the x-y plane on the four faces of the 

section one has

εx = 1
E (Txx − νTyy), (3.4)

εy = 1
E (Tyy − νTxx), (3.5)

1This definition of the mean curvature is predicated on choosing the outward normal as the normal to the surface.
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where E is Young’s modulus and ν is the Poisson ratio of the material. From these it follows 

that

Txx = E
1 − ν2 (εx + νεy), (3.6)

Tyy = 1
1 − ν2 (νεx + εy) . (3.7)

If the stress and strains in the x and y directions are equal and uniform in the z-direction, one 

can define a tension T as

T = (Txx + Tyy)h = Eh
1 − νε

where ε = εx + εy. Experimental results are usually reported in terms of a tension, but the 

foregoing shows that this assumes a local isotropy of the stress and strain. Evans & 

Needham (1987) define the tension as the average of the stresses along the principal 

directions of the surface, but these are rarely available. It is shown later that in the absence of 

imposed forces Λ is constant, and therefore the constant area term can be ignored as well.

In the absence of external forces, a stable equilibrium shape of a cell is a minimizer of ℱ, 

and thus a solution of δ(1) ℱ/δx = 0 for any infinitesimal deformation x = x0 + ϕ + ψn, 

where ϕ = ϕiei, of . This leads to the following shape equations for the normal and 

tangential components of the membrane force.2

Fn = − δℱ
δψ = { − Δs[kB(2H − C0)] − kB(2H − C0)(2H2 + C0H − 2K) − ΔskG + 2ΛH − P}

(3.8)

Fi
t = − δℱ

δϕi = 1
2(2H − C0)2∇ikB + K ∇ikG + ∇iΛ i = 1, 2 . (3.9)

Here Δs and Δ̄
s are surface Laplacians (cf. Appendix A), and the ∇i are the components of 

the surface gradient, resp. In the first equation one sees that Λ enters the normal component 

via the term 2ΛH, which couples areal distension to the curvature in the normal component 

2See Appendix A for a sketch of the derivation of these equations. When the bending and Gaussian moduli are constant the equation 
for the normal deformation has been derived by Ou-Yang & Helfrich (1989), Capovilla et al. (2003), Tu & Ou-Yang (2004) and others.
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of the force. In light of how the variation is defined, the resultant forces are defined per unit 

area.

To simplify the equations we assume hereafter that C0 = 0, which reduces the foregoing to

Fn = − δℱ
δψ = − 2Δs(kBH) − 2kBH(H2 − K) − ΔskG + 2ΛH − P (3.10)

Fi
t = − δℱ

δϕi = 2H2∇ikB + K ∇ikG + ∇iΛ i = 1, 2 . (3.11)

When the bending and Gaussian rigidities are constant these simplify to

Fn = − δℱ
δψ = − 2kBΔsH − 2kBH(H2 − K) + 2ΛH − P (3.12)

Fi
t = ∇iΛ i = 1, 2 . (3.13)

In any case the forces vanish at critical points of the energy, and stable shapes correspond to 

local minima of the free energy.

When written in (u1, u2) coordinates, the first term in Fn defines a fourth-order differential 

operator, and the critical points of the energy cannot in general be found analytically. Since 

the membrane is embedded in an inviscid quiescent fluid, we define a fictitious relaxation 

process for the evolution of the shape from its initial values in which we suppose that the 

dominant force is a fictitious drag, and we neglect inertial effects. This leads to the system

μd
dψ(u1, u2)

dτ = Fn(H, K, P, Λ, kB, kG, u1, u2) (3.14)

μd
dϕi(u1, u2)

dτ = Fi
t(H, K, P, Λ, kB, kG, u1, u2) i = 1, 2 (3.15)

where μd can be thought of as a drag coefficient with the dimension of the viscosity per unit 

length.
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3.2 The shape equations under cortical forces

To incorporate cortical forces, which are non-conservative, we add these to the intrinsic 

membrane forces as prescribed normal and tangential forces per unit area, the components 

of which are denoted fn and f i
t, i = 1, 2. Thus the equations to be solved for a 3D shape are

μd
dψ(u1, u2)

dτ = Fn(H, K, P, Λ, kB, kG, u1, u2) + f n (3.16)

μd
dϕi(u1, u2)

dτ = Fi
t(H, K, P, Λ, kB, kG, u1, u2) + f i

t i = 1, 2 . (3.17)

Since the normal force is directed inward and the normal vector is directed outward, fn < 0. 

When the cortical forces are incorporated the resulting evolution is no longer a gradient 

flow, and one simply looks for steady states of (3.16) and (3.17), which in general are not 

minimizers of the membrane free energy.

The equations can be cast into non-dimensional form by defining the * variables H* = H R0, 

L* = L/R0, 

Δs
∗ = R0

2Δs, kB
∗ = kB/k, kG

∗ = kG/k, Λ∗ = R0
2Λ/k, P∗ = R0

3P/k, f n ∗ = f nR0
3/k, f i

t ∗ = f i
tR0

3/k and τ* = 

τ/τm, where R0 and k̄ are the characteristic length and energy, resp., which we set equal to 1. 

Therefore, τm ≡ μR0
4/k defines a characteristic time unit scaled by a constant characteristic 

bending rigidity unit k̄. The resulting forms of (3.16) and (3.17) in unstarred variables are 

then

dψ(u1, u2)
dτ = Fn(H, K, C0, P, Λ, kB, kG, u1, u2) + f n (3.18)

dϕi(u1, u2)
dτ = Fi

t(H, K, C0, P, Λ, kB, kG, u1, u2) + f i
t i = 1, 2 . (3.19)

4 2D shapes

4.1 The evolution equations for 2D shapes

In order to understand the effects of membrane and cortical forces in determining the shape 

in the simplest possible context, we first perform an analysis of the cell shapes in two 

dimensions. In this case the domain is a 2D area, the boundary  is a closed curve, and the 

area and volume constraints become perimeter and area constraints. The energy functional 

now reads
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ℱ2D =
𝒮

kB
2 κ2ds +

𝒮
Λ( g − g0)ds + P

Ω
dA − A0 , (4.1)

where κ is the curvature and s arc length on the boundary. The normal and tangential forces 

arising from the bending energy and constraints reduce to

Fn = −
δℱB

2D

δψ = − Δs(kBκ) −
kB
2 κ3 + Λκ − P (4.2)

Ft = −
δℱB

2D

δϕi = κ2

2 ∇kB + ∇Λ, (4.3)

and the evolution equations (3.18) and (3.19) now read

dψ(s)
dτ = Fn + f n = − Δs(kBκ) −

kB
2 κ3 + Λκ − P + f n (4.4)

dϕ(s)
dτ = Ft + f t = κ2

2 ∇kB + ∇Λ + f t . (4.5)

4.2 The numerical algorithm for solving the evolution equations

As a characteristic length scale of the problem we use an effective 2D cell size R0, which is 

defined via

A = πR0
2 (4.6)

where A is the specified area enclosed by the cell contour, which has total fixed length L. 

