DNA packaging and ejection forces in bacteriophage
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We calculate the forces required to package (or, equivalently,
acting to eject) DNA into (from) a bacteriophage capsid, as a
function of the loaded (ejected) length, under conditions for
which the DNA is either self-repelling or self-attracting. Through
computer simulation and analytical theory, we find the loading
force to increase more than 10-fold (to tens of piconewtons)
during the final third of the loading process; correspondingly,
the internal pressure drops 10-fold to a few atmospheres
(matching the osmotic pressure in the cell) upon ejection of just
a small fraction of the phage genome. We also determine an
evolution of the arrangement of packaged DNA from toroidal to
spool-like structures.

he classic Hershey-Chase experiment (1) of almost 50 years

ago is best known for confirming DNA as the genetic
material. But it was significant also as the demonstration that
a bacterial virus (phage) leaves its protein capsid outside the
cell it infects. More explicitly, upon binding to its receptor
protein in the outer membrane of the bacterial cell, the viral
capsid is opened and its DNA is injected into the cytoplasm.
Obviously, this transfer can only happen as a passive process
if the DNA is sufficiently pressurized in the capsid. For the past
several decades, a great deal of experimental work has been
devoted to determining the arrangement of “packaged” DNA
in phage capsids through techniques that include x-ray scat-
tering (2, 3), Raman spectroscopy (4), chemical cross-linking
(5, 6), and electron microscopy (7, 8, 9). Various competing
models have been proposed in which the DNA molecule is
organized in concentric rings as a “spool” (3), in parallel
segments joined at sharp kinks (10), or as a folded toroid (11).
The most recent electron microscopy results on bacteriophages
T7 (8) and T4 (9) show concentric ring structures that lend
support to a spool-like structural motif. The underlying the-
oretical problem is also formidable, because one is confronted
with the statistical-mechanical challenge of accounting for
how a semiflexible, highly charged chain can be confined in
dimensions comparable to its persistence length & and yet
hundreds of times smaller than its overall (contour) length L
(12, 13). Although some estimates have been made of the
pressure and elastic stress in a fully loaded capsid (12, 14), we
are not aware of any attempt to treat the driving pressures
during the course of ejection or the loading forces as a function
of the extent of packaging (15)."

In the present work, we connect the processes of loading DNA
into, and ejecting it from, a phage capsid by calculating the
energy of the chain as a function of the degree of loading or
ejection. As already mentioned, the initial ejection is a passive
process, being driven directly by the pressure difference inside
and outside the capsid (16).! Indeed, we shall show that the
energy decreases monotonically as successively shorter lengths
of DNA are left confined in the capsid; this rate of decrease
corresponds to a force driving the chain outside. By contrast, the
loading of DNA into the virus must be an active process. Work
is performed by the motor protein responsible for pushing the
phage genome into the capsid volume whose size is small
compared with the DNA length. As we demonstrate below, the
force exerted by this motor takes on its maximum value at the
end of the loading process, at which point the stored energy
density (pressure) is sufficient to drive the ejection of the DNA
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when the capsid is eventually opened by binding to a new
bacterial cell. It is significant that the loading process, both in
vivo (17) and in vitro (18), can take place in the absence of
polyvalent counterions or similar DNA-condensing agents. Un-
der these conditions, the DNA is strongly self-repelling, making
its packaging into the capsid still more difficult. In the presence
of polyvalent counterions (e.g., spermidine, which is present in
significant concentrations in most bacterial cells), the DNA is
self-attracting, and yet we shall see that a comparable force is
required to load it into the viral capsid.

We use complementary methods to investigate the evolution
of structure and energetics along the loading coordinate. In our
first approach, Brownian molecular dynamics computer simu-
lations (19) of DNA loading into a viral capsid are performed by
using a coarse-grained model, typical of polymer simulations, in
which the double-stranded DNA chain is represented by a
semirigid string of “beads.”** We treat the cases of self-
attracting or self-repelling chains, corresponding to the presence
or absence of polyvalent counterions, through either allowing
full Lennard-Jones attractions between pairs of beads or by
truncating the forces between them at the potential minimum to
give a purely repulsive interaction. The capsid—particle interac-
tions are described by a short-ranged repulsive potential that
vanishes identically for particles within the radius Rc¢ of the
capsid, but that increases steeply [as (R — R¢)* in our model] for
particles at distances greater than R¢ from the capsid center.
This potential is simply a convenient way to describe a hard
interior wall, approximating the icosahedral capsid as a sphere
and neglecting any specific interactions between the DNA and
the capsid-wall interior, whose structural details (e.g., cationic
charge distribution) are generally not known (20).7" We also
neglect small changes in capsid size that might accompany
loading and ejection.

5To whom reprint requests should be addressed. E-mail: gelbart@chem.ucla.edu.