The cell shape can then be characterized by the reduced area

Γ = A

π L
2π

2 = 4πA
L2 , (4.7)

which is an intrinsic dimensionless parameter that expresses the ratio of the area of a given 

2D shape to that of a circle of circumference L and a larger area.
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To solve the 2D eqns (4.4) and (4.5), the boundary curve is discretized into N segments (Wu 

& Tu 2009) and we assume a ’time’ step, τ0 and label the time sequence as τ0, 2τ0, …, jτ0. 

The vectorial form of eqns (4.4) and (4.5) can be concisely transformed into

r j + 1
k − r j

k = f j
kτ0, (4.8)

where f j
k is the discrete form of the dimensionless force surface density. The geometric 

quantities in this equation can be discretized as:

[ds] j
k = |r j

k + 1 − r j
k | , [t] j

k =
r j

k + 1 − r j
k

[ds] j
k [n] j

k = −
t j
k + 1 − t j

k

[κ ds] j
k , (4.9)

[κ] j
k =

(x j
k + 1 − 2x j

k + x j
k − 1)2 + (y j

k + 1 − 2y j
k + y j

k − 1)2

[ds] j
k 2 . (4.10)

[Δsκ]
j
k =

κ j
k + 1 − 2κ j

k + κ j
k − 1

[ds] j
k 2 . (4.11)

where r j
k = x j

kex + y j
key and n j

k can also be obtained by rotating t j
k in 90° counterclockwise.

The local invariance of the boundary length is treated using a spring-like penalty method 

instead of introducing a spatially variable Lagrange multiplier, but our method is equivalent 

to it, as shown in Appendix B. One can re-define the areal energy density via an harmonic 

spring-like potential, which leads to a simple implementation. Let

Λ = Λ0
g
g0

− 1 ,

where Λ0 is a constant penalty factor. Then

fT(s) = ∂
∂s Λ0

g
g0

− 1 t(s) , (4.12)

which can be rewritten as
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fT(s) =
Λ0
ds0

∂
∂s [(ds − ds0)t(s)] . (4.13)

Eq(4.13) can be discretized as

f j
T, k =

NΛ0
L

[(ds − ds0)t]
j
k + 1 − [(ds − ds0)t]

j
k

[ds] j
k , (4.14)

where ds0 = L/N and L is the total contour length of the 2D cell.

Because Λ0 can be considered as a membrane tension, one can define a new time scale τT = 

μoR0/Λ0. This is to be compared to the membrane bending time scale τm defined earlier, and 

must be taken small enough in comparison to τm to ensure invariance of the boundary length 

on the membrane time scale. For most practical purposes τT = 10−5−10−4τm has proven to 

be sufficiently small (Wu et al. 2015; 2016).

One could treat Λ0 as a true Lagrange multiplier, and develop a scheme to simultaneously 

solve for the shape and multipliers, but we simply fix a large Λ0 and check en passant that 

the arc length is conserved to the desired precision. The area constraint is treated as 

described in Appendix C. The stopping condition of the time-stepping calculation in (4.8) is 

∑k = 1
N |rJ + 1

k − rJ
k | < ε for a large enough integer J and a small enough number ε (ε = 10−6 is 

used here).

A summary of the computational procedure is as follows. First, the force distribution along 

the cell membrane is computed based on the current configuration of the cell. Second, the 

evolution equations (4.4) and (4.5) are used to obtain the new position in terms of the normal 

and tangential force distributions. Third, the first two steps are repeated until the stopping 

criterion has been satisfied, indicating that the steady state has been reached.

4.3 Computational results for 2D shapes

In this section we investigate the effects of spatial variations in the imposed cortical forces 

and in the bending modulus. Figure 4.1(a) shows representative shapes as a function of the 

magnitude of the dimensionless tether force f n
∗ and the reduced area Γ, while Figure 4.1(b) 

shows the shapes as a function of the dimensionless tangential force f t
∗ and Γ. In this figure 

and the following one, the property in question varies linearly from right to left of the 

shapes, with a minimum of zero at the left and the maximum given by the value on the x-

axis. As a point of reference, if Γ = 1 all shapes are disks, irrespective of the variation of 

other properties. In both panels one sees that there is little effect on the shape when either 

force is less than 0.1, but a very strong effect for either force greater than 1. Shapes in the 

gray zone on the left are stable, but no stable shapes were found in the light yellow zone due 
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to numerical difficulties. Stable shapes are found for the entire range of the tangential force 

on the right.

The normal force (a) leads to pear-shaped cells at large Γ and shapes with two lobes 

connected by a narrow ’bridge’ at Γ ~ 0.45, the latter somewhat similar to the 

Ruprecht ’stable-bleb’ type shown in Figure 2.2(a). This shape only exists at a sufficiently 

small reduced area, when the shape under a small force is biconcave, and stems from the 

large normal force at the right end of the cell. A variety of other shapes can be obtained 

under different variations of the tether force. In particular, a symmetric two-lobed shape can 

be obtained by concentrating the normal force force at the center of the cell.

At f t
∗ 1 and small and intermediate Γ in the panel on the right, one sees that the large 

tangential component at the right end leads to a smaller lobe there, while the small tangential 

force at the left end leads to a larger lobe. These are again similar to the stable-bleb type 

observed experimentally, where it is suggested that the cortical tension is lowest at the front 

of the cell (the left end in the figure) and highest at the rear. Clearly the curvature is highest 

on the small lobe, which can be understood from the fact that a high tangential tension enters 

into the normal component of the membrane force equations. While the stable shapes are not 

necessarily minimizers of the area, the membrane-derived component of the forces drives 

the evolution toward a minimum. The tension energy is highest at the right end of the cell 

while the bending energy dominates the rear. Since the tension is lowest at the left end, the 

evolution there is driven by a tendency toward local energy minimization, which leads to 

larger radii to minimize the local curvature. If the magnitude of the tension increases further, 

the pear-like shape becomes unstable and evolves into a kidney shape with a shallow 

indentation or a kidney shape with a deep one, the latter shown in the light orange zone, 

depending on the applied magnitude and the reduced area. The kidney shape cannot be 

attained at low Γ due to the narrow neck that occurs around f t
∗ 1, which precludes the shape 

changes involved in the transition to the kidney shape. The kidney shapes have been 

extensively found in the biophysical experiments of giant vesicles (Lipowsky 2014) as well 

as some chemically treated erythrocytes, such as cupped red cells (Brailsford et al. 1980).

Experimental measurements of cortical tensions fall in a wide range, from 0.02 pN/µm for 

neutrophils to 4.1 pN/µm for Dd (Winklbauer 2015). Estimates based on the number of 

linker proteins give a tether force of about 1 pN/µm (Diz-Muñoz et al. 2010). Our model 

predicts a reasonable experimental range 0.01 ~ 10 nN/µm for the chosen cell size R0 = 

10µm. The results in Figure 4.1 are given in dimensionless terms, and a comparison of them 

with the experimental results requires the bending rigidity of a curve. Since the bending 

rigidity of a bar scales differently than that of a plate, one cannot use the latter – which is 

experimentally measured – to estimate the former. Thus a comparison of the model 

predictions with experimental results must await 3D computations of the shapes as a 

function of the applied forces.