TGabashvili and Grosberg (15) have treated several scenarios for the progressive kinetics of
ejection, allowing for different sources of friction being dominant in the capsid and tail.
Although they also make estimates of the ejection forces, our primary concern in the
present work is to provide a more realistic and systematic theory of the thermodynamics
underlying these forces and of the structures of packaged DNA in the capsid.

ILater stages of the injection have been shown in many instances to be driven by bacterial-
cell transcription of the leading portion of the translocated viral DNA; see, for example,
ref. 16.

**The ""beads’ are Lennard-Jones particles, linked to their nearest neighbors along the
chain by harmonic stretching potentials centered at an interbead distance of o, the
Lennard-Jones diameter (corresponding approximately to the diameter of hydrated
DNA, or about 2.5 nm). A harmonic bending potential, applied to the angle between
neighboring bonds, dictates the intrinsic persistence length of the chain. The step size of
our Brownian dynamics simulation, which corresponds to DAt/kgT and where D is a
diffusion constant, is 3 X 10~4 g2/kgT. By the Stokes-Einstein relation for the diffusion
constant of a sphere of diameter o = 2.5 nm in a medium with the viscosity of water, this
result translates to a time-step At of 10 ps. Hydrodynamicinteractions between beads are
neglected.

t*The first crystallographic structure determination of the capsid of an icosahedral double-
stranded DNA bacteriophage (HK97), including information about the distribution of
charge on the interior wall, was reported only recently (see ref. 20).

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.
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Fig. 1. Snapshots from Brownian dynamics simulations of self-attracting
chain loading into spherical cavity. Only bonds are shown. The position of the
wall potential is shown with short black dashes. (A) 199 beads, side view. (B)
1,120 beads, side view (Upper) and view down the spool axis (Lower). Inter-
action potentials correspond to: Lennard-Jones ¢ = 0.5 kgT; persistence length
& = 32 o; capsid radius Rc = 6.250.

To simulate the loading of the chain into the capsid, each bead
is first moved radially into the capsid at a fixed rate** from an
entrance position arbitrarily designated as the top of the capsid.
All other beads—those already inside the capsid—are moved
according to the forces they experience as a result of their
interactions with other beads, the capsid wall, and the random
forces exerted by the solvent. Once the bead being introduced
has advanced one bond-length into the capsid, it is released from
its constraint of constant loading rate, and the next bead in the
chain takes its place to be loaded from the top of the capsid. In
this way, previously loaded segments of the chain are able to
respond to the gradual filling of the capsid as new beads are
introduced. In our simulations, computational time constraints
limit the total number of beads to somewhat over 1,000, corre-
sponding to approximately one-sixth the length of the genome of
a typical icosahedral bacteriophage. We scale the capsid size
accordingly to obtain, upon full loading, a volume fraction ap-
proaching that of close packing.

Upon loading a length of only several capsid diameters of
self-attracting chain, a donut-like toroidal structure (shown in
Fig. 14) forms spontaneously. As more and more chain enters
the capsid, the donut-like structure expands parallel to its central
axis into a spool-like structure with a nearly empty internal
cylindrical core. During the final stages of loading, a portion of
the chain ceases winding around the spool axis and, instead, fills
in the core of the spool with strands parallel to this axis (as seen
in Fig. 1B).

#*Beads are fed into the cavity at a rate of 3 X 10~5 ¢/At, or at about 7500 um/s. In actual
packaging situations [see, for example, the in vitro measurements described in ref. 24] the
loading rate decreases significantly with the force resisting loading. As explained later in
this paper, however, we are careful to calculate our loading forces by stopping our
loading at each of several different internal chain lengths and then averaging over long
times the outward radial force on the last monomer.

13672 | www.pnas.org/cgi/doi/10.1073/pnas.241486298

T T T
O
10 ¢ .
e
§ @)
o | i ]
c
Q
L
&
[}
O
L O ] |
o 8 J
®
0 . 3 s | L
0 0.2 0.4 0.6
loaded volume fraction
Fig. 2. Simulated mean force resisting loading from inside capsid with

increasing degree of loading. Model potential is as for Fig. 1. @, self-attracting
chain (Lennard-Jones potential with cutoff of 2.5 ¢); O, purely repulsive chain
(with truncated, shifted potential). Equilibrium mean force is determined by
starting with a configuration from a loading simulation, fixing the position of
the most recently entered bead at the capsid entrance, and averaging the
force on that bead while the remainder of the chain is thermally equilibrated.
Volume fraction is defined as though beads were hard spheres of radius o
inside a spherical cavity of radius Rc.