To investigate the effect of a variable bending modulus, we vary it axially using the 

hyperbolic tanh function
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kB = k +
ΔkB

2 1 + tanh  s
w , (4.15)

where s is the length of the half contour measured from the rightmost end of the cell, k̄ is the 

uniform component of the bending energy, ΔkB is the bending rigidity difference between 

the right and left ends of the cell, and w is the width of the transition zone. In a thin-shell 

description of a material the Young’s modulus varies as the thickness cubed, and hence the 

axial variation imposed here could arise from the axial variation of the cortical thickness. It 

might also reflect a distribution of adsorbed or transmembrane proteins, and of glycolipids 

(Wu et al. 2013). Figure 4.2 shows that in an inviscid quiescent fluid a cell undergoes a 

shape transition from the biconcave shape to the pear shape induced by the variable bending 

rigidity. Since there are no imposed forces here the shapes are minimizers of the free energy. 

One sees that the cell ’expands’ in regions of large rigidity since a region of higher kB 

offsets the lower curvature in the free energy ℱ.

5 Tension-driven swimming at low Reynolds number

5.1 The boundary integral equation

When the cell is submerged in a fluid and free to move, it generates extra- and intracellular 

flows, and here we assume that both the extra- and intracellular fluids are Newtonian, of 

density ρ and viscosity μ. In reality both fluids are undoubtedly more complex, but to 

demonstrate that movement ensues under tension gradients in the membrane it suffices to 

consider Newtonian fluids.

The Navier-Stokes equations for the intra- and extracellular fluid velocities u are (Childress 

1981)

ρ∂u
∂t + ρ(u · ∇)u = ∇ · σ + f ext = − ∇ p + μΔu + f ext, (5.1)

∇ · u = 0 (5.2)

where

σ = − pδ + μ(∇u + (∇u)T)

is the Cauchy stress tensor and fext is the external force field. We assume that the intra- and 

extracellular densities are equal, and thus the cell is neutrally buoyant, but allow for different 

viscosities in the two fluids. We further assume that there are no additional body forces and 

thus set fext = 0.

When converted to dimensionless form and the symbols re-defined, these equations read
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ReSl∂u
∂t + Re(u · ∇) = − ∇ p + Δu, ∇ · u = 0, (5.3)

where the Reynolds number Re based on a characteristic length scale L and a characterisic 

speed scale U is Re = ρLU/μ. In addition, Sl = ωL/U is the Strouhal number and ω is a 

characteristic rate at which the shape changes. When Re ≪ 1 the convective momentum term 

in equation (5.3) can be neglected, but the time variation requires that ReSl = ωρL2/μ ≪ 1, 

which implies that the initial shape changes must be slow enough. When both terms are 

neglected, which we assume throughout, a low Reynolds number (LRN) flow is governed by 

the Stokes equations, now in dimensional form,

μΔu − ∇ p = 0, ∇ · u = 0 . (5.4)

Here we consider small cells such as Dd, whose small size and low speeds lead to LRN 

flows (Wang & Othmer 2015a), and in this regime time does not appear explicitly, there are 

no inertial effects, and bodies move by exploiting the viscous resistance of the fluid. In the 

absence of external forces on the fluid and acceleration of the swimmer, there is no net force 

or torque on a self-propelled swimmer in the Stokes regime, and therefore movement is a 

purely geometric process.

The solution of the Stokes equations via the boundary integral method is a well-studied 

problem for red blood cells or vesicles in a pressure-driven flow (Zhao et al. 2010, 

Veerapaneni et al. 2011, Rahimian et al. 2015), but here the tension that arises from the 

active contraction of the cortex drives the flow. In the boundary integral method (BIM) one 

uses an Eulerian description for the velocity field of the fluid and a Lagrangian description 

for the configuration of the membrane. We assume that the interior and exterior viscosities 

are equal and that the velocity at infinity vanishes, and therefore the solution has the 

representation (Pozrikidis 1992; 2003)

u(x) = 1
4πμ 𝒮(t)

G(x, x0) · Fm(x0)ds (5.5)

where

Gij(x, x0) = − δijln |x − x0 | +
(x − x0)

i
(x − x0)

j

|x − x0|2
(5.6)

is the Green’s function in two space dimensions and Fm is the force exerted by the 

membrane on the fluid. We assume continuity of the velocities across the membrane, and 

mechanical equilibrium at the membrane, and therefore the force balance reads
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Fm ≡ [(σin − σext) · n]
m

= f m . (5.7)

The right-hand side of (5.7) is the force on the membrane given by eqns (4.4) and (4.5), and 

thus one has to solve the integral equation, the shape equation, and the tangential force 

balance to determine the interior, exterior and boundary velocity fields.

When x → x0 ∈ (t), the Green’s function in (5.6) diverges, but it is a weak singularity, and 

can be removed by using the singularity subtraction transformation (SST) (Farutin et al. 
2014), which is based on the integral identities

n(x) · ∫
𝒮

G(x, x0) · n(x0)ds = 0, (5.8)

t(x) · ∫
𝒮

G(x, x0) · t(x0)ds + n(x)
2π ∫

𝒮

(x − x0)[(x − x0) · n(x0)]
|x − x0|2

ds = 0 (5.9)

where t is the tangent vector to the contour . The first identity follows from the divergence 

theorem and the second from Stokes’ theorem. The SST technique for the single-layer kernel 

G(x,x0) can be applied as follows. Rewrite the integral in (5.6) as

∫
𝒮

G(x, x0) · f(x0)ds = ∫
𝒮

[G(x, x0) · f(x0) − fn(x0)n(x) · G(x, x0) · n(x0) − ft(x0)t(x) · G(x,

x0) · t(x0)]ds −
ft(x)
2π

𝒮

[(x − x0) · n(x)][(x − x0) · n(x0)]
|x − x0|2

ds,

(5.10)

where f(x0) = fn(x0)n(x0) + ft (x0)t(x0) and fn(x0) = (f(x0) · n(x0))n(x0) and ft (x0) = (f(x0) · 

t(x0))t(x0) are the normal and tangential parts of the force f(x0). Both integrals on the RHS 

of (5.10) have no singularities, that is they both go to zero when x approaches x0 along the 

contour . The second term in (5.10) tends to zero when x0 approaches x along the contour 

because (x0 − x) · n ≈ (|x0 − x|2).

5.2 The numerical algorithm for cell swimming

Step 1: Following the dimensionless quantities denoted with a star symbol in Section 3.2, the 

dimensionless surface force in unstarred variables f (x0) can be expressed in the component 

as the right hand side (RHS) of eqns (4.4) and (4.5) in terms of the current configuration of 

the cell.
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Step 2: By substituting the instantaneous surface force distribution into the dimensionless 

boundary integral in unstarred variables along the cell shape contour, we can obtain the 

velocity of each material node on the membrane

u(x) = 1
4π 𝒮

G(x, x0) · f(x0)ds(x0) (5.11)

Step 3: The motion of cell membrane is obtained by solving the dimensionless time 

evolution equation in unstarred variables

dx
dτ = u(x) (5.12)

for each material node x lying on the membrane and the new cell configration is updated at 

each time step using an explicit Euler scheme:

x(t + dτ) = x(τ) + u(x(τ), τ)dτ . (5.13)

Step 4: Repeat the former three steps until the stopping criterion has been satisfied, 

indicating that the steady shape and swimming velocity have been obtained.

The discretization procedure and validation of the method can be found in Appendix D.

5.3 Computational results for cell swimming

To compute the velocity field in the interior and exterior fluids we introduce a square 

Eulerian grid with a specified degree of refinement – the mesh size can be taken 

significantly smaller than ds according to the accuracy required. Since the Green’s function 

is singular when the target point coincides with the source point, a small strip (of order ds 
around the boundary is excluded from computation of the velocity field. The Eulerian lattice 

grid points do not coincide with the Lagrangian nodes on the membrane in general, and we 

need only to evaluate the distance between the source point (lying on the membrane) and the 

target point (lying on the square lattice grid). For each point x, the velocity field is evaluated 

by using (5.11), where the integral along the membrane is performed exactly. A simple but 

accurate algorithm to judge the cellular interior and exterior is given in Appendix E.

Figure 5.1 shows the velocity field outside the swimming cell in a cell-fixed frame. The 

interior flow (not shown) indicates that tension driven swimming can form a 

microcirculation flow inside the cell, which is consistent with the biological conjecture 

shown in Figure 2.1. Figure 5.2(a) shows that the swimming velocity as a function of the 

applied forces is linear for all normal forces (a), and linear for small tangential forces (b). 

For large tangential forces, the speed drops abruptly in the transition to a kidney shape. The 

plateau shown in (b) is not precisely flat, but the values are close.
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Figure 5.3 shows the velocity and evolution of cell shape as a function of time. Initially the 

shape is biconcave, but evolves to the pear shape induced by the variable bending rigidity, 

and the corresponding swimming velocity changes with time. As in Figure 4.2, the lobe size 

depends on the bending rigidity difference between the front and the rear of the cell – the 

larger the difference, the larger the difference in lobe size. The inset shows the force 

distribution on the boundary, where one sees that stress concentrates on the large lobe.

6 Discussion

Metastasis of a cancerous growth, which involves development of secondary malignant 

growth distinct from the primary tumor, accounts for the poor prognosis in many cancer 

types, and thus understanding how cells move in various environments is an important step 

toward devising medical treatment strategies for inhibiting metastasis. Because many cell 

types can use different modes ranging from crawling to swimming, it is important to 

understand how the micro-environment a cell finds itself in influences the mode it chooses. 

The shape a cell adopts in different environments is dependent on both intra- and 

extracellular forces on the membrane, and the balance between them can in turn determine 

the mode of movement via feedback of mechanical forces on the structure of the 

cytoskeleton and cortex. Earlier we described how certain cell types generate cortical flows 

that can produce motion, but there is little understanding of the quantitative relationships 

between the various forces, cell shape and movement.

Recently Callan-Jones et al. (2016) addressed the question of how cortical flows affect the 

shape of cells analytically, via a perturbation analysis of a spherical cell. They find that for 

small perturbations of a sphere the cortical force is the primary determinant of the shape, 

and showed that the flow can lead to axial asymmetries of the shape, similar to those 

observed. However a complete treatment of the control of cell shape and movement is 

currently beyond reach, either analytically or computationally, and in this paper we have 

addressed several simpler questions, which are (i) how do the shapes adopted by cells 

constrained in quiescent fluids depend on prescribed cortical forces, and (ii) how does a 

cortical tension gradient affect the shape and speed of movement when it is unconstrained.

A primary objective of this work was to demonstrate that cells could swim without any 

shape changes, simply by using tension gradients in the membrane. To show this, we 

developed a two dimensional mechanical theory that captures the necessary cortex-

membrane and fluid-membrane interactions. This enabled us to analyze the range of steady 

state shapes that could be adopted by membranes under tension distributions and whether 

these distributions could lead to swimming via an interaction with the fluid. We found that 

the resulting shapes closely resemble some of the shapes observed experimentally. Several 

new features of cell deformation and microswimming have emerged, including the 

following. (1) The pear shapes can be replicated by both the normal and tangential applied 

tension gradients, as well as by a variable bending rigidity. As the force or modulus variation 

is increased, the imposed asymmetry produces the transition from the non-polar bi-axial-

symmetry (biconcave shape) to the polar uniaxial symmetry (pear shape or kidney shape). 

(2) The cell swimming velocity is linear as a function of either the normal or tangential 

forces, but the strong tension gradient in the tangential direction can further lead to a kidney 

Wu et al. Page 19

J Math Biol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shapes and cause the swimming velocity to abruptly decrease. (3) The velocity field within 

the cell forms two circulating loops which provide a mechanism for shuttling actin monomer 

from the rear to the front, as has been postulated by experimentalists, and is shown 

schematically in Figure 2.1.

Future work on 2D cells using the current model will focus on the interactions between the 

different factors with a view toward more accurately replicating the observed shapes and 

further investigating fluid effects such as differences in the interior and exterior viscositites. 

We believe that we will be able to obtain most of the shapes that are observed with proper 

modification of the parameters in the model. For example, some shapes probably arise via 

highly localized force distributions, and can probably be obtained by suitable modification 

of the applied tension distributions. Another aspect for study concerns movement in 

confined spaces, which can be done with the present methods if the boundaries are not to 

close to the cell, but which will require new methods when the cell is in direct contact with 

the substrate.

Although the present study provides a first step for the modeling of non-adhesive cell 

movement, several other questions deserve future consideration in order to capture a more 

realistic picture of tension driven swimming. For example, in the present work, we assumed 

a single layer integrating both effects of membrane and cortical layers whereas real cells are 

endowed with one lipid membrane layer and a separate cortical layer, and a nucleus that 

makes deformations more difficult. It will be of great importance to include the two 

separated layers and celluar nucleus in modeling for better comparison with experimental 

systems. Another future issue is to study the environment effects on cell migration, for 

example, what is the spatial confinement effect on cell swimming velocities and trajectories 

and what is the cell dynamics in a viscoelastic fluid. The last issue is that in nature cells 

migrate in a 3D environment, thus a more realistic model would incorporate the effect of the 

second principal curvature on the migration phenomena of interest in this paper. A 3D model 

would also allow for a more accurate description of the cortex-membrane and fluid-

membrane interactions. For example, applying an anisotropic force distribution could lead to 

more realistic steady state shapes. A complete investigation of this effect will be reported in 

future work. Some preliminary results indicate that the cross section along the longest axis 

of the 3D shapes adopted by cell membranes under tension coincide with the two 

dimensional results shown here. Figure 6.1 below shows the equilibrium shapes of a 

membrane with and without an external tension gradient.

Acknowledgments

We thank Prof. Misbah for generously providing a code written by Dr. Thiébaud and used for the simulation of 
vesicle dynamics in an infinite channel (Thiébaud & Misbah 2013).

Supported in part by NSF Grants DMS 0817529 and 1311974, NIH Grant #54-CA-210190, the Newton Institute 
and the Simons Foundation.