In the absence of attractions between nearby chain segments, a
much more disordered structure is formed during loading. The
transition between the ordered and disordered structures is kinet-
ically inaccessible over the time-scale of the simulation (about 1
ms); ie., ordered structures grown in the presence of attractions
maintain much of their order when equilibrated in the absence of
attractions. It is probable that the most stable structure for both
attractive and repulsive cases has a high degree of local order at the
high-packing fraction characteristic of the capsid in its final stages
of loading. For this reason, the ordered structure formed during
loading with attractions was used as a starting point for the force
calculations both with and without attractions, as described below.
(This situation also corresponds to the biological conditions during
the phage infection cycle: polyvalent amines are available inside the
bacterium for loading but will be exchanged for simple salt once the
phage enters the surrounding medium.)

The average force resisting chain loading is shown in Fig. 2
with and without attractions. The resistive force on the self-
attracting chain drops significantly upon progressive loading, as
a condensed toroidal-spool structure forms within the capsid. It
is here that the chain is able to benefit from its self-attraction.
As the chain fills the capsid and the repulsive part of the
bead-bead interaction becomes dominant, however, the force
climbs steeply, reflecting the increasing curvature and packing
strain of the condensate. Indeed, at this point, neighboring chain
segments are up against each other’s repulsive walls. In this
regime, where the structure depends largely on repulsive inter-
actions, the forces with and without attractions rise in parallel,
offset by the difference in energy per unit length of chain
between the two cases.

The physics exposed by the above simulations are nicely
illustrated by a simple phenomenological model, which has the
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further advantage that it can be straightforwardly calibrated to
experiment. The goal again is to treat the forces and pressures
associated with loading a long (L >=> Rc) semiflexible, self-
attracting chain into a small capsid (with Rc comparable to §).
The condensates inside and outside the capsid are treated
independently. In both cases, the condensate is assumed to
occupy a volume with uniaxial symmetry, with chain circumfer-
entially wound about a central axis. The cross-sectional profile
of the condensate is not constrained to be a circle (as it is in a
simple torus) but is allowed to assume an arbitrary shape to
optimize the condensate’s energy (21).5%

The elastic (bending) energy of the condensate per unit length
is taken as the one-dimensional bending modulus « times the
square of the local curvature,”™ where (consistent with the
assumption of circumferential winding about an axis) the cur-
vature is the inverse distance R from the central axis:

),
Ebend = E R ds [1]
0

The cohesive energy per unit length of chain, e,, depends on how
closely its strands are packed. The interhelical spacing d between
locally parallel, hexagonally packed segments is related to the
total volume occupied by a chain of length L by means of the
following geometric relation:

, 2V
\/‘gL.

The function e,(d) was extracted from measurements on DNA
condensed by the addition of polyvalent counterions and osmot-
ically compressed to d-spacings less than the optimal value d, of
28 A (22, 23).HH Then, the total cohesive energy Ep,y is the
product of chain length and the cohesive energy per unit length,
eq(d). A surface term is also included, proportional to the surface
area A of the condensate:

Esmface = _ea(d)A/zd [2]
For an overall (fixed) chain length L, and for an arbitrary
loaded length L* (0 < L* < L), we write the total energy of the
DNA as

Etolal(L*) = Einside(L*) + Eourside(L - L*)> [3]
with each of the energies on the right-hand side given by
E(L) = Ebulk + Esurface + Ebending~ [4]

The optimal shape of the condensate outside the capsid, free of
constraints, is found to be a torus with a circular profile. In contrast,
the condensed chain inside the capsid, whose size and shape are
limited by the constraint that it fits inside the spherical capsid of
radius R, evolves continuously from a torus into a spool-like shape
in which the capsid is filled, except for a cylindrical core in the

§5Calculation details of our continuum theory results, reported in the present paper, are
provided elsewhere [S.T., J.K., W.M.G., and A.-B.S., unpublished work], where we also
treat more thoroughly the kinetics of loading/ejection and estimates of capsid pressures.

TThe bending modulus « is set to 50 kgT nm, consistent with the experimentally deter-
mined persistence length for double-stranded DNA of £ = 50 nm.

liThe dependence of d on osmotic pressure in the presence of condensing agent, as
measured in the experiments of Rau and Parsegian (22) was fit to the form P = Fo
{exp[—(d — do)/c]—1}, with Fo = 0.12 kgT/nm3, ¢ = 0.14 nm, and do = 2.8 nm. Integration
of the pressure with respect to two-dimensional compression of the hexagonal lattice
gives e,(d) to within a constant. The cohesive energy per unit length at do was chosen
as —0.74 kgT/nm to give the known dimensions of toroidal condensates of DNA in
solution (23).
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Fig. 3. Cross-sectional profiles of condensates inside the capsid, optimized
by continuum theory. One quadrant of a planar cross-section is shown, with
the capsid boundary shown as a heavy black line; the uniaxial (toroid or spool)
axis is the left-hand vertical line. Each profile is labeled with its fractional
loaded length, L*/L. The relative lengths used in the calculations were chosen
to represent bacteriophage A: Rc = 27.5 nm (0.55 &); L = 16.5 um.

center. This progression, shown in Fig. 3, is in good agreement with
that observed in the changing structure of the chain in our Brown-
ian dynamics simulations of capsid loading.

The minimum force required (of a molecular motor, for
instance) to load the capsid is given by the derivative of the
energy with respect to loaded length. This resistance to loading,
plotted in Fig. 4, is a consequence both of the necessity to remove
chain from the stable toroidal condensate outside the capsid and
of the stresses imposed by the limited volume and the need for
tight bending within the capsid. The force begins to increase
dramatically at L* = 0.75 L to a maximum of 15 pN; this increase
is accompanied by the onset of the compression of the conden-
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Fig. 4. Total force resisting loading of capsid (lower curve) and interhelical

spacing d (upper curve) as a function of loading fraction L*/L in the presence
of polyvalent cation condensing agent, calculated from continuum theory.
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sate-to-interchain distances below its preferred value (dy) of 2.8
nm. This compression occurs as the elastic energy required to
wind around the increasingly narrow inner core of the spool
becomes prohibitive, and the spool is compressed against the
capsid wall. The drop in interchain spacing at the later stages of
loading also has been observed in experiments employing mu-
tant bacteriophage DNA of variable length (3, 8).

Recent experiments by Bustamante and coworkers (24) have
directly measured the force exerted by the motor protein that
packages DNA in the particular instance of ¢29 phage. Here the
chain is self-repelling, because the studies are done in the
absence of condensing agent. It is, therefore, of interest to
consider whether the above results can be extrapolated to the
purely repulsive case. At our calculated interhelical distance d of
2.5 nm in the fully loaded capsid, the experimentally measured
osmotic pressures of DNA in the presence and absence of
condensing agent are very similar (22). It is, perhaps, not
surprising that the experimentally measured d-spacing in fully
loaded bacteriophage is not changed by the addition or removal
of condensing agent (3) because the balance between compres-
sion and bending is unaffected by the nature of the counterions
at such high densities. The force against loading, on the other
hand, will be greater in the purely repulsive case by roughly the
difference in the work per unit length of DNA required to bring
chains to this interhelical distance in the presence and absence
of condensing agent. This difference will be sensitive to the ionic
strength of the solution, but a very approximate estimate based
on the experimental osmotic pressure data (22) suggests that
removing condensing agent will increase the maximum loading
force by roughly 20 pN to a value of about 35 pN, comparable
to the measured internal force of ~50 pN (24).

Fig. 5 shows the effect of outside osmotic pressure on the plot
of energy vs. outside length. The solid curve is the energy from
Eq. 1 (that is, the integral of the forces from Fig. 4), showing that,
because the force resisting loading is always positive, the energy
minimum is obtained for complete ejection, L* = (. The dashed
curve is a plot of the energy from Eq. 1 plus a term Posm Voutside-
Here, Posm is the osmotic pressure outside the capsid because of,
say, a fixed amount of a “stressing polymer” like polyethylene
glycol in the solution external to the viral particle in in vitro
studies. [In the in vivo case, Posm corresponds to the osmotic
pressure inside the bacterial cell—believed to be on the order of
a few atmospheres (T. Odijk, personal communication) because
of high concentrations of cytoplasmic proteins.] Voutside is the
volume of the ejected chain or, equivalently, of the chain that is
yet-to-be loaded. Because Vusige is directly proportional to the
length L-L*, through a factor of the cross-sectional area of the
chain (of order dZ), to a first approximation the PV term simply
adds to Eq. 1 a straight line with slope Py, d2. The dashed curve
in Fig. 5 shows the result for an osmotic pressure of 3 atm (1
atm = 101.3 kPa). Note that the ejection of DNA from the capsid
is now only partial, i.e., the magnitude of the slope (and hence
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Fig.5. Free energy E of ejection in the presence (dashed curve) and absence
(solid curve) of 3 atm external osmotic pressure.

the force pushing the chain outside) vanishes when the outside
length is only a small fraction of L (about 0.2 here). This
predicted limitation of ejection at biological osmotic pressures
suggests that the passive stage of phage DNA injection into bacteria
should in general be incomplete; indeed, in some systems, this
limitation has been established in detail, and translocation of the
remaining DNA has been demonstrated to be transcription-
dependent (16). The osmotic pressure required to suppress
ejection completely is given by

dEtotal
crit d(L B LK) L*=L
P osm d2

o

That is, Py, is determined by the maximum force in Fig. 4
divided by the cross-sectional area of the chain, and it corre-
sponds to the total pressure inside the fully loaded viral capsid,;
this value is predicted by the present theory to be of the order
of 30 atm in the presence of condensing agent.
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