Wu et al. Page 20

J Math Biol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendices

A An outline of the derivation of the shape equation

In 1989 Ou-Yang & Helfrich (1989) computed the first, second and third order variations of 

the Helfrich energy under normal deformations of the membrane by using the traditional 

tensor analysis. Later Capovilla et al. (Capovilla et al. 2003) applied the covariant geometry 

and Tu & Ou-Yang (2004) applied Cartan’s moving frame method to recalculate the 

variation of the original Helfrich free energy in both normal and tangential directions, 

respectively. Here, we extend these calculations to include a heterogeneous bending and 

Gaussian modulus.

ℱ =
𝒮

1
2kB(2H − C0)2dA +

𝒮
kGKdA +

𝒮
ΛdA + P

Ω
dV (A.1)

Note that the Gauss-Bonnet theorem is only valid for a constant Gaussian modulus, kG. If kG 

is variable, then one cannot ignore the second term in the energy when performing the first 

order variation.

For the derivation we introduce the following symbols and definitions. The unit normal 

vector n points outward. g is the surface metric tensor, and L is the extrinsic curvature 

tensor. ψ,j ≡ ∂jψ, so ∇iψ , j = ψ ,ij − Γij
kψ , k = ∂iψ , j − Γij

kψ , k where Γij
k  is the Christoffel symbol 

of the second kind, which is symmetric. H = −(κ1 + κ2)/2 is the mean curvature, K = κ1κ2 is 

the Gaussian curvature, where κ1 and κ2 are the principal curvatures. The surface Laplacian 

is Δs ≡ ∇s
2 ≡ ( g)−1∂i( ggij∂ j) and Δs = ∇s

2 ≡ ( g)−1∂i( gKLij∂ j) and i, j = 1, 2, throughout.

We will use the following identities of first order variations taken in both the normal and 

tangential directions,

δx = ϕiei + ψn,

δei = (∇iϕ
k − ψLi

k)ek + (ϕkLki + ψ , i)n,

δn = − (ϕkLk
i + ∇iψ)ei,

δgij = ∇iϕ j + ∇ jϕi − 2ψLij,

δgij = − ∇iϕ j − ∇ jϕi + 2ψLij,
δLij = (∇i ∇ j − 2HLij + Kgij)ψ + Lik ∇ jϕ

k + Lkj ∇iϕ
k + ϕk ∇kLij,

δg = g(2∇iϕ
i − 4Hψ),

δ g = g(∇iϕ
i − 2Hψ),

δH = (2H2 − K)ψ + 1
2 Δψ + ϕk ∇kH,

δK = Δsψ + 2HKψ + ϕk ∇kK .

(A.2)
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We can calculate the general variation of the modified Helfrich free energy as follows:

δℱ =
𝒮

(δ g)1
2kB(2H − C0)2 + 2 gkB(2H − C0)(δH) d2u

+
𝒮

[(δ g)kGK + gkG(δK)]d2u +
𝒮

[(δ g)Λ]d2u

+ P
3 𝒮

[(δ g)(x · n) + g(δx) · n + gx · (δn)]d2u

=
𝒮

g(∇iϕ
i − 2Hψ)1

2kB(2H − C0)2 + 2 gkB(2H − C0) (2H2 − K)ψ + 1
2 Δψ + ϕk ∇kH

d2u +
𝒮

[ g(∇iϕ
i − 2Hψ)kGK + gkG(KLij ∇iψ , j + 2HKψ + ϕk ∇kK)]d2u +

𝒮
[ g

(∇iϕ
i − 2Hψ)Λ]d2u + P

3 𝒮
{ g(∇iϕ

i − 2Hψ)(x · n) + g(ϕiei + ψn) · n − gx · ϕkLk
i

+ ∇iψ ei }d2u =
𝒮

(∇iϕ
i − 2Hψ)1

2kB(2H − C0)2 + 2kB(2H − C0) (2H2 − K)ψ + 1
2 Δψ

+ ϕk ∇kH dA +
𝒮

[(∇iϕ
i − 2Hψ)kGK + kG(KLij ∇iψ , j + 2HKψ + ϕk ∇kK)]dA

+
𝒮

[(∇iϕ
i − 2Hψ)Λ]dA + P

3 𝒮
{(∇iϕ

i − 2Hψ)(x · n) + (ϕiei + ψn) · n − x · ϕkLk
i

+ ∇iψ ei }dA =
𝒮

{Δ[kB(2H − C0)] + kB(2H − C0)(2H2 + C0H − 2K) + ΔkG − 2ΛH + P

}ψdA −
𝒮

1
2(2H − C0)2∇ikB + K ∇ikG + ∇iΛ ϕidA

(A.3)

Thus, the two first functional derivatives (force components) in the normal and tangential 

directions are as follows:

Fn = − δℱ
δψ = { − Δs[kB(2H − C0)] − kB(2H − C0)(2H2 + C0H − 2K) − ΔskG + 2ΛH − P}

(A.4)

Fi
t = − δℱ

δϕi = 1
2(2H − C0)2∇ikB + K ∇ikG + ∇iΛ (A.5)

B Area and arc length conservation via an harmonic potential

There are several ways in which the area conservation term in the free energy (3.3) can be 

written, and here we show one which has a simple interpretation in terms of springs between 

nodes and is equivalent to the form given in (3.3) under an appropriate definition of Λ. This 

method has been used by numerous authors (Henriksen & Ipsen 2004, Finken et al. 2008, 
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Freund 2007, Wu et al. 2015; 2016), and previous implementations of it have shown that the 

precision of this method depends on the choice of the coefficient Λs(u, ν). The area or arc-

length can be conserved as precisely as desired by making Λs(u, ν) large enough, with the 

disadvantage that this may require taking a small time step in the numerical algorithm.

The method is based on the following formulation of the area constraint,

1
2

Λs(u, ν)
g0

( g − g0)2dudν = 1
2 ∑

i = 1

N
Λi

(Ai − A0)2

A0
(A.1)

where Λs(u, ν) is fixed in the original reference frame. g is the metric on the deformed 

surface and g0 is the metric fixed in the original surface.

The equivalence between the spring-like penalty method and the Lagrange multiplier 

method is as follows. The variation of the areal energy under a perturbation can be written as

FΛ(x + εxA) = Λs(u, ν)
2 |xu

0 × xν
0|

( | (x + εxA)
u

+ (x + εxA)
ν
| − |xu

0 × xν
0 | )2dudν (A.2)

Therefore the first variation can be written

δFΛ
δε ε 0

= Λs(u, ν)
|xu

0 × xν
0|

( | (x + εxA)
u

× (x + εxA)
ν
| − |xu

0 × xν
0 | )

ε 0

·
(x + εxA)

u
× (x + εxA)

ν
|(x + εxA)

u
× (x + εxA)

ν
| · [xA, u × (x + εxA)

ν
+ (x + εxA)

u
× xA, ν]

ε 0
dudν,

= Λs(u, ν)
|xu − xν|
|xu

0 × xν
0|

− 1
xu × xν
|xu × xν| · (xA, u × xν + xu × xA, ν)dudν,

= Λn · (xA, u × xν + xu × xA, ν)dudν, = Λ[(xν × n) · xA, u + (n × xu) · xA, ν]dudν,

= − {[Λ(xν × n)]
u

+ [Λ(n × xu)]
ν
} · xAdudν,

(A.3)

where

Λ ≡ Λs(u, ν)
|xu × xν|

|xu
0 × xν

0|
− 1 = Λs(u, ν) g

g0
− 1 .

By using the vector product formula a × (b × c) = (a · c)b − (a · b)c, we obtain
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xν × n = xν ×
xu × xν
|xu × xν| , =

(xν · xν)xu − (xν · xu)xν
|xu × xν| , =

Gxu − Fxν

EG−F2 . (A.4)

Similarly,

n × xu =
xu × xν
|xu × xν| × xu, =

(xu · xu)xν − (xu · xν)xu
|xu × xν| , =

Exν − Fxu

EG−F2 , (A.5)

where E, F and G are the coefficients of the first fundamental form.

The surface divergence of a vector field is

∇s · us =
Gxu − Fxν

|xu × xν| · uu
s +

Exν − Fxu
|xu × xν| · uν

s (A.6)

(do Carmo 1976), and the surface gradient of a scalar field is

∇sΛ =
Gxu − Fxν

|xu × xν| Λu +
Exν − Fxu
|xu × xν| Λν . (A.7)

From the Weigarten equation, ni = ∇in = − Li
jx j, we have that, xν × nu = Lu

u(xu × xν) and 

nν × xu = Lν
ν(xu × xν), where we are assuming the Einstein summation convention. Because 

the mean curvature H = − Tr (Li
i)/2, we can further obtain

xν × nu + nν × xu = − 2H(xu × xν) = − 2Hn |xu × xν | . (A.8)

From equation (A.7) and equation (A.8), we easily have

∇sΛ − 2ΛHn =
[Λ(xν × n)]

u
+ [Λ(n × xu)]

ν
|xu × xν| . (A.9)

Therefore, equation (A.3) can be further calculated as
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δFΛ
δε ε 0

= − (∇sΛ − 2ΛHn) · xA |xu × xν | dudν, = − (∇sΛ − 2ΛHn) · xA gdudν,

= − (∇sΛ − 2ΛHn) · xAdA, = − fT · xAdA .

(A.10)

Thus, the spring-like penalty method is equivalent to the Lagrange multiplier method for the 

appropriate definition of Λ.

C A global area or volume conservation condition

There is no Lagrange multiplier needed for the volume conservation in an incompressible 

fluid – the volume is automatically conserved if the divergence-free condition is met. 

However, in practice there is still some deflation in the process of numerical calculation. 

Thus a volume correction must be executed at each step, in order to precisely conserve the 

initial volume.

The traditional formula, which consists of summing all the volumes of the element triangular 

prisms has an obvious disadvantage in that it fails to calculate the volume when the center of 

mass is sometimes located outside the cell body. To avoid this disadvantage, we introduce 

the Minkowski identity for the volume of an N-dimensional geometric object in the space 

RN

VN = 1
N dAN(x · n) = 1

N drN − 1(x · n) (A.1)

where N is the dimension of the geometric object. VN and AN are the volume and the area of 

the N-dimensional object.

To prevent the accumulation of errors of the area in 2D, or the volume in 3D, we implement 

a correction step due to (Freund 2007).We state this correction for the volume case, the area 

version is given in (Freund 2007). Suppose we apply a small perturbation p to the membrane 

surface. The volume can be precisely conserved as follows. Consider the functional

SN = (p · p)drN − 1 + λ 1
N (x + p) · ndrN − 1 − V0 , (A.2)

where N is the dimension of the geometric object and λ is a Lagrange multiplier to keep the 

volume conserved. A shape which minimizes the action above will satisfy that
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δSN = δp 2p + λn
N drN − 1 + δλ 1

N (x·n)drN − 1 + (VN − V0) = 0 . (A.3)

By solving equation (A.3), we obtain

p = − λ
2N n

λ =
2N2(VN − V0)

AN

(A.4)

Thus, the corrected position vector to preserve the volume can be expressed as

xcrt = x + p = x −
N(VN − V0)

AN
n (A.5)

Numerical checks show that that this method can preserve the volume to within 10−3V0.

D Discretization and parametrization implementation of the boundary 

integral method

The cell boundary curve is discretized into N segments with N points (Wu et al. 2015; 

2016).We label the N points in the boundary as 1, 2, ⋯, k − 1, k, k + 1, ⋯, N. The discrete 

form of surface force f j
i  (bending part and tension part) can be expressed using the 

procedures in Section 4.2.

The velocity of each node on the cell membrane has the discrete form of the integral 

equation (5.11) in terms of the trapezoid rule and can be approximated using a finite 

difference scheme

u j
k = u j

∞, k + 1
4π ∑

i = 1

N
[G] j

kif j
i [ds] j

i , (A.1)

where u j
∞, k is a constant velocity in the k-th node at the j-th timestep and the bending part of 

f j
i  can be discretized using equation (4.10). The tension part of f j

i  has been discretized in 

Section 4.2. The standard discretization of the free space Green’s function [G] j
ki can be found 

in the book (Pozrikidis 2002).

Assuming the step of evolution time is τ0, the time sequence as τ0, 2τ0, ⋯, (j − 1)τ0, jτ0, (j 
+ 1)τ0, ⋯. Equation (5.13) is transformed into
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r j + 1
k − r j

k = u j
kτ0, (A.2)

Finally, the new surface force on each node is estimated again from the new cell 

configuration r j + 1
k , and the whole scheme above is repeated for a long time until a the 

stationary state is reached.

In this paper, the cell membrane contour is discretized using Nm = 120 nodes whose 

positions are updated at each time step of τ0 = 10−4τm. The relative errors corresponding to 

the area, the perimeter and the reduced area are around 0.0008%, 0.035%, and 0.0009%, 

respectively. The steady shape of the cell is assumed to be obtained when the difference |x(τ 
+ 105τ0) − x(τ)| between the positions of the same node on the membrane at two different 

moments, separated by 105 timesteps is less than 10−5. The calculations are performed on a 

cluster consisting of 24 Intel@Core i5 processors with 16 GB RAM per node. OpenMP 

directives are used to parallelize the matrix-vector product computation. Each configuration 

of the steady shapes is completed via 107 iterations. It is important to note that some of the 

cases reported in the phase diagrams in results section ran over more than 6 hours on a 12-

core node since we decided to avoid using any cutoff or periodic boundary conditions in our 

system, due to the long-range nature of the hydrodynamic interaction. The use of the 

appropriate Green’s function (imposing the velocity vanishes on the walls) allowed us to 

avoid finite size effects, since we can literally consider an infinite domain along the flow 

direction.

As a validation of our numerical algorithm, the full phase diagram of dynamics of amoeboid 

swimming have been obtained by both the boundary integral method and the immersed 

boundary method (Wu et al. 2015; 2016). The two methods give the exact same results. In 

this paper, we explore the ranges of parameters that result in interesting cell shapes, such as 

the the pear and kidney shapes. In order to have a reference for the conversion of 

dimensionless units into physical ones, the following dimensional numbers for cell blebs can 

be used: R0 = 6µm, μ = 10−3Pa · s and κ = 10−18 J. This leads to a characteristic time of 

shape relaxation of about τm ≈ 0.2s, which is consistent with measured values for some 

cells, such as the amoeboid cells in (Arroyo et al. 2012).

E An accurate algorithm to determine the interior and exterior of a cell

There are two existing algorithms, the ray casting algorithm and the winding number 

algorithm, to judge whether one target point is located inside or outside a 2D polygon. Here 

we propose a simpler but equally precise algorithm. The idea is to use the fact that the sum 

of all the acute angles formed by the target point and every pair of points that define a 

segment on the two dimensional membrane contour is equal to 2π if the target point is inside 

the cell, π if the target point is on the smooth boundary and 0 if the target point is outside 

the cell. Here we assume that acute angles are calculated by uniting line elements 

successively in the clockwise direction. Because the normal vector on the membrane points 

outward, if the cross prodcut of two directional neighbor segments is negative, then the acute 
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angle is positive, vice versa. This 2D directional summation of the acute angles formed at 

the target point is equivalent to calculate the winding number. But our method can be easily 

generalized to the 3D case, the only change is that the criterion of 2π rad has to be changed 

to 4π sr with a summation implemented on all the solid angles formed by the target point 

and every three nearest neighbor points on the triangularized 2D membrane surface. In the 

3D case, ones also must pay attention to the directional segments of each triangular element 

in order to determine the directional steradian. The winding number algorithm cannot be 

extended to the 3D case.

References

Arroyo M, Heltai L, Millán D, DeSimone A. Proceedings of the National Academy of Sciences. 2012; 
109(44):17874–17879.

Barry NP, Bretscher MS. Proc. Natl. Acad. Sci. 2010; 107(25):11376–11380. [PubMed: 20534502] 

Bergert M, Chandradoss SD, Desai RA, Paluch E. Proc. Natl. Acad. Sci. 2012; 109(36):14434–14439. 
[PubMed: 22786929] 

Bergert M, Erzberger A, Desai RA, Aspalter IM, Oates AC, Charras G, Salbreux G, Paluch EK. Nature 
cell biology. 2015

Binamé F, Pawlak G, Roux P, Hibner U. Molecular BioSystems. 2010; 6(4):648–661. [PubMed: 
20237642] 

Bonito A, Nochetto RH, Pauletti MS. Journal of Computational Physics. 2010; 229(9):3171–3188.

Brailsford JD, Korpman RA, Bull BS. Journal of theoretical biology. 1980; 86(3):531–546. [PubMed: 
7218824] 

Callan-Jones A, Ruprecht V, Wieser S, Heisenberg C-P, Voituriez R. Physical review letters. 2016; 
116(2):028102. [PubMed: 26824569] 

Canham PB. J. Theor. Biol. 1970; 26(1):61–76. [PubMed: 5411112] 

Capovilla R, Guven J, Santiago J. Journal of Physics A: Mathematical and General. 2003; 36(23):
6281.

Charras G, Paluch E. Nature Reviews Molecular Cell Biology. 2008; 9(9):730–736. [PubMed: 
18628785] 

Childress S. Mechanics of swimming and flying. Vol. 2. Cambridge: Cambridge Univ Pr; 1981. 

Dai J, Sheetz MP. Biophys. J. 1999; 77(6):3363–3370. [PubMed: 10585959] 

Dai J, Ting-Beall HP, Hochmuth RM, Sheetz MP, Titus MA. Biophys. J. 1999; 77(2):1168–1176. 
[PubMed: 10423462] 

Diz-Muñoz A, Thurley K, Chintamen S, Altschuler SJ, Wu LF, Fletcher DA, Weiner OD. PLoS Biol. 
2016; 14(6):e1002474. [PubMed: 27280401] 

Diz-Muñoz A, Krieg M, Bergert M, Ibarlucea-Benitez I, Muller DJ, Paluch E, Heisenberg CP. PLoS 
Biology. 2010; 8(11):e1000544. [PubMed: 21151339] 

do Carmo MP. Differential geometry of curves and surfaces. Prentice Hall; 1976. 

Evans E, Needham D. Journal of Physical Chemistry. 1987; 91(16):4219–4228.

Farutin A, Biben T, Misbah C. Journal of Computational Physics. 2014; 275:539–568.

Finken R, Lamura A, Seifert U, Gompper G. The European Physical Journal E: Soft Matter and 
Biological Physics. 2008; 25(3):309–321.

Freund JB. Physics of Fluids. 2007; 19(2):023301.

Friedl P, Alexander S. Cell. 2011; 147(5):992–1009. [PubMed: 22118458] 

Friedl P, Wolf K. The J. cell biology. 2010; 188(1):11–19.

Haeger A, Wolf K, Zegers MM, Friedl P. Trends in cell biology. 2015; 25(9):556–566. [PubMed: 
26137890] 

Helfrich W. Zeitschrift für Naturforschung C. 1973; 28(11–12):693–703.

Wu et al. Page 28

J Math Biol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Henriksen JR, Ipsen JH. The European Physical Journal E: Soft Matter and Biological Physics. 2004; 
14(2):149–167.

Hochmuth R, Shao J, Dai J, Scheetz M. Biophys. J. 1996; 70:358–369. [PubMed: 8770212] 

Howe JD, Barry NP, Bretscher MS. PloS One. 2013; 8(9):e74382. [PubMed: 24040237] 

Hung W-C, Yang JR, Yankaskas CL, Wong BS, Wu P-H, Pardo-Pastor C, Serra SA, Chiang M-J, Gu 
Z, Wirtz D, et al. Cell reports. 2016; 15(7):1430–1441. [PubMed: 27160899] 

Joanny J-F, Prost J. HFSP journal. 2009; 3(2):94–104. [PubMed: 19794818] 

Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R, Hirsch K, Keller M, Förster R, 
Critchley DR, Fässler R, et al. Nature. 2008; 453(7191):51–55. [PubMed: 18451854] 

Lauga E, Davis AM. J. Fluid Mechanics. 2012; 705:120–133.

Lee J, Gustafsson M, Magnusson K-E, Jacobson K. Sci. 1990; 247(4947):1229–1233.

Li X, Peng Z, Lei H, Dao M, Karniadakis GE. Phil. Trans. R. Soc. A. 2014; 372(2021):20130389. 
[PubMed: 24982252] 

Lieber AD, Schweitzer Y, Kozlov MM, Keren K. Biophys. J. 2015; 108(7):1599–1603. [PubMed: 
25863051] 

Lipowsky R. Advances in colloid and interface science. 2014; 208:14–24. [PubMed: 24630342] 

Liu Y-J, Berre ML, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuzé M, Takaki T, Voituriez R, Piel 
M. Cell. 2015; 160(4):659–672. [PubMed: 25679760] 

Logue JS, Cartagena-Rivera AX, Baird MA, Davidson MW, Chadwick RS, Waterman CM. Elife. 
2015; 4:e08314. [PubMed: 26163656] 

Lorentzen A, Bamber J, Sadok A, Elson-Schwab I, Marshall CJ. J. Cell Sci. 2011; 124(8):1256–1267. 
[PubMed: 21444753] 

Luo T, Mohan K, Iglesias PA, Robinson DN. Nature materials. 2013; 12(11):1064–1071. [PubMed: 
24141449] 

Maiuri P, Rupprecht J-F, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, Beco SD, Gov N, 
Heisenberg C-P, et al. Cell. 2015; 161(2):374–386. [PubMed: 25799384] 

Nürnberg A, Kitzing T, Grosse R. Nature Reviews Cancer. 2011; 11(3):177–187. [PubMed: 21326322] 

Ou-Yang Z-C, Helfrich W. Physical Review A. 1989; 39(10):5280.

Pollard TD, Blanchoin L, Mullins RD. Annu Rev Biophys Biomol Struct. 2000; 29(1):545–76. 
[PubMed: 10940259] 

Pozrikidis C. Boundary integral and singularity methods for linearized viscous flow. Cambridge 
University Press; 1992. 

Pozrikidis C. A practical guide to boundary element methods with the software library BEMLIB. CRC 
Press; 2002. 

Pozrikidis C. Modeling and simulation of capsules and biological cells. CRC Press; 2003. 

Prost J, Jülicher F, Joanny J. Nature Physics. 2015; 11(2):111–117.

Rahimian A, Veerapaneni SK, Zorin D, Biros G. J. Computational Physics. 2015; 298:766–786.

Renkawitz J, Schumann K, Weber M, Lämmermann T, Pflicke H, Piel M, Polleux J, Spatz JP, Sixt M. 
Nature cell biology. 2009; 11(12):1438–1443. [PubMed: 19915557] 

Renkawitz J, Sixt M. EMBO reports. 2010; 11(10):744–750. [PubMed: 20865016] 

Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch-Marte M, Sixt 
M, Voituriez R, et al. Cell. 2015; 160(4):673–685. [PubMed: 25679761] 

Salbreux G, Charras G, Paluch E. Trends in Cell Biology. 2012; 22(10):536–545. [PubMed: 22871642] 

Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ. Cell. 2008; 
135(3):510–523. [PubMed: 18984162] 

Seifert U. Advances in Physics. 1997; 46:13–137.

Seifert U, Berndl K, Lipowsky R. Phys. Rev. A. 1991; 44:1182–1202. [PubMed: 9906067] 

Thiébaud M, Misbah C. Phys. Rev. E. 2013; 88(6):062707.

Traynor D, Kay RR. Journal of Cell science. 2007; 120(Pt 14):2318. [PubMed: 17606987] 

Tu Z, Ou-Yang Z-C. Journal of Physics A: Mathematical and General. 2004; 37(47):11407.

Wu et al. Page 29

J Math Biol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



van Zijl F, Krupitza G, Mikulits W. Mutation Research/Reviews in Mutation Research. 2011; 728(1):
23–34.

Veerapaneni SK, Gueyffier D, Biros G, Zorin D. J. Computational Physics. 2009; 228(19):7233–7249.

Veerapaneni SK, Rahimian A, Biros G, Zorin D. J. Computational Physics. 2011; 230(14):5610–5634.

Walker SW. 2017

Wang Q, Othmer HG. J. Math. Biol. 2015a; 72:1893–1926. [PubMed: 26362281] 

Wang Q, Othmer HG. Mathematical Biosciences and Engineering. 2015b; 12(6):1303–1320. 
[PubMed: 26775865] 

Wang Q, Othmer HG. arXiv preprint arXiv:1610.02090. 2016

Welch MD. Cell. 2015; 160(4):581–582. [PubMed: 25679757] 

Winklbauer R. J. Cell Sci. 2015; 128(20):3687–3693. [PubMed: 26471994] 

Wu H, Farutin A, Hu W-F, Thiébaud M, Rafaï S, Peyla P, Lai M-C, Misbah C. Soft matter. 2016; 
12(36):7470–7484. [PubMed: 27546154] 

Wu H, Shiba H, Noguchi H. Soft Matter. 2013; 9(41):9907–9917.

Wu H, Thiébaud M, Hu W-F, Farutin A, Rafaï S, Lai M-C, Peyla P, Misbah C. Physical Review E. 
2015; 92(5):050701.

Wu H, Tu Z. The Journal of chemical physics. 2009; 130(4):045103. [PubMed: 19191416] 

Yumura S, Itoh G, Kikuta Y, Kikuchi T, Kitanishi-Yumura T, Tsujioka M. Biology open. 2012; 2(2):
200–209. [PubMed: 23430058] 

Zatulovskiy E, Tyson R, Bretschneider T, Kay RR. The J. Cell Biology. 2014; 204(6):1027–1044.

Zhao H, Isfahani AH, Olson LN, Freund JB. J. Computational Physics. 2010; 229(10):3726–3744.

Wu et al. Page 30

J Math Biol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1.1. 
A summary of the different modes of movement in different environments and under 

different substrate properties. Modified from Welch (2015).
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Fig. 1.2. 
(a) Blebbing on a melanoma cell: myosin (green) localizes under the blebbing membrane 

(red) (b) The actin cortex of a Dictyostelium discoideum (Dd) cell migrating to the lower 

right. Arrowheads indicate the successive blebs and arcs of the actin cortex (Charras & 

Paluch 2008).
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Fig. 2.1. 
The measured cortical flow (top) (From Ruprecht, et al. Ruprecht et al. (2015)), and the 

postulated intracellular flows (bottom).
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Fig. 2.2. 
The two types of stable-bleb morphology in which movement in confinement is driven by 

tension gradients. (a) The Ruprecht-type, and (b) the Liu-type A2.
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Fig. 4.1. 

(a) A phase diagram showing cell shapes as a function of the dimensionless normal force f n
∗

and the reduced area Γ. (b) A similar diagram for the dimensionless tangential force f t
∗ and 

the reduced area Γ. The dimensionless range 0.1 ~ 100 in the x coordinate corresponds to the 

dimensional forces in the range 0.01 ~ 10 nN/µm for the chosen cell size and bending 

rigidity.
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Fig. 4.2. 
The dependence of shape on the magnitude of the variation in kB. The shape changes from 

biconcave to the pear shape as the axial variable bending rigidity increases. Γ = 0.6
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Fig. 5.1. 
The velocity field inside and outside the swimming cell in cell-based coordinates.
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Fig. 5.2. 
The swimming velocity as a function of the applied forces. The gradient of the forces is 

reversed from earlier figures, and the cells move to the right. In the both diagrams the cell 

has a reduced area Γ = 0.6.
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Fig. 5.3. 
The velocity, shape and surface force distribution on the cell. The cell shape has a reduced 

area Γ = 0.5 with ft = 0.0, fn = 0.0, and ΔkB = 6.0. The cell moves in the direction of the 

large lobe.
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Fig. 6.1. 
Here we exhibit the equilibrium shapes adopted by a cell membrane assumed to have an 

initial shape of a 3×1×1 ellipsoid shown at the left. The figure in the center is the typical 

biconcave shape adopted by a membrane in the absence of cortical forces. At the right we 

can see the asymmetric final shape that is adopted when the membrane is under a linear 

tension gradient, going from 10pN/µm2 in the back to 0 pN/µm2 in the front. The numerical 

method used to produce these shapes is based heavily on that of (Bonito et al. 2010). The 

computations were performed using the finite element software FELICITY due to Walker 

(2017).
